ESTIMATORS BASED ON FUZZY RANDOM VARIABLES AND THEIR MATHEMATICAL PROPERTIES

Document Type: Research Paper

Authors

1 Department of Statistics, Faculty of Sciences, University of Birjand, Southern Khorasan, Birjand

2 Department of Statistics, Faculty of Sciences, University of Birjand, Southern Khorasan, Birjand

Abstract

In statistical inference, the point estimation problem is very crucial
and has a wide range of applications. When, we deal with some concepts
such as random variables, the parameters of interest and estimates may be
reported/observed as imprecise. Therefore, the theory of fuzzy sets plays an
important role in formulating such situations. In this paper, we rst recall the
crisp uniformly minimum variance unbiased (UMVU) and Bayesian estimators
and then develop the concept of fuzzy estimators for fuzzy parameters based
on fuzzy random variables.

Keywords


bibitem{A}
M. G. Akbari  and A. Rezaei,  {it An uniformly minimum variance unbiased point estimation using fuzzy observations}, Austrian Journal of Statistics, {bf 36} (2007), 307-317.

bibitem{B}
M. G. Akbari  and A. Rezaei,  {it Order statistics using fuzzy
random variables}, Statistics and Probability Letters, {bf 79} (2009), 1031-1037.

bibitem{au}
R. J. Aumann, {it Integrals of set-valued functions}, Journal of Mathematical Analysis and Applications, {bf 12} (1965), 1-12.

bibitem{bi}
 P. Billingsley, {it Probability and measure}, 2nd ed., New York:
John Wiley, 1995.

bibitem{ca}
J. J. Buckley, {it Fuzzy probabilities: new approach and applications}, Springer-Verlag, Berlin, Heidelberg, 2005.

bibitem{cb}
J. J. Buckley, {it Fuzzy probability and statistics}, Springer-Verlag, Berlin, Heidelberg, 2006.

bibitem{ch}
C. Cheng, {it A new approach for ranking fuzzy numbers by distance
method}, Fuzzy Sets and Systems, {bf 95} (1998), 307-317.

bibitem{g1}
G. Z. Gertner and H. Zhu, {it Bayesian estimation in forest survey
when samples or prior information are fuzzy}, Fuzzy Sets an Systems,
 {bf 77} (1997), 277-290.

bibitem{ho}
H. Hong-Zhong, J. Z. Ming  and S. Zhan-Quan, {it Bayesian
reliability analysis for fuzzy lifetime data}, Fuzzy Sets and
Systems, {bf 157} (2006), 1674-1686.

bibitem{hr}
O. Hryniewicz, {it Possibilities approach to the Bayes statistical
decisions}, In: P. Grzegorzewski, O. Hryniewicz, M. A. Gil , eds., Soft
Methods in Probability, Statistics and Data Analysis. Physica
Verlag, Heidelberg-New York, (2002), 207-218.

bibitem{k1}
R. Kruse, {it Statistical estimation with linguistic data},
Information Sciences, {bf 33} (1984), 197-207.


bibitem{k2}
R. Kruse  and K. D. Meyer, {it Statistics with vague data}, Reidel, Dordrecht, {bf 33} (1987).

bibitem{kw}
H. Kwakernaak, {it Fuzzy random variables I}, Information Sciences, {bf 15} (1978), 1-29.


bibitem{mo}
M. Modarres  and S. Sadi-Nezhad, {it Ranking fuzzy numbers by
preference ratio}, Fuzzy Sets and Systems, {bf 118} (2001), 429-436.


bibitem{na}
W. N$ddot{a}$ther, {it Regression with fuzzy data},
Computational Statistics and Data Analysis, {bf 51} (2006), 235-252.


bibitem{no}
M. Nojavan  and M. Ghazanfari, {it A fuzzy ranking method by
desirability index}, Journal of Intelligent and Fuzzy Systems,
{bf 17} (2006), 27-34.


bibitem{p1}
M. L. Puri and D. A. Ralescu, {it Differential of fuzzy functions}, Journal of Mathematical Analysis and Applications, {bf 114} (1983), 552-558.

bibitem{p2}
M. L. Puri  and D. A. Ralescu, {it Fuzzy random variables}, Journal of Mathematical Analysis and Applications, {bf 114} (1986), 409-422.

bibitem{p3}
M. L. Puri  and D. A. Ralescu, {it Convergence theorem for fuzzy martingales}, Journal of Mathematical Analysis and Applications, {bf 160} (1991), 107-122.

bibitem{sh}
J. Shao, {it Mathematical Statistics}, 2nd ed., New York:
 Springer-Verlag, 2003.

bibitem{s11}
B. Sadeghpour Gildeh  and D. Gien, {it $d_{p,q}$-distance and
Rao-Blackwell theorem for fuzzy random variables}, In Proc, of
the 8th international Conference of Fuzzy Theory and
Technology, Durham, USA, 2002.

bibitem{u1}
Y. Uemura, {it A decision rule on fuzzy events}, Japanese Journal
Fuzzy Theory and Systems, {bf 3} (1991), 291-300.

bibitem{u2}
Y. Uemura, {it A decision rule on fuzzy events under an
observation}, Journal of Fuzzy Mathematics, {bf 1} (1993), 39-52.

bibitem{v1}
R. Viertl, {it Statistical methods for non-precise data}, CRC
Press, Boca Raton, 1996.

bibitem{v2}
R. Viertl, {it Statistics with one-dimensional fuzzy data}, In C.
Bertoluzzi et al., Editor, Statistical Modeling, Analysis and
Management of Fuzzy Data, Physica-Verlag, Heidelberg, (2002a), 199-212.

bibitem{v3}
R. Viertl, {it Statistical inference with non-precise data}, In
Encyclopedia of Life Support Systems, UNESCO, Paris, 2002b.

bibitem{ac}
R. Viertl, {it Univariate statistical analysis with fuzzy data},
Computational Statistics and Data Analysis, {bf 51} (2006), 133-147.

bibitem{yaa}
J. S. Yao  and K. Wu, {it Ranking fuzzy numbers based on
decomposition  principle and signed distance}, Fuzzy Sets and Systems,  {bf 11} (2000), 275-288.