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ON L-DOUBLE FUZZY ROUGH SETS

A. A. ABD EL-LATIF AND A. A. RAMADAN

Abstract. Our aim of this paper is to introduce the concept of L-double

fuzzy rough sets in which both constructive and axiomatic approaches are
used. In constructive approach, a pair of L-double fuzzy lower (resp. up-

per) approximation operators is defined and the basic properties of them are

studied. From the viewpoint of the axiomatic approach, a set of axioms is con-
structed to characterize the L-double fuzzy upper (resp. lower) approximation

of L-double fuzzy rough sets. Finally, from L-double fuzzy approximation

operators, we generated Alexandrov L-double fuzzy topology.

1. Introduction and preliminaries

The theory of rough sets, proposed by Pawlak [21, 22], is an extension of the
set theory for the study of intelligent systems characterized by insufficient and in-
complete information. Recent years have witnessed its wide applications in various
fields such as: machine learning, knowledge discovery, data mining, expert systems,
pattern recognition, granular computing, graph theory, algebraic systems, partially
ordered sets [4, 9, 16, 26, 36].

It is well known that the most important concepts in the rough set theory are
the upper and the lower approximations derived from a binary relation R on the
universe of discourse. There is at least two different basic approaches that have
been formed for developing rough set theories, i.e., the constructive approach and
the axiomatic approach. The constructive approach is suitable for practical applica-
tions of rough sets. The axiomatic approach, which is appropriate for studying the
structures of rough set algebras, takes the lower and upper approximation operators
as primitive notions. In this approach, a set of axioms is used to characterize ap-
proximation operators that are the same as the ones produced by using constructive
approach.

The initiations and majority of studies on rough sets have been concentrated on
constructive approaches. In Pawlak’s rough set model [23], an equivalence relation
is a key and primitive notion. This equivalence relation, however, seems to be a
very stringent condition that may limit the application domain of the rough set
model. In order to solve this problem, several authors have generalized the notion
of approximation operators by using nonequivalence binary relations [17, 42]. This
has led to various other approximation operators [28, 40, 48].
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Fuzzy generalizations of rough sets were first introduced by Dubois and Prade [8].
Radzikowska and Kerre [30] considered L-fuzzy rough sets as a further generaliza-
tion of the notion of rough sets. That is, Radzikowska and Kerre extended fuzzy
rough sets from unit interval [0, 1] to residuated lattices. Liu [20], introduced the
concept of generalized rough sets over fuzzy lattices. Through this concept, the
crisp [24, 25] and fuzzy generalizations [8] of rough sets can also be put into one
framework. Kubiak [18] and Šostak [37] introduced the notion of L-fuzzy topological
space as a generalization of L-topological spaces which introduced by Chang [3] and
Goguen [12]. Many works in L-fuzzy topology have been launched [14, 31, 32, 33].
Also, there are many works investigate the relation between fuzzy rough set and
fuzzy topology [13, 27, 38, 43].

On the other hand, the concept of an intuitionistic fuzzy set, originally proposed
by Atanassov [1, 2], is an important tool for dealing with imperfect and imprecise
information. Compared with Zadeh’s fuzzy sets [44], an intuitionistic fuzzy set
gives the membership and nonmembership degree to which an element belongs to
a set. Hence, coping with imperfect and imprecise information is more flexible and
effective for intuitionistic fuzzy sets. In recent years, intuitionistic fuzzy set theory
has been successfully applied in many practical fields, such as decision analysis
and pattern recognition [19, 39, 41]. Combining intuitionistic fuzzy set theory and
rough set theory may be a promising topic that deserves further investigation.
Some research has already been carried out on this topic [15, 29, 35]. For example,
Çoker [7] first revealed the relationship between intuitionistic fuzzy set theory and
rough set theory and showed that a fuzzy rough set was in fact an intuitionistic
L-fuzzy set. Çoker and his colleagues [5, 6] introduced the notion of intuitionistic
fuzzy topological space using intuitionistic fuzzy sets. Samanta and Mondal [34],
introduced the notion of intuitionistic gradation of openness ( which we call it L-
double fuzzy topology ) as a generalization of intuitionistic fuzzy topology [6] and
L-fuzzy topology [37]. Working under the name “intuitionistic” has doubts that
were thrown about the suitability of this term, especially when working in the case
of complete lattice L. These doubts were ended in 2005 by Gutierrez Garcia and
Rodabaugh [10]. They proved that this term is unsuitable in mathematics and
applications. They concluded that they work under the name “double”.

In this paper, we first introduce the concept of L-double fuzzy relation and
use it as a tool to define L-double fuzzy lower approximation and L-double fuzzy
upper approximation. Also, we study L-double fuzzy rough sets through both the
constructive and axiomatic approaches. From the viewpoint of the constructive
approach, we study the relations among L-double fuzzy lower approximation and
L-double fuzzy upper approximation under arbitrary L-double fuzzy relation. The
connections between special L-double fuzzy relations and L-double fuzzy lower and
L-double fuzzy upper approximation operators are also examined. In the axiomatic
approach, a set of axioms is constructed to characterize the L-double fuzzy upper
(resp. lower) approximation of L-double fuzzy rough sets. Finally, from L-double
fuzzy approximation operators, we generated Alexandrov L-double fuzzy topology.

It should be noted that there are previous works in intuitionistic fuzzy rough sets
as [45, 46, 47]. In these works the authors define the notion of intuitionistic fuzzy
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rough sets by using intuitionistic fuzzy sets due to Atanassove [1, 2], but in our
work we define L-double fuzzy rough sets by using L-fuzzy sets due to Goguen [11].
In [47] an intuitionistic fuzzy topology which is generated from intuitionistic fuzzy
approximation operators is due to Çoker [5], but in our work the L-double fuzzy
topology which is generated from L-double fuzzy approximation operators is due
to Samanta and Mondal [34] and it is Alexandrov.

Throughout this paper, let (L,∧,∨,′ , 0L, 1L) be a fuzzy lattice, i.e., a completely
distributive lattice with an order reversing involution ′ : L→ L where, 0L and 1M
denotes the smallest and largest elements of lattice L. Let U be a non-empty set
of objects called the universe. An L-fuzzy set is a map from U to L [11], let LU ,
the set of all L-fuzzy sets in U . 0U and 1U are the smallest and largest elements of
LU . A map R : U × U → L is called an L- fuzzy relation on U . R(x, y) is referred
to as the degree of relation between x and y, where (x, y) ∈ U × U . R is referred
to as a reflexive relation if R(x, x) = 1L , ∀x ∈ U ; R is referred to as a symmetric
relation if R(x, y) = R(y, x) ∀x, y ∈ U ; R is referred to as a transitive relation if
R(x, z) ≥

∨
y∈U (R(x, y) ∧ R(y, z)) for each x, y, z ∈ U and R is referred to as a

serial relation if for each x ∈ U , there exists y ∈ U such that R(x, y) = 1L. R is
called an equivalence relation if it is reflexive, symmetric and transitive. For α ∈ L
and λ ∈ LU , the L-fuzzy sets αλ, α ∨ λ : U → L are defined as follows:

(αλ)(x) = α ∧ λ(x), and (α ∨ λ)(x) = α ∨ λ(x),∀x ∈ U.
In addition, for each x ∈ U , we define the L-fuzzy set δx : U → L as:

δx(y) =

{
1L, if y = x
0L, if y 6= x.

Lemma 1.1. [20] Any L-fuzzy set λ ∈ LU can be written as:

λ =
∨
x∈U

λ(x)δx.

Definition 1.2. [20] Let U be an arbitrary universal set, L be a fuzzy lattice and
R be an L-fuzzy relation on U . With each L-fuzzy set λ on U , we associate two
L-fuzzy sets Rλ,Rλ : U → L :

(Rλ)(x) =
∧
y∈U

((R(x, y))′ ∨ λ(y)) and (Rλ)(x) =
∨
y∈U

(R(x, y) ∧ λ(y)),∀x ∈ U.

Rλ,Rλ are called the lower and upper approximations of the L-fuzzy set λ, respec-
tively. The pair (Rλ,Rλ) is referred to as a generalized rough set of λ relative to
L.

Definition 1.3. [34] The pair (T , T ∗) of maps T , T ∗ : LU → L is called an
L-double fuzzy topology on U if it satisfies the following conditions:

(LDFT1) T (λ) ≤ (T ∗(λ))′, for each λ ∈ LU ,
(LDFT2) T (0U ) = T (1U ) = 1L, T ∗(0U ) = T ∗(1U ) = 0L,
(LDFT3) T (λ1 ∧ λ2) ≥ T (λ1) ∧ T (λ2) and T ∗(λ1 ∧ λ2) ≤ T ∗(λ1) ∨ T ∗(λ2), for

any λ1, λ2 ∈ LU .
(LDFT4) T (

∨
i∈Γ λi) ≥

∧
i∈Γ T (λi) and T ∗(

∨
i∈Γ λi) ≤

∨
i∈Γ T ∗(λi), for any

{λi : i ∈ Γ} ⊆ LU .
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The triplet (X, T , T ∗) is called an L-double fuzzy topological space.
An L-double fuzzy topology (T , T ∗) is called Alexandrov if it satisfies:

(LDFT5) T (
∧

i∈Γ λi) ≥
∧

i∈Γ T (λi) and T ∗(
∧

i∈Γ λi) ≤
∨

i∈Γ T ∗(λi), for any

{λi : i ∈ Γ} ⊆ LU .

Example 1.4. Let U = {a, b, c} and L = I. Define µ ∈ LU as follows:

µ(a) = 0.2, µ(b) = 0.4, µ(c) = 0.7.

Define T , T ∗ : LU → L as follows:

T (λ) =

 1L, if λ ∈ {0U , 1U}
0.5, if λ = µ
0L, otherwise,

T ∗(λ) =

 0L, if λ ∈ {0U , 1U}
0.3, if λ = µ
1L, otherwise.

Then, (T , T ∗) is an L-double fuzzy topology on U .

Definition 1.5. [34] Let f : (U, T1, T ∗1 )→ (V, T2, T ∗2 ) be a map between L-double
fuzzy topological spaces (U, T1, T ∗1 ) and (V, T2, T ∗2 ). Then f is said to be continuous
if ∀λ ∈ LV , T1(f←(λ)) ≥ T2(λ) and T ∗1 (f←(λ)) ≤ T ∗2 (λ).

2. L-double Fuzzy Rough Set

Definition 2.1. Let U and V be two arbitrary sets. The pair (R,R∗) of maps
R,R∗ : U × V → L is called an L-double fuzzy relation on U × V if R(x, y) ≤
(R∗(x, y))′, ∀ (x, y) ∈ U × V . If R,R∗ : U × U → L, (R,R∗) is called L-double
fuzzy relation on U . R(x, y) (resp. R∗(x, y)), referred to as the degree of relation
(resp. non-relation ) between x and y.

Definition 2.2. An L-double fuzzy relation (R,R∗) on U is called:

(i) L-double fuzzy reflexive if R(x, x) = 1L and R∗(x, x) = 0L, ∀x ∈ U ,
(ii) L-double fuzzy symmetric if R(x, y) = R(y, x) and R∗(x, y) = R∗(y, x),

∀x, y ∈ U ,
(iii) L-double fuzzy transitive if for each x, y, z ∈ U , R(x, z) ≥

∨
y∈U (R(x, y) ∧

R(y, z)) and R∗(x, z) ≤
∧

y∈U (R∗(x, y) ∨R∗(y, z)).
(iv) L-double fuzzy serial if for each x ∈ U , there exists y ∈ U such that R(x, y) =

1L and R∗(x, y) = 0L.

An L-double fuzzy relation (R,R∗) on U is called an L-double fuzzy equivalent
relation if it is L-double fuzzy reflexive, L-double fuzzy symmetric and L-double
fuzzy transitive. The triplet (U,R,R∗) is called an L-double fuzzy approximation
space.

Example 2.3. Let U = {a, b, c} and L = I. Define R,R∗ : U × U → L as follows:

R =

 1 1 0.5
1 1 0.5

0.5 0.5 1

 , R∗ =

 0 0 0.4
0 0 0.4

0.4 0.4 0


Then, (R,R∗) is an L-double fuzzy reflexive (symmetric, transitive, serial) relation.



On L-double Fuzzy Rough Sets 129

Definition 2.4. Let U be an arbitrary universal set, L be a fuzzy lattice and
(R,R∗) be an L-double fuzzy relation on U . With each L-fuzzy set λ on U , the

pairs (Rλ,R∗λ), (Rλ,R
∗
λ) of maps Rλ,R∗λ,Rλ,R

∗
λ : U → L are called L-double

fuzzy lower approximation and L-double fuzzy upper approximation of the L-fuzzy
set λ, respectively, where

(Rλ)(x) =
∧
y∈U

((R(x, y))′ ∨ λ(y)), (R∗λ)(x) =
∨
y∈U

((R∗(x, y))′ ∧ λ′(y)),∀x ∈ U

and

(Rλ)(x) =
∨
y∈U

(R(x, y) ∧ λ(y)), (R
∗
λ)(x) =

∧
y∈U

(R∗(x, y) ∨ λ′(y)),∀x ∈ U.

The quaternary (Rλ,R∗λ,Rλ,R
∗
λ) is called L-double fuzzy rough set of λ. The

pairs (R,R∗), (R,R
∗
) of operators R,R∗, R,R

∗
: LU → LU are called L-double

fuzzy lower approximation and L-double fuzzy upper approximation operators, re-

spectively, and the triplets (U,R,R∗), (U,R,R
∗
) are called L-double fuzzy lower

approximation and L-double fuzzy upper approximation spaces, respectively.

Remark 2.5. Let U be an arbitrary universal set, R : U × U → L be an L-fuzzy
relation on U and (Rλ,Rλ) be a generalized rough set of λ ∈ LU . Define a map
R∗ : U × U → L by, R∗(x, y) = (R(x, y))′, ∀(x, y) ∈ U × U . Define L-fuzzy sets

R∗λ,R
∗
λ : U → L as:

(R∗λ)(x) = (Rλ)′(x) and (R
∗
λ)(x) = (Rλ)′(x),∀x ∈ U.

Then (R,R∗) is an L-double fuzzy relation on U and (Rλ,R∗λ,Rλ,R
∗
λ) is an

L-double fuzzy rough set of λ. Therefore, an L-double fuzzy rough set is a gener-
alization of generalized rough set.

In the following theorems, we obtain the basic properties of L-double fuzzy lower
approximation and L-double fuzzy upper approximation.

Theorem 2.6. Let U be an arbitrary universal set, L be a fuzzy lattice, and (R,R∗)
be an L-double fuzzy relation on U , λ ∈ LU . Then,

(i) Rλ ≤ (R
∗
λ)′ and Rλ ≥ (R∗λ)′, ∀λ ∈ LU ;

(ii) R1U = 1U and R∗1U = 0U ;

(iii) R0U = 0U and R
∗
0U = 1U ;

(iv) R(
∧

i∈Γ λi) =
∧

i∈ΓRλi and R∗(
∧

i∈Γ λi) =
∨

i∈ΓR
∗λi, for each family

{λi : i ∈ Γ} ⊆ LU ;

(v) R(
∨

i∈Γ λi) =
∨

i∈ΓRλi and R
∗
(
∨

i∈Γ λi) =
∧

i∈ΓR
∗
λi, for each family {λi :

i ∈ Γ} ⊆ LU ;
(vi) If λ ≤ µ, then Rλ ≤ Rµ and R∗λ ≥ R∗µ;

(vii) If λ ≤ µ, then Rλ ≤ Rµ and R
∗
λ ≥ R∗µ;

(viii) Rλ ∨Rµ ≤ R(λ ∨ µ) and R∗λ ∧R∗µ ≥ R∗(λ ∨ µ),∀λ, µ ∈ LU ;

(ix) R(λ ∧ µ) ≤ Rλ ∧Rµ and R
∗
(λ ∧ µ) ≥ R∗λ ∨R∗µ,∀λ, µ ∈ LU ;

(x) Rλ′ = (Rλ)′ and R
∗
λ′ = (R∗λ)′;

(xi) Rλ′ = (Rλ)′ and R∗λ′ = (R
∗
λ)′.
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Proof. (i) For each x ∈ U , λ ∈ LU , we have

(R
∗
λ)′(x) = (

∧
y∈U (R∗(x, y) ∨ λ′(y)))′

=
∨

y∈U ((R∗(x, y))′ ∧ λ(y))

≥
∨

y∈U (R(x, y) ∧ λ(y))

= (Rλ)(x).

Similarly, (R∗λ)′(x) = (Rλ)(x).

(ii) Since, for each x ∈ U ,

(R1U )(x) =
∧
y∈U

((R(x, y))′ ∨ 1U (y)) = 1L

and
(R∗1U )(x) =

∨
y∈U

((R∗(x, y))′ ∧ (1U (y))′) = 0L,

we have, R1U = 1U and R∗1U = 0U .

(iii) Similar to (ii).

(iv) For each x ∈ U , {λi : i ∈ Γ} ⊆ LU , we have

(R∗(
∧

i∈Γ λi))(x) =
∨

y∈U ((R∗(x, y))′ ∧ (
∧

i∈Γ λi)
′(y))

=
∨

y∈U ((R∗(x, y))′ ∧
∨

i∈Γ λ
′
i(y))

=
∨

y∈U
∨

i∈Γ((R∗(x, y))′ ∧ λ′i(y))

=
∨

i∈Γ

∨
y∈U ((R∗(x, y))′ ∧ λ′i(y))

= (
∨

i∈ΓR
∗λi)(x).

Similarly, (R(
∧

i∈Γ λi))(x) = (
∧

i∈ΓRλi)(x).
(v) Similar to (iv)

(vi) If λ ≤ µ, then ∀x ∈ U ,

(Rλ)(x) =
∧
y∈U

((R(x, y))′ ∨ λ(y)) ≤
∧
y∈U

((R(x, y))′ ∨ µ(y)) = (Rµ)(x).

Thus Rλ ≤ Rµ. Also,

(R∗λ)(x) =
∨
y∈U

((R∗(x, y))′ ∧ λ′(y)) ≥
∨
y∈U

((R∗(x, y))′ ∧ µ′(y)) = (R∗µ)(x).

Thus R∗λ ≥ R∗µ.

(vii) Similar to (vi).

(viii) Since λ ≤ λ ∨ µ and µ ≤ λ ∨ µ, by (vi) we have Rλ ≤ R(λ ∨ µ) and
Rµ ≤ R(λ∨µ), this implies that Rλ∨Rµ ≤ R(λ∨µ). Also, we have R∗λ ≥ R∗(λ∨µ)
and R∗µ ≥ R∗(λ ∨ µ), this implies that R∗λ ∧R∗µ ≥ R∗(λ ∨ µ).

(ix) similar to (viii).
(x) For each x ∈ U , λ ∈ LU , we have

(R
∗
λ′)(x) =

∧
y∈U (R∗(x, y) ∨ (λ′)′(y))

= (
∨

y∈U ((R∗(x, y))′ ∧ λ′(y)))′

= ((R∗λ)(x))′

= (R∗λ)′(x).
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Thus, R
∗
λ′ = (R∗λ)′. Similarly, Rλ′ = (Rλ)′.

(xi) Using the duality of R and R (resp. R∗ and R
∗
), we obtain Rλ′ = (Rλ)′

and R∗λ′ = (R
∗
λ)′. �

Theorem 2.7. Let (R,R∗) be an L-double fuzzy relation on a universal set U .
Then the following statements are equivalent:

(i) (R,R∗) is an L-double fuzzy reflexive;

(ii) λ ≤ Rλ and λ′ ≥ R∗λ;
(iii) Rλ ≤ λ and R∗λ ≥ λ′.

Proof. (i)⇒ (ii) Suppose that (R,R∗) is an L-double fuzzy reflexive. Then, ∀x ∈ U ,
R(x, x) = 1L and R∗(x, x) = 0L. This implies that

λ(x) = 1L ∧ λ(x) = R(x, x) ∧ λ(x)
≤
∨

y∈U (R(x, y) ∧ λ(y))

= (Rλ)(x),

and
λ′(x) = 0L ∨ λ′(x) = R∗(x, x) ∨ λ′(x)

≥
∧

y∈U (R∗(x, y) ∨ λ′(y))

= (R
∗
λ)(x).

(ii) ⇒ (i) We assume that λ ≤ Rλ and λ′ ≥ R
∗
λ, ∀λ ∈ LU . If there exists some

x ∈ U such that R(x, x) = a 6= 1L and R∗(x, x) = b 6= 0L, then we can define
L-fuzzy set δx(y) : U → L as:

δx(y) =

{
1L, if y = x
0L, if y 6= x.

Then
(Rδx)(x) =

∨
y∈U (R(x, y) ∧ δx(y))

= R(x, x)
= a 6= 1L = δx(x)

and

(R
∗
δx)(x) =

∧
y∈U (R∗(x, y) ∨ δ′x(y))

= R∗(x, x)
= b 6= 0L = δ′x(x).

Thus, δx 6≤ Rδx and δ′x 6≥ R
∗
δx. This is a contradiction. Then R(x, x) = 1L and

R∗(x, x) = 0L, ∀x ∈ U .
(ii) ⇔ (iii) It is easy from Theorem 2.6(x),(xi) . �

Theorem 2.8. Let (R,R∗) be an L-double fuzzy relation on a universal set U .
Then the following statements are equivalent:

(i) (R,R∗) is an L-double fuzzy transitive;

(ii) R(Rλ) ≤ Rλ and R
∗
(R
∗
λ)′ ≥ R∗λ

(iii) R(Rλ) ≥ Rλ and R∗(R∗λ)′ ≤ R∗λ.
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Proof. (i) ⇔ (ii) For each λ ∈ LU , since

(R(Rλ))(x) =
∨

y∈U (R(x, y) ∧ (Rλ)(y))

=
∨

y∈U (R(x, y) ∧ (
∨

z∈U (R(y, z) ∧ λ(z))))

=
∨

z∈U (
∨

y∈U (R(x, y) ∧R(y, z)) ∧ λ(z)),

and
(R
∗
(R
∗
λ)′)(x) =

∧
y∈U (R∗(x, y) ∨ (R

∗
λ)(y))

=
∧

y∈U (R∗(x, y) ∨ (
∧

z∈U (R∗(y, z) ∨ λ′(z))))
=
∧

z∈U (
∧

y∈U (R∗(x, y) ∨R∗(y, z)) ∨ λ′(z)),

we have R(Rλ) ≤ Rλ and R
∗
(R
∗
λ)′ ≥ R∗λ ⇔ (R,R∗) is an L-double fuzzy transi-

tive.
(i) ⇔ (iii) is similar to (i) ⇔ (ii). �

From Theorem 2.7 and Theorem 2.8, we have the following theorem:

Theorem 2.9. If (R,R∗) is an L-double fuzzy reflexive and L-double fuzzy transi-
tive relation on a universal set U , then the following properties hold:

(i) R(Rλ) = Rλ and R
∗
(R
∗
λ)′ = R

∗
λ.

(ii) R(Rλ) = Rλ and R∗(R∗λ)′ = R∗λ.

Theorem 2.10. Let (R,R∗) be an L-double fuzzy relation on a universal set U .
Then the following statements are equivalent:

(i) (R,R∗) is an L-double fuzzy serial;

(ii) Rλ ≤ Rλ and R
∗
λ ≤ R∗λ, ∀λ ∈ LU ;

(iii) R0U = 0U and R∗0U = 1U ;
(iv) R1U = 1U and R∗1U = 0U .

Proof. (i)⇒ (ii) For each x ∈ U ,

(R
∗
λ)(x) =

∧
y∈U (R∗(x, y) ∨ λ′(y))

= λ′(y0) (since, from (i), ∃y0 ∈ U , s.t, R∗(x, y0) = 0L)
= (R∗(x, y0))′ ∧ λ′(y0)
≤
∨

y∈U ((R∗(x, y))′ ∧ λ′(y))

= (R∗λ)(x).

Similarly, (Rλ)(x) ≥ (Rλ)(x).

(ii)⇒ (iii) It is clear from Theorem 2.6(iii).
(iii)⇒ (iv) It is clear from Theorem 2.6(xi).
(iv)⇒ (i) ∀x ∈ U , since

(R1U )(x) = 1U (x) =
∨
y∈U

(R(x, y) ∧ 1U (y)),

and
(R
∗
1U )(x) = 0U (x) =

∧
y∈U

(R∗(x, y) ∨ 0U (y)).

Then,
∨

y∈U R(x, y) = 1L and
∧

y∈U R
∗(x, y) = 0L. So, there exists y0 ∈ U such

that R(x, y0) = 1L and R∗(x, y0) = 0L. �
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3. Axiomatic System of L-double Fuzzy Rough Sets

This section gives the axiomatic approach of an L-double fuzzy upper (resp.
lower) approximation of L-double fuzzy rough sets. The axiomatic approach aims
to investigate the algebraic characters of L-double fuzzy rough sets, which may help
to develop methods for application. It also provides a more general framework for
the study generalized rough sets.

Theorem 3.1. Let U be an arbitrary universe set, L be a fuzzy lattice and f, f∗ :
LU → LU be operators with f(λ) ≤ (f∗(λ))′,∀λ ∈ LU . Then, f and f∗ satisfy the
following axioms:

f(
∨
i∈Γ

αiλi) =
∨
i∈Γ

αif(λi), f∗(
∨
i∈Γ

αiλi) =
∧
i∈Γ

(α′i ∨ f∗(λi))

for any given index set Γ, λi ∈ LU and αi ∈ L, iff there exists an L-double fuzzy

relation (R,R∗) on U such that ∀λ ∈ LU , f(λ) = Rλ and f∗(λ) = R
∗
λ; that is

f = R and f∗ = R
∗
.

Proof. We use the operators f and f∗ to construct an L-double fuzzy relation
(R,R∗) on U as below:

R(x, y) = f(δy)(x) and R∗(x, y) = f∗(δy)(x).

Then, we have

(f∗(λ))(x) = (f∗(
∨

y∈U λ(y)δy))(x), (by Lemma 1.1)

=
∧

y∈U (λ′(y) ∨ f∗(δy))(x)

=
∧

y∈U (λ′(y) ∨ f∗(δy)(x))

=
∧

y∈U (λ′(y) ∨R∗(x, y))

= (R
∗
λ)(x).

Thus, f∗(λ) = R
∗
λ and f∗ = R

∗
. Similarly, f = R.

Conversely, if there exists an L-double fuzzy relation (R,R∗) on U such that

f = R and f∗ = R
∗
. From Theorem 2.6(i), clearly f(λ) ≤ (f∗(λ))′,∀λ ∈ LU . For

any given index set Γ, λi ∈ LU and αi ∈ L, we have

(f∗(
∨

i∈Γ αiλi))(x) = (R
∗
(
∨

i∈Γ αiλi))(x)
=
∧

y∈U (R∗(x, y) ∨ (
∨

i∈Γ(αiλi)(y))′)

=
∧

y∈U (R∗(x, y) ∨ (
∨

i∈Γ(αi ∧ λi(y)))′)

=
∧

y∈U (R∗(x, y) ∨ (
∧

i∈Γ(α′i ∨ λ′i(y))))

=
∧

y∈U
∧

i∈Γ(R∗(x, y) ∨ α′i ∨ λ′i(y))

=
∧

i∈Γ(α′i ∨
∧

y∈U ((R∗(x, y) ∨ λ′i(y))))

=
∧

i∈Γ(α′i ∨ (R
∗
λi)(x))

=
∧

i∈Γ(α′i ∨ (f∗(λi))(x))
= (
∧

i∈Γ(α′i ∨ (f∗(λi))))(x).

Thus, f∗(
∨

i∈Γ αiλi) =
∧

i∈Γ(α′i ∨ (f∗(λi))).

Similarly, f(
∨

i∈Γ αiλi) =
∨

i∈Γ αif(λi). �
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Theorem 3.2. Let U be an arbitrary universe set, L be a fuzzy lattice and f, f∗ :
LU → LU be operators with f(λ) ≤ (f∗(λ))′,∀λ ∈ LU . Then, f and f∗ satisfy the
following axioms:

f(
∨
i∈Γ

αiλi) =
∨
i∈Γ

αif(λi), f∗(
∨
i∈Γ

αiλi) =
∧
i∈Γ

(α′i ∨ f∗(λi))

for any given index set Γ, λi ∈ LU and αi ∈ L iff there exists an L-double fuzzy
relation (R,R∗) on U such that ∀λ ∈ LU , g(λ) = Rλ and g∗(λ) = R∗λ; that is
g = R and g∗ = R∗, where g, g∗ : LU → LU defined as:

g(λ) = (f(λ′))′, and g∗(λ) = (f∗(λ′))′.

Proof. By using the L-double fuzzy relation (R,R∗) on U which defined by:

R(x, y) = (g(δ′y)(x))′ and R∗(x, y) = g∗(δ′y)(x),

the result can be obtain by the same manner of Theorem 3.1. �

Definition 3.3. Let U be an arbitrary universe set and λ, µ ∈ LU . The pair
(λµ, (λµ)∗) is called an L-double fuzzy inner product of λ, µ, where

λµ =
∨
x∈U

(λ(x) ∧ µ(x)), and (λµ)∗ =
∧
x∈U

(λ(x) ∨ µ(x)).

Lemma 3.4. The L-double fuzzy inner product has the following basic properties:

(i) λµ = µλ and (λµ)∗ = (µλ)∗, ∀λ, µ ∈ LU .

(ii)
∨

i∈Γ(αiλi)µ =
∨

i∈Γ(αi ∧ λiµ) and (
∧

i∈Γ(αi ∨ λi)µ)∗ =
∧

i∈Γ(αi ∨ (λiµ)∗),

∀ λi, µ ∈ LU and αi ∈ L.

(iii) If λµ = λν (resp. (λµ)∗ = (λν)∗) ∀λ ∈ LU , then µ = ν.

Proof. (i) This follows directly from the definition of L-double fuzzy inner product.
(ii) For any given index set Γ, ∀λi, µ ∈ LU and αi ∈ L, we have

(
∧

i∈Γ(αi ∨ λi)µ)∗ =
∧

x∈U (
∧

i∈Γ(αi ∨ λi)(x) ∨ µ(x))
=
∧

x∈U (
∧

i∈Γ(αi ∨ λi(x)) ∨ µ(x))
=
∧

i∈Γ

∧
x∈U (αi ∨ λi(x) ∨ µ(x))

=
∧

i∈Γ(αi ∨
∧

x∈U (λi(x) ∨ µ(x)))
=
∧

i∈Γ(αi ∨ (λiµ)∗).

Similarly,
∨

i∈Γ(αiλi)µ =
∨

i∈Γ(αi ∧ λiµ).

(iii) Suppose that, λµ = λν (resp. (λµ)∗ = (λν)∗) , ∀λ ∈ LU . If µ 6= ν, then
there exists x ∈ U such that µ(x) 6= ν(x). Using L-fuzzy set δx, we have

δxµ =
∨
y∈U

(δx(y) ∧ µ(y)) = µ(x),

and
δxν =

∨
y∈U

(δx(y) ∧ ν(y)) = ν(x).

This contradicts δxµ = δxν. Thus µ = ν. On the other hand,

(δ′xµ)∗ =
∧
y∈U

(δ′x(y) ∨ µ(y)) = µ(x),
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and
(δ′xν)

∗ =
∧
y∈U

(δ′x(y) ∨ ν(y)) = ν(x).

This contradicts (δ′xµ)∗ = (δ′xν)∗. Thus, µ = ν. �

Theorem 3.5. Let U be an arbitrary universe set and L be a fuzzy lattice. Suppose
that f, f∗ : LU → LU are operators with f(λ) ≤ (f∗(λ))′,∀λ ∈ LU such that f and
f∗ satisfy the following axioms:

f(
∨
i∈Γ

αiλi) =
∨
i∈Γ

αif(λi), f∗(
∨
i∈Γ

αiλi) =
∧
i∈Γ

(α′i ∨ f∗(λi))

for any given index set Γ, λi ∈ LU and αi ∈ L. Then there exist:

(i) an L-double fuzzy reflexive relation (R,R∗) on U iff λ ≤ f(λ) and f∗(λ) ≤ λ′,
∀λ ∈ LU ;

(ii) an L-double fuzzy symmetric relation (R,R∗) on U iff λf(ν) = νf(λ) and
(λf∗(ν))∗ = (ν′f∗(λ′))∗, ∀λ ∈ LU ;

(iii) an L-double fuzzy transitive relation (R,R∗) on U iff f(f(λ)) ≤ f(λ) and
f∗((f∗(λ))′) ≥ f∗(λ).

Proof. By Theorem 3.1, there exists an L-double fuzzy relation (R,R∗) on U such

that f(λ) = Rλ and f∗(λ) = R
∗
λ, ∀λ ∈ LU .

(i) It is immediately from Theorem 2.7.

(ii) If (R,R∗) is an L-double fuzzy symmetric relation on U , then R(x, y) =
R(y, x) and R∗(x, y) = R∗(y, x), ∀x, y ∈ U . Thus, we have

(λf∗(ν))∗ = (λR
∗
ν)∗ =

∧
x∈U (λ(x) ∨ (R

∗
ν)(x))

=
∧

x∈U (λ(x) ∨ (
∧

y∈U (R
∗(x, y) ∨ ν′(y))))

=
∧

x∈U
∧

y∈U (λ(x) ∨R
∗(x, y) ∨ ν′(y))

=
∧

y∈U
∧

x∈U (ν
′(y) ∨R∗(y, x) ∨ λ(x))

=
∧

y∈U (ν
′(y) ∨ (

∧
x∈U (R

∗(y, x) ∨ λ(x))))
=

∧
y∈U (ν

′(y) ∨ (R
∗
λ′)(y))

= (ν′R
∗
λ′)∗ = (ν′f∗(λ′))∗.

Similarly, λf(ν) = νf(λ).

Conversely, if λf(ν) = νf(λ) and (λf∗(ν))∗ = (ν′f∗(λ′))∗, ∀λ ∈ LU , then for
L-fuzzy sets λ = δx and ν = δy, we have

λf(ν) = λRν = δxRδy
=

∨
z∈U (δx(z) ∧Rδy(z))

= Rδy(x)
=

∨
z∈U (R(x, z) ∧ δy(z))

= R(x, y).

Similarly,
νf(λ) = νRλ = δyRδx

=
∨

z∈U (δy(z) ∧Rδx(z))
= Rδx(y)
=

∨
z∈U (R(y, z) ∧ δx(z))

= R(y, x).

Thus R(x, y) = R(y, x).
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Also, if we put λ = δ′x and ν = δy, then we have

(λf∗(ν))∗ = (λR
∗
ν)∗ = (δ′xR

∗
δy)∗

=
∧

z∈U (δ′x(z) ∨R∗δy(z))

= R
∗
δy(x)

=
∧

z∈U (R∗(x, z) ∨ δ′y(z))
= R∗(x, y).

Similarly,

(ν′f∗(λ′))∗ = (ν′R
∗
λ′)∗ = (δ′yR

∗
δx)∗

=
∧

z∈U (δ′y(z) ∨R∗δx(z))

= R
∗
δx(y)

=
∧

z∈U (R∗(y, z) ∨ δ′x(z))
= R∗(y, x).

Thus R∗(x, y) = R∗(y, x). Hence, (R,R∗) is an L-double fuzzy symmetric relation
on U .

(iii) It follows immediately from Theorem 2.8. �

Theorem 3.6. Let U be an arbitrary universe set and L be a fuzzy lattice. Suppose
that f, f∗ : LU → LU are operators with f(λ) ≤ (f∗(λ))′,∀λ ∈ LU such that f and
f∗ satisfy the following axioms:

f(
∨
i∈Γ

αiλi) =
∨
i∈Γ

αif(λi), f∗(
∨
i∈Γ

αiλi) =
∧
i∈Γ

(α′i ∨ f∗(λi))

for any given index set Γ, λi ∈ LU and αi ∈ L. Let g, g∗ : LU → LU defined as:

g(λ) = (f(λ′))′, and g∗(λ) = (f∗(λ′))′.

Then there exist:
(i) an L-double fuzzy reflexive relation (R,R∗) on U iff g(λ) ≤ λ and λ′ ≤ g∗(λ),

∀λ ∈ LU ;
(ii) an L-double fuzzy symmetric relation (R,R∗) on U iff λg(ν) = νg(λ) and

(λg∗(ν))∗ = (ν′g∗(λ′))∗, ∀λ ∈ LU ;
(iii) an L-double fuzzy transitive relation (R,R∗) on U iff g(λ) ≤ g(g(λ)) and

g∗((g∗(λ))′) ≤ g∗(λ).

Proof. By Theorem 3.2, there exists an L-double fuzzy relation (R,R∗) on U such
that g(λ) = Rλ and g∗(λ) = R∗λ, ∀λ ∈ LU .

(i) and (iii) are followed immediately from Theorem 2.7, and Theorem 2.8, re-
spectively.

(ii) it can be proved by the same manner of Theorem 3.5(ii). �

Lemma 3.7. Let U be an arbitrary universe set and L be a fuzzy lattice. Let
f, f∗ : LU → LU be operators with f(λ) ≤ (f∗(λ))′,∀λ ∈ LU . If f and f∗ satisfy
the following axioms:

λf(ν) = νf(λ) and (λf∗(ν))∗ = (ν′f∗(λ′))∗, ∀λ, µ ∈ LU ,

then,

f(
∨
i∈Γ

αiλi) =
∨
i∈Γ

αif(λi) and f∗(
∨
i∈Γ

αiλi) =
∧
i∈Γ

(α′i ∨ f∗(λi)),
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for any given index set Γ, λi ∈ LU and αi ∈ L.

Proof. For each ν ∈ LU , we have

(ν
∧

i∈Γ(α′i ∨ f∗(λi)))∗ = (
∧

i∈Γ(α′i ∨ f∗(λi))ν)∗, ( by Lemma 3.4(i))
=
∧

i∈Γ(α′i ∨ ((f∗(λi))ν)∗), ( by Lemma 3.4(ii))
=
∧

i∈Γ(α′i ∨ (ν(f∗(λi)))
∗), ( by Lemma 3.4(i))

=
∧

i∈Γ(α′i ∨ (λ′i(f
∗(ν′)))∗)

= ((
∧

i∈Γ(α′i ∨ λ′i))f∗(ν′))∗, ( by Lemma 3.4(ii))
= (νf∗((

∧
i∈Γ(α′i ∨ λ′i))′))∗

= (νf∗(
∨

i∈Γ(αiλi)))
∗.

Then, by Lemma 3.4(iii), we have f∗(
∨

i∈Γ(αiλi)) =
∧

i∈Γ(α′i ∨ f∗(λi)). Similarly,
f(
∨

i∈Γ αiλi) =
∨

i∈Γ(αif(λi)). �

From Theorem 3.5, and Lemma 3.7, we have the following result.

Theorem 3.8. Let U be an arbitrary universe set and L be a fuzzy lattice. Suppose
that f, f∗ : LU → LU are operators with f(λ) ≤ (f∗(λ))′,∀λ ∈ LU such that f and
f∗ satisfy the following axioms:

(i) f(f(λ)) ≤ f(λ) and f∗(λ) ≤ f∗((f∗(λ))′), ∀λ ∈ LU ;
(ii) λ ≤ f(λ) and f∗(λ) ≤ λ′, ∀λ ∈ LU , ∀λ ∈ LU ;
(iii) λf(ν) = νf(λ) and (λf∗(ν))∗ = (ν′f∗(λ′))∗, ∀λ, ν ∈ LU .

Then, there exists an L-double fuzzy equivalent relation (R,R∗) on U such that

f(λ) = Rλ and f∗(λ) = R
∗
λ, ∀λ ∈ LU .

When we define the L-double fuzzy lower approximation operation (R,R∗) using

the formulas Rλ = (Rλ′)′ and R∗λ = (R
∗
λ′)′, then, (Rλ,R∗λ,Rλ,R

∗
λ) is an L-

double fuzzy rough set of λ. Observe that Theorem 3.8, gives an axiomatic system
of L-double fuzzy rough sets.

Lemma 3.9. Let U be an arbitrary universe set and L be a fuzzy lattice. Suppose
that f, f∗ : LU → LU are operators with f(λ) ≤ (f∗(λ))′,∀λ ∈ LU . Then, the
axioms f(f(λ)) ≤ f(λ) and λ ≤ f(λ) (resp. f∗(λ) ≤ f∗((f∗(λ))′) and f∗(λ) ≤ λ′)
are equivalent to λ ∨ f(f(λ)) = f(λ) (resp. λ′ ∧ f∗((f∗(λ))′) = f∗(λ)).

Proof. If λ ∨ f(f(λ)) = f(λ), then f(f(λ)) ≤ f(λ) and λ ≤ f(λ).
Similarly, If λ′ ∧ f∗((f∗(λ))′) = f∗(λ), then f∗(λ) ≤ f∗((f∗(λ))′) and f∗(λ) ≤ λ′

Conversely, if f(f(λ)) ≤ f(λ) and λ ≤ f(λ), then f(f(λ)) ≤ f(λ) ≤ f(f(λ))
which implies that f(λ) = f(f(λ)). Thus f(λ) = λ ∨ f(λ) = λ ∨ f(f(λ)).

Similarly, if f∗(λ) ≤ f∗((f∗(λ))′) and f∗(λ) ≤ λ′, then

λ′ ∧ f∗((f∗(λ))′) ≤ f∗((f∗(λ))′)
≤ ((f∗(λ))′)′

= f∗(λ)
≤ λ′ ∧ f∗((f∗(λ))′).

Thus, λ′ ∧ f∗((f∗(λ))′) = f∗(λ). �

Theorem 3.8 and Lemma 3.9, imply the following theorem:
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Theorem 3.10. Let U be an arbitrary universe set and L be a fuzzy lattice. Suppose
that f, f∗ : LU → LU are operators with f(λ) ≤ (f∗(λ))′,∀λ ∈ LU such that f and
f∗ satisfy the following axioms:

(i) λ ∨ f(f(λ)) = f(λ) and λ′ ∨ f∗((f∗(λ))′) = f∗(λ), ∀λ ∈ LU ;
(ii) λf(ν) = νf(λ) and (λf∗(ν))∗ = (ν′f∗(λ′))∗, ∀λ, ν ∈ LU .

Then, there exists an L-double fuzzy equivalent relation (R,R∗) on U such that

f(λ) = Rλ and f∗(λ) = R
∗
λ, ∀λ ∈ LU .

4. Induced L-double Fuzzy Topology from L-double Fuzzy
Approximation Operators

In this section we will show that an L-double fuzzy upper (resp. lower) approx-
imation operator on U induces Alexandrov L-double fuzzy topology on U .

Theorem 4.1. Let (U,R,R
∗
) be an L-double fuzzy upper approximation space with

Rλ ≥ (R
∗
λ)′, ∀λ ∈ LU . Define TR, T ∗R∗ : LU → L as follows: ∀λ ∈ LU

TR(λ) =
∧
x∈U

((Rλ)′(x) ∨ λ(x)),

T ∗
R

∗(λ) =
∨
x∈U

((R
∗
λ)′(x) ∧ λ′(x)).

Then, (TR, T ∗R∗) is Alexandrov L-double fuzzy topology on U .

Proof. (LDFT1) ∀λ ∈ LU , we have:

TR(λ) =
∧

x∈U ((Rλ)′(x) ∨ λ(x))

≤
∧

x∈U ((R
∗
λ)(x) ∨ λ(x))

= (
∨

x∈U ((R
∗
λ)′(x) ∧ λ′(x)))′

= (T ∗
R

∗(λ))′

(LDFT2) It is clear.

(LDFT3) For each λ1, λ2 ∈ LU we have:

TR(λ1 ∧ λ2) =
∧

x∈U ((R(λ1 ∧ λ2))′(x) ∨ (λ1 ∧ λ2)(x))
=
∧

x∈U (((R(λ1 ∧ λ2))′(x) ∨ λ1(x)) ∧ ((R(λ1 ∧ λ2))′(x) ∨ λ2(x)))
≥
∧

x∈U (((R(λ1))′(x) ∨ λ1(x))) ∧
∧

x∈U (((R(λ2))′(x) ∨ λ2(x)))
= TR(λ1) ∧ TR(λ2).

Similarly, T ∗
R

∗(λ1 ∧ λ2) ≤ T ∗
R

∗(λ1) ∨ T ∗
R

∗(λ2).

(LDFT4) For each family {λi ∈ LU : i ∈ Γ} we have:

TR(
∨

i∈Γ λi) =
∧

x∈U ((R(
∨

i∈Γ λi))
′(x) ∨ (

∨
i∈Γ λi)(x))

=
∧

x∈U ((
∨

i∈ΓR(λi))
′(x) ∨ (

∨
i∈Γ λi)(x)) (by Theorem 2.6(v))

=
∧

x∈U (
∧

i∈Γ(R(λi))
′(x) ∨ (

∨
i∈Γ λi)(x))

≥
∧

i∈Γ

∧
x∈U ((R(λi))

′(x) ∨ λi(x))
=
∧

i∈Γ TR(λi).

Similarly, T ∗
R

∗(
∨

i∈Γ λi) ≤
∨

i∈Γ T ∗R∗(λi).



On L-double Fuzzy Rough Sets 139

(LDFT5) For each family {λi ∈ LU : i ∈ Γ} we have:

TR(
∧

i∈Γ λi) =
∧

x∈U ((R(
∧

i∈Γ λi))
′(x) ∨ (

∧
i∈Γ λi)(x))

≥
∧

x∈U ((R(λi))
′(x) ∨ (

∧
i∈Γ λi)(x))

=
∧

i∈Γ

∧
x∈U ((R(λi))

′(x) ∨ λi(x))
=
∧

i∈Γ TR(λi).

Similarly, T ∗
R

∗(
∧

i∈Γ λi) ≤
∨

i∈Γ T ∗R∗(λi). �

Theorem 4.2. Let (U,R,R∗) be an L-double fuzzy lower approximation space with
Rλ ≤ (R∗λ)′, ∀λ ∈ LU . Define TR, T ∗R∗ : LU → L as follows: ∀λ ∈ LU

TR(λ) =
∧
x∈U

((Rλ)(x) ∨ λ′(x)),

T ∗R∗(λ) =
∨
x∈U

((R∗λ)(x) ∧ λ(x)).

Then, (TR, T ∗R∗) is Alexandrov L-double fuzzy topology on U .

Proof. It can be proved by the same manner of Theorem 4.1. �

Definition 4.3. Let (U,R1, R
∗
1) and (V,R2, R

∗
2) be two L-double fuzzy approxima-

tion spaces. The map f : (U,R1, R
∗
1) → (V,R2, R

∗
2) is called R-map if R1(x, y) ≤

R2(f(x), f(y)) and R∗1(x, y) ≥ R∗2(f(x), f(y)), ∀(x, y) ∈ U × V .

Definition 4.4. Let (U,R1, R
∗
1) and (V,R2, R

∗
2) be two L-double fuzzy upper ap-

proximation spaces. The map f : (U,R1, R
∗
1) → (V,R2, R

∗
2) is called R-map if

R1(f←(λ)) ≤ f←(R2λ) and R
∗
1(f←(λ)) ≥ f←(R

∗
2λ), ∀λ ∈ LV .

Definition 4.5. Let (U,R1, R
∗
1) and (V,R2, R

∗
2) be two L-double fuzzy lower ap-

proximation spaces. The map f : (U,R1, R
∗
1) → (V,R2, R

∗
2) is called R-map if

f←(R2λ) ≤ R1(f←(λ)) and f←(R∗2λ) ≥ R∗1(f←(λ)), ∀λ ∈ LV .

Theorem 4.6. If the map f : (U,R1, R
∗
1) → (V,R2, R

∗
2) is an R-map, then f :

(U,R1, R
∗
1)→ (V,R2, R

∗
2) is an R-map.

Proof. ∀λ ∈ LV , x ∈ U ,

f←(R2λ)(x) = (R2λ)(f(x))
=
∨

z∈V (R2(f(x), z) ∧ λ(z))
≥
∨

f(y)=z∈V (R2(f(x), f(y)) ∧ λ(f(y)))

≥
∨

y∈U (R1(x, y) ∧ f←(λ)(y))

= R1(f←(λ))(x).

Similarly, f←(R
∗
2λ)(x) ≤ R∗1(f←(λ))(x). �

Theorem 4.7. If the map f : (U,R1, R
∗
1) → (V,R2, R

∗
2) is an R-map, then f :

(U,R1, R
∗
1)→ (V,R2, R

∗
2) is an R-map.

Proof. Similar to Theorem 4.6. �

Theorem 4.8. If the map f : (U,R1, R
∗
1) → (V,R2, R

∗
2) is an R-map, then f :

(U, TR1
, T ∗

R
∗
1

)→ (V, TR2
, T ∗

R
∗
2

) is continuous.
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Proof. ∀λ ∈ LV ,

TR1
(f←(λ)) =

∧
x∈U ((R1(f←(λ)))′(x) ∨ f←(λ)(x))

≥
∧

x∈U ((f←(R2λ))′(x) ∨ f←(λ)(x))
=
∧

x∈U (f←((R2λ)′)(x) ∨ f←(λ)(x))
=
∧

x∈U ((R2λ)′(f(x)) ∨ λ(f(x)))
≥
∧

y∈V ((R2λ)′(y) ∨ λ(y))

= TR2
(λ).

Similarly, T ∗
R

∗
1

(f←(λ)) ≤ T ∗
R

∗
2

(λ). �

Theorem 4.9. If the map f : (U,R1, R
∗
1) → (V,R2, R

∗
2) is an R-map, then f :

(U, TR1
, T ∗R∗

1
)→ (V, TR2

, T ∗R∗
2
) is continuous.

Proof. Similar to Theorem 4.8. �

5. Conclusions

As a suitable mathematical model to handle partial knowledge in data bases, the
rough set theory is emerging as a powerful theory and has been found that it has
successive applications in the fields of artificial intelligence such as pattern recogni-
tion, machine learning, and automated knowledge acquisition. As it is well known,
there are at least two approaches to the study of the rough set theory, namely the
constructive and axiomatic approaches. In this paper, we introduced the concept
of L-double fuzzy rough sets in which both constructive and axiomatic approaches
were considered. In constructive approach, a pair of L-double fuzzy lower and L-
double fuzzy upper approximation operators were defined and the basic properties
of them were studied. From the viewpoint of the axiomatic approach, a set of ax-
ioms was constructed to characterize the L-double fuzzy upper approximation of
L-double fuzzy rough sets. L-double fuzzy rough sets were viewed as a general-
ization of generalized rough sets [20]. Finally, from L-double fuzzy approximation
operators, we generated Alexandrov L-double fuzzy topology.
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