On The Bicompletion of Intuitionistic Fuzzy Quasi-Metric Spaces

Document Type: Research Paper

Authors

1 Gilmation S.L., Calle 232, 66 La Ca~nada, Paterna, 46182, Spain

2 Instituto Universitario de Matematica Pura y Aplicada, Universidad Politecnica de Valencia, 46022, Valencia, Spain

Abstract

Based on previous results that study the completion of fuzzy metric spaces, we show that every intuitionistic fuzzy quasi-metric space, using the notion of fuzzy metric space in the sense of Kramosil and Michalek to obtain a generalization to the quasi-metric setting, has a bicompletion which is unique up to isometry.

Keywords


[1] C. Alaca, D. Turkoglu and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos,
Solitons & Fractals, 29 (2006), 1073{1078.
[2] F. Castro-Company and P. Tirado, The bicompletion of intuitionistic fuzzy quasi-metric
spaces, 10th International Conference of Numerical Analysis and Applied Mathematics (ICNAAM),
(2016), 844{847.
[3] F. Castro-Company, S. Romaguera and P. Tirado, The bicompletion of fuzzy quasi-metric
spaces, Fuzzy Sets and Systems, 166 (2011), 56{64.
[4] Y. J. Cho, M. Grabiec and V. Radu, On non symmetric topological and probabilistic struc-
tures, Nova Sci. Publ. Inc., New York, 2006.
[5] D. Dubois and P. Prade, Fundamentals of fuzzy sets, the handbooks of fuzzy sets series,
FSHS, 7, Kluwer Academic, 2000.
[6] P. Fletcher and W. F. Lindgren, Quasi-uniform spaces, Marcel Dekker, New York, 1982.
[7] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems,
64 (1994), 395{399.
[8] V. Gregori and S. Romaguera, Fuzzy quasi-metric spaces, Appl. Gen. Topology, 5 (2004),
129{136.
[9] V. Gregori, S. Romaguera and A. Sapena, A characterization of bicompletable fuzzy quasi-
metric spaces, Fuzzy Sets and Systems, 152 (2005), 395{402.
[10] V. Gregori, S. Romaguera and P. Veeramani, A note on intuitionistic fuzzy metric spaces,
Chaos, Solitons & Fractals, 28 (2006), 902{905.
[11] I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11
(1975), 326{334.
[12] H. P. A. Kunzi, Nonsymmetric topology, In: Proceedings of the Colloquium on Topology,
Szekszard, Colloq. Math. Soc. Janos Bolyai Math. Studies, Hungary, 4 (1995), 303{338.
[13] K. Menger, Statistical metrics, In: Proceedings of the National Academy of Sciences of the
United States of America, 28 (1942), 535{537.
[14] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals, 22 (2004), 1039{
1046.
[15] S. Romaguera, A. Sapena and P. Tirado. The Banach xed point theorem in fuzzy quasi-
metric spaces with application to the domain of words, Topology Appl., 154 (2007), 2196{
2203.
[16] S. Romaguera and P. Tirado, Contraction maps on ifqm-spaces with application to recurrence
equations of Quicksort, Electronic Notes in Theoret. Comput. Sci., 225 (2009), 269{279.
[17] R. Saadati, S. M. Vaezpour and Y. J. Cho, Quicksort algorithm: Application of a xed point
theorem in intuitionistic fuzzy quasi-metric spaces at a domain of words, J. Comput. Appl.
Math., 228 (2009), 219{225.
[18] B. Schweizer and A. Sklar, Statistical metric spaces, Paci c J. Math., 10 (1960), 314{334.
[19] H. Sherwood, On the completion of probabilistic metric spaces, Z. Wahrsch. verw. Geb., 6
(1966), 62{64.
[20] R. Vasuki and P. Veeramani, Fixed point theorems and Cauchy sequences in fuzzy metric
spaces, Fuzzy Sets and Systems, 135 (2003), 415{417.