Correspondence between probabilistic norms and fuzzy norms


School of Science, Nanjing University of Posts and Telecommuni- cations, Nanjing 210023, China


In this paper, the connection between Menger probabilistic norms and H"{o}hle probabilistic norms is discussed. In addition, the correspondence between probabilistic norms and Wu-Fang fuzzy (semi-) norms is established. It is shown that a probabilistic norm (with triangular norm $min$) can generate a Wu-Fang fuzzy semi-norm and conversely, a Wu-Fang fuzzy norm can generate a probabilistic norm.


[1] C. Alegre and S. Romaguera, Characterizations of metrizable topological vector spaces and
their asymmetric generalizations in terms of fuzzy (quasi-)norms, Fuzzy Sets and Systems,
161 (2010), 2181{2192.
[2] C. Alsina, M. J. Frank and B. Schweizer, Associative Functions: Triangular Norms and
Copulas, World Scienti c Publishing, Singapore, 2006.
[3] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math.,
11(3) (2003), 687{705.
[4] T. Bag and S. K. Samanta, A comparative study of fuzzy norms on a linear space, Fuzzy
Sets and Systems, 159 (2008), 670{684.
[5] S. C. Cheng and J. N. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces,
Bull. Calcutta Math. Soc., 86 (1994), 429{436.
[6] C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Systems, 48 (1992),
[7] O. Hadzic and E. Pap, Fixed point theory in probabilistic metric spaces, Kluwer Academic
Publishers, Dordrecht, 2001.
[8] U. Hohle, Minkowski functionals of L-fuzzy sets, in: P.P. Wang, S.K. Chang (Eds.), Fuzzy
sets: theory and applications to policy analysis and information systems, Plenum Press, New
York, (1980), 13􀀀24.
[9] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984),
[10] A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12 (1984), 143{
[11] A. K. Katsaras, Linear fuzzy neighborhood spaces, Fuzzy Sets and Systems, 16 (1985), 25{40.
[12] A. K. Katsaras, Locally convex topologies induced by fuzzy norms, Global Journal of Mathematical
Analysis, 1(3) (2013), 83{96.
[13] E. P. Klement, R. Mesiar and E. Pap, Triangular norms, Kluwer Academic Publishers,
Dordrecht, 2000.
[14] I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11
(1975), 336{344.
[15] B. Lafuerza-Guillen and P. K. Harikrishnan, Probabilistic normed spaces, World Scienti c
Publishing, Singapore, 2014.
[16] M. Ma, A comparison between two de nitions of fuzzy normed spaces, J. Harbin Inst. Technology
Suppl. Math., (in Chinese), (1985), 47{49.

[17] S. Nadaban and I. Dzitac, Atomic decompositions of fuzzy normed linear spaces for wavelet
applications, Informatica, 25(4) (2014), 643{662.
[18] R. Saadati and S. M. Vaezpour, Some results on fuzzy Banach spaces, J. Appl. Math. &
Computing, 17(1-2) (2005), 475{484.
[19] B. Schweizer and A. Sklar, Probabilistic metric spaces, North-Holland series in Probability
and Applied Mathematics, North-Holland, New York, 1983.
[20] C. Sempi, A short and partial history of probabilistic normed spaces, Mediterr. J. Math., 3
(2006), 283{300.
[21] C. X. Wu and J. X. Fang, Fuzzy generalization of Kolmogoro 's theorem, J. Harbin Inst.
Technology, (in Chinese), 1 (1984), 1{7.
[22] C. X. Wu and M. Ma, Fuzzy norms, probabilistic norms and fuzzy metrics, Fuzzy Sets and
Systems, 36 (1990), 137{144.
[23] C. H. Yan and J. X. Fang, Generalization of Kolmogoro 's theorem to L-topological vector
spaces, Fuzzy Sets and Systems, 125 (2002), 177{183.