Abolpour, K., Zahedi, M., Golmohamadian, M. (2011). SOME HYPER K-ALGEBRAIC STRUCTURES INDUCED BY
MAX-MIN GENERAL FUZZY AUTOMATA. Iranian Journal of Fuzzy Systems, 8(1), 113-134. doi: 10.22111/ijfs.2011.256

khadijeh Abolpour; Mohammad Mehdi Zahedi; Masoome Golmohamadian. "SOME HYPER K-ALGEBRAIC STRUCTURES INDUCED BY
MAX-MIN GENERAL FUZZY AUTOMATA". Iranian Journal of Fuzzy Systems, 8, 1, 2011, 113-134. doi: 10.22111/ijfs.2011.256

Abolpour, K., Zahedi, M., Golmohamadian, M. (2011). 'SOME HYPER K-ALGEBRAIC STRUCTURES INDUCED BY
MAX-MIN GENERAL FUZZY AUTOMATA', Iranian Journal of Fuzzy Systems, 8(1), pp. 113-134. doi: 10.22111/ijfs.2011.256

Abolpour, K., Zahedi, M., Golmohamadian, M. SOME HYPER K-ALGEBRAIC STRUCTURES INDUCED BY
MAX-MIN GENERAL FUZZY AUTOMATA. Iranian Journal of Fuzzy Systems, 2011; 8(1): 113-134. doi: 10.22111/ijfs.2011.256

SOME HYPER K-ALGEBRAIC STRUCTURES INDUCED BY
MAX-MIN GENERAL FUZZY AUTOMATA

^{1}Department of Mathematics, Islamic Azad University, Kerman
Branch, Kerman, Iran

^{2}Department of Mathematics, Tarbiat Modares University,
Tehran, Iran

Abstract

We present some connections between the max-min general fuzzy automaton theory and the hyper structure theory. First, we introduce a hyper BCK-algebra induced by a max-min general fuzzy automaton. Then, we study the properties of this hyper BCK-algebra. Particularly, some theorems and results for hyper BCK-algebra are proved. For example, it is shown that this structure consists of different types of (positive implicative) commutative hyper K-ideals. As a generalization, we extend the definition of this hyper BCK-algebra to a bounded hyper K-algebra and obtain relative results.

[1] M. A. Arbib, From automata theory to brain theory, Int. J. Man-Machine Stud., 7(3) (1975), 279-295. [2] W. R. Ashby, Design for a brain, Chapman and Hall, London, 1954. [3] R. A. Borzooei, Hyper BCK and K-algebras, Ph.D. Thesis, Department of Mathematics, Shahid Bahonar University of Kerman, Iran, 2000. [4] R. A. Borzooei, A. Hasankhani, M. M. Zahedi and Y. B. Jun, On hyper K-algebras, Scientiae Mathematicae Japonica, 52(1) (2000), 113-121. [5] A. W. Burks, Logic, biology and automata-some historical reflections, Int. J. Man-Machine Stud., 7(3) (1975), 297-312. [6] P. Corsini, Prolegomena of hyper group theory, Avian Editor, Italy, 1993. [7] P. Corsini and V. Leoreanu, Applications of hyper structure theory, Advances in Mathematics, Kluwer Academic Publishers, 5 (2003). [8] M. Doostfatemeh and S. C. Kremer, New directions in fuzzy automata, International Journal of Approximate Reasoning, 38 (2005), 175-214. [9] J. E. Hopcroft, R. Motwani and J. D. Ullman, Introduction to automata theory, languages and computation, seconded, Addison-Wesley, Reading, MA, 2001. [10] M. Horry and M. M. Zahedi, Uniform and semi-uniform topology on general fuzzy automata, Iranian Journal of Fuzzy Systems, 6(2) (2009), 19-29. [11] M. Horry and M. M. Zahedi, Hypergroups and general fuzzy automata, Iranian Journal of Fuzzy Systems, 6(2) (2009), 61-74. [12] Y. Imai and K. Iseki, On axiom systems of propositional calculi, XIV Proc. Japan Academy, 42 (1966), 19-22. [13] D. S. Malik and J. N. Mordeson, Fuzzy discrete structures, Physica-Verlag, NewY ork, 2000. [14] F. Marty, Sur une generalization de la notion de groups, 8th Congress Math. Scand naves, Stockholm, (1934), 45-49. [15] W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophysics., 5 (1943), 115-133. [16] J. Meng and Y. B. Jun, BCK-algebra, Kyung Moons, Co., Seoul, 1994. [17] M. L. Minsky, Computation: finite and infinite machines, Prentice-Hall, Englewood Cliffs, NJ, Chapter 3, (1967), 32-66. [18] J. N. Mordeson and D. S. Malik, Fuzzy automata and languages, theory and applications, Chapman and Hall/CRC, London/Boca Raton, FL, 2002. [19] M. A. Nasr Azadani and M. M. Zahedi, S-absorbing set and (P)-decomposition in hyper K-algebras, Italian Journal of Pure and Applied Mathematics, to appear. [20] W. Omlin, K. K. Giles and K. K. Thornber, Equivalence in knowledge representation: automata, runs, and dynamicfuzzy systems, Proc. IEEE, 87(9) (1999), 1623-1640. [21] W. Omlin, K. K. Thornber and K. K. Giles, Fuzzy finite-state automata can be deterministically encoded into recurrent neural networks, IEEE Trans. Fuzzy Systems, 5(1) (1998), 76-89. [22] T. Roodbari, Positive implicative and commutative hyper K-ideals, Ph.D. Thesis, Department of Mathematics, Shahid Bahonar University of Kerman, Iran, 2008. [23] T. Roodbari, L. Torkzadeh and M. M. Zahedi, Normal hyper K-algebras, Sciatica Mathematical Japonica, 68(2) (2008), 265-278. [24] T. Roodbari and M. M. Zahedi, Positive implicative hyper K-ideals II, Scientiae Mathematicae Japonica, 66(3) (2007), 391-404. [25] L. Torkzadeh, Dual positive implicative and commutative hyper K-ideals, Ph.D. Thesis, Department of Mathematics, Shahid Bahonar University of Kerman, Iran, 2005. [26] L. Torkzadeh, T. Roodbari and M. M. Zahedi, Hyper stabilizers and normal hyper BCKalgebras, Set-Valued Mathematics and Applications, to appear. [27] A. Turing, On computable numbers, with an application to the entscheidungs problem, Proc. London Math. Soc., 42 (1936-37), 220-265.

[28] J. Von Neumann, Theory of self-reproducing automata, University of Illinois Press, Urbana, 1966. [29] W. G. Wee, On generalization of adaptive algorithm and application of the fuzzy sets concept to pattern classification, Ph.D. Thesis, Purdue University, Lafayette, IN, 1967. [30] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353. [31] M. M. Zahedi, R. A. Borzooei and H. Rezaei, Some classifications of hyper K-algebra of order 3, Math. Japon., (2001), 133-142. [32] M. M. Zahedi, M. Horry and K. Abolpor, Bifuzzy (general) topology on max-min general fuzzy automata , Advances in Fuzzy Mathematics, 3(1) (2008), 51-68.