SOME HYPER K-ALGEBRAIC STRUCTURES INDUCED BY MAX-MIN GENERAL FUZZY AUTOMATA

K. ABOLPOUR, M. M. ZAHEDI AND M. GOLMOHAMADIAN

Abstract. We present some connections between the max-min general fuzzy automaton theory and the hyper structure theory. First, we introduce a hyper BCK-algebra induced by a max-min general fuzzy automaton. Then, we study the properties of this hyper BCK-algebra. Particularly, some theorems and results for hyper BCK-algebra are proved. For example, it is shown that this structure consists of different types of (positive implicative) commutative hyper K-ideals. As a generalization, we extend the definition of this hyper BCK-algebra to a bounded hyper K-algebra and obtain relative results.

1. Introduction

Automata are the prime examples of general computational systems over discrete spaces. The incorporation of fuzzy logic into automata theory resulted in fuzzy automata which can handle continuous spaces. In particular, the concept of membership assignment, output mapping, multi-membership resolution, and the concept of acceptance for fuzzy automata were developed in general fuzzy automata.

The concept of BCK-algebra has originated on two different ways. One motivation is based on set theory. In set theory, there are three most elementary and fundamental operations introduced by L. Kantorovic and E. Livenson. These fundamental operations are union, intersection and the set difference. Another motivation is taken from classical and non-classical propositional calculi. There are some systems which contain the only implication functor among the logical functors. These examples are systems of positive implicative calculus, weak positive implicative calculus by A. Church and BCK-systems by C. As. Meredith.

Corsini and Leoreanu [7] presented some connections between a deterministic finite automaton and the hyper algebraic structure theory. Now, here we intend to find some relationships between max-min general fuzzy automata and the hyper K-algebraic structures. So, first we introduce a hyper BCK-algebra induced by max-min general fuzzy automata. Then, we discuss the properties of this BCK-algebra and obtain some useful results. A fuzzy finite-state automaton (FFA) is a six-tuple denoted by \( \tilde{F} = (Q, \sum, R, Z, \delta, \omega) \), where \( Q \) is a finite set of states, \( \sum \) is a finite set of input symbols, \( R \) is the start state of \( \tilde{F} \), \( Z \) is a finite set of output symbols, \( \delta : Q \times \sum \times Q \rightarrow [0, 1] \) is the fuzzy transition function which is used to map a state (current state) into another state (next state) upon an input.
symbol, attributing a value in the interval $[0, 1]$ and $\omega : Q \rightarrow Z$ is the output function. In an FFA, as can be seen, associated with each fuzzy transition, there is a membership value in $[0, 1]$. We call this membership value the weight of the transition.

The transition from state $q_i$ (current state) to state $q_j$ (next state) upon input $a_k$ is denoted as $\delta(q_i, a_k, q_j)$. We use this notation to refer both to a transition and its weight. Whenever $\delta(q_i, a_k, q_j)$ is used as a value, it refer to the weight of the transition. Otherwise, it specifies the transition itself. Also, the set of all transitions of $F$ is denoted by $\Delta$. The above definition is generally accepted as a formal definition of FFA [13, 18, 20, 21].

There is an important problem which should be clarified in the definition of FFA. It is the assignment of membership values to the next states. There are two issues within state membership assignment. The first one is how to assign a membership value to a next state upon the completion of a transition. Secondly, how to deal with cases where a state is forced to take several membership values simultaneously via overlapping transition.

2. Preliminaries

In 2004, M. Doostfatemeh and S.C. Kremer extended the notion of fuzzy automata and gave the notion of general fuzzy automata [8].

**Definition 2.1.** [8] A general fuzzy automaton (GFA) $\bar{F}$ is an eight-tuple machine denoted by $\bar{F} = (Q, \sum, R, Z, \tilde{\delta}, \omega, F_1, F_2)$, where (i) $Q$ is a finite set of states, $Q = \{q_1, q_2, \ldots, q_n\}$, (ii) $\sum$ is a finite set of input symbols, $\sum = \{a_1, a_2, \ldots, a_m\}$, (iii) $R$ is the set of fuzzy start states, $R \subseteq P(Q)$, (iv) $Z$ is a finite set of output symbols, $Z = \{b_1, b_2, \ldots, b_k\}$, (v) $\omega : Q \rightarrow Z$ is the output function, (vi) $\tilde{\delta} : (Q \times [0, 1]) \times \sum \times Q \rightarrow [0, 1]$ is the augmented transition function, and (vii) $F_1 : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is called membership assignment function. Function $F_1(\mu, \delta)$, as is seen, is motivated by two parameters $\mu$ and $\delta$, where $\mu$ is the membership value of a predecessor and $\delta$ is the weight of a transition. In this definition, the process that takes place upon the transition from state $q_i$ to $q_j$ on input $a_k$ is represented by:

$$\mu^{t+1}(q_j) = \tilde{\delta}((q_i, \mu^t(q_i)), a_k, q_j) = F_1(\mu^t(q_i), \tilde{\delta}(q_i, a_k, q_j)).$$

This means that membership value (mv) of the state $q_i$ at time $t + 1$ is computed by function $F_1$ using both the membership value of $q_i$ at time $t$ and the weight of the transition.

There are many choices for the function $F_1(\mu, \delta)$. It can be for example $\max\{\mu, \delta\}$, $\min\{\mu, \delta\}$, $\mu + \delta$, or any other applicable mathematical function.

(Viii) $F_2 : [0, 1] \rightarrow [0, 1]$: is called multi-membership resolution function.

The multi-membership resolution function resolves the multi-membership active states and assigns a single membership value to them.

We let $Q_{\text{act}}(t_i)$ be the set of all active state at time $t_i$, $\forall i \geq 0$. We have $Q_{\text{act}}(t_0) = \bar{R}$ and $Q_{\text{act}}(t_i) = \{(q, \mu^t(q)) : \exists q' \in Q_{\text{act}}(t_{i-1}), \exists a \in \sum, \delta(q', a, q) \in \Delta\}$, $\forall i \geq 1$. 

Since $Q_{act}(t_i)$ is a fuzzy set, to show that a state $q$ belongs to $Q_{act}(t_i)$ and $T$ is a subset of $Q_{act}(t_i)$, we should write: $q \in \text{Domain}(Q_{act}(t_i))$ and $T \subseteq \text{Domain}(Q_{act}(t_i))$; hereafter, we simply denote them by:

$$q \in Q_{act}(t_i) \quad \text{and} \quad T \subseteq Q_{act}(t_i).$$

The combination of the operations of functions $F_1$ and $F_2$ on a multi-membership state $q_j$ leads to the multi-membership resolution algorithm.

**Algorithm 2.2.** [8] (Multi-membership resolution)

If there are several simultaneous transitions to the active state $q_j$ at time $t + 1$, then following algorithm assigns a unified membership values.

1. Each transition weight $\delta(q_i, a_k, q_j)$ together with $\mu^t(q_i)$, will be processed by the membership assignment function $F_1$, and will produce a membership value. Call this to be $\nu_i$,

$$\nu_i = \tilde{\delta}(q_i, \mu^t(q_i)), a_k, q_j) = F_1(\mu^t(q_i), \delta(q_i, a_k, q_j)).$$

2. These membership values are not necessarily equal. Hence, they will be processed by another function $F_2$, called the multi-membership resolution function.

3. The result produced by $F_2$ will be assigned as the instantaneous mv of the active state $q_j$.

$$\mu^{t+1}(q_j) = \{F_2\}^{n}_{i=1}[\nu_i] = \{F_2\}^{n}_{i=1}[F_1(\mu^t(q_i), \delta(q_i, a_k, q_j))],$$

where,

- $n$: is the number of simultaneous transitions to the active state $q_j$ at time $t + 1$.
- $\delta(q_i, a_k, q_j)$: is the weight of a transition from $q_i$ to $q_j$ upon input $a_k$.
- $\mu^t(q_i)$: is the membership value of $q_i$ at time $t$.
- $\mu^{t+1}(q_j)$: is the final membership value of $q_j$ at time $t + 1$.

**Definition 2.3.** [32] Let $\tilde{F} = (Q, \sum, \tilde{R}, \tilde{Z}, \tilde{\delta}, \tilde{\omega}, F_1, F_2)$ be a general fuzzy automaton. We define max-min general fuzzy automata of the form $\tilde{F}^* = (Q, \sum, \tilde{R}, \tilde{Z}, \tilde{\omega}, \tilde{\delta}^*, F_1, F_2)$ such that $\tilde{\delta}^*: Q_{act} \times \sum^* \times Q \rightarrow [0, 1]$, where $Q_{act} = \{Q_{act}(t_0), Q_{act}(t_1), \ldots \}$ and for every $i, i \geq 0$,

$$\tilde{\delta}^*(q, \mu_i(q)), \Lambda, p) = \begin{cases} 1, & \text{if } q = p \\ 0, & \text{otherwise} \end{cases}$$

and for every $i, i \geq 1$, $\tilde{\delta}^*(q, \mu_{i-1}(q)), u_i, p) = \tilde{\delta}(q, \mu_{i-1}(q)), u_i, p)$, and recursively, $\tilde{\delta}^*(q, \mu^u(q)), u_1u_2\ldots u_n, p) = \vee\{\tilde{\delta}(q, \mu^u(q)), u_1, p_1) \land \tilde{\delta}(p_1, \mu^u(p_1)), u_2, p_2) \land \ldots \land \tilde{\delta}(p_{n-1}, \mu^u(p_{n-1}), u_n, p)|p_1 \in Q_{act}(t_1), p_2 \in Q_{act}(t_2), \ldots, p_{n-1} \in Q_{act}(t_{n-1})\}$,

in which $u_i \in \sum$, $\forall 1 \leq i \leq n$, and assuming that the entered input at time $t_i$ is $u_i$, for $1 \leq i \leq n - 1$.

**Definition 2.4.** [32] Let $\tilde{F}^*$ be a max-min general fuzzy automaton, $p \in Q_{act}(t_j)$,
\( q \in Q_{\text{act}}(t_i), \ t_i \leq t_j \) and \( 0 \leq c < 1 \). Then, \((p, \mu^{t_j}(p))\) is called a successor of \((q, \mu^{t_i}(q))\) with threshold \( c \) if there exists \( x \in \sum^* \) such that \( \tilde{\delta}^*((q, \mu^{t_i}(q)), x, p) > c \).

Also, we say that there exists a path between \((q, \mu^{t_i}(q))\) and \((p, \mu^{t_j}(p))\) with its length being \(|x|\).

**Definition 2.5.** [16] \( H \) is a hyper BCK-algebra if it contains a constant \(^{\text{“zero”}}\) satisfying the following axioms:

(HK1) \((xoz)o(yoz) \leq xoy,\)
(HK2) \((xoy)oz = (xoz)oy,\)
(HK3) \(xH \leq \{x\},\)
(HK4) \(x \leq y, y \leq x \Rightarrow x = y.\)

For all \( x, y, z \in H \), where \( x \leq y \) is defined by \( 0 \in xoy \) and for every \( A, B \subseteq H \), \( A \leq B \) is defined by \( \forall a \in A, \exists b \in B \text{ such that } a \leq b. \)

**Definition 2.6.** [4] We say that \( H \) is a hyper \( K \)-algebra if it contains a constant \(^{\text{“zero”}}\) satisfying the following axioms:

(HK1) \((xoz)o(yoz) < xoy,\)
(HK2) \((xoy)oz = (xoz)oy,\)
(HK3) \(x < x,\)
(HK4) \(x < y, y < x \Rightarrow x = y,\)
(HK5) \(0 < x.\)

For all \( x, y, z \in H \), where \( x < y \) is defined by \( 0 \in xoy \) and for every \( A, B \subseteq H \), \( A < B \) is defined by \( \exists a \in A, \exists b \in B \text{ such that } a < b. \) Note that if \( A, B \subseteq H \), then by \( AoB \) we mean the subset \( U_{a \in A, b \in B} aob \) of \( H. \)

**Theorem 2.7.** [22] In a hyper BCK-algebra \((H, o, 0)\), the condition \((HK3)\) is equivalent to the condition:

\[ xoy \leq \{x\}, \text{ for all } x, y \in H. \]

**Theorem 2.8.** [22] Every hyper BCK-algebra is a hyper \( K \)-algebra.

**Definition 2.9.** [16] Let \( I \) be a non-empty subset of a hyper BCK-algebra \( H \) and \( 0 \in I. \) Then,

1. \( I \) is called a weak hyper BCK-ideal of \( H \) if \( xoy \subseteq I \) and \( y \in I \) imply that \( x \in I, \) for all \( x, y \in I. \)
2. \( I \) is called a hyper BCK-ideal of \( H \) if \( xoy \leq I \) and \( y \in I \) imply that \( x \in I, \) for all \( x, y \in I. \)
3. \( I \) is called a strong hyper BCK-ideal of \( H \) if \( (xoy) \cap I \neq \emptyset \) and \( y \in I \) imply that \( x \in I, \) for all \( x, y \in I. \)

**Theorem 2.10.** [16] Any strong hyper BCK-ideal of a hyper BCK-algebra \( H \) is a hyper BCK-ideal and a weak hyper BCK-ideal. Also, any hyper BCK-ideal of
Some Hyper K-algebraic Structures Induced by Max-Min General Fuzzy Automata

Definition 2.11. [22] A hyper BCK-algebra $(H,o,0)$ is called simple if for all distinct elements $a,b \in H - \{0\}$, $a \not\leq b$ and $b \not\leq a$.

Definition 2.12. [19] Let $(H,o,0)$ be a hyper K-algebra and $I$ be a subset of $H$ and $\emptyset \neq S \subseteq H$. Then, we say that $I$ is an $S$-absorbing set, whenever $x \in I$ and $y \in S$ imply that $xoy \subseteq I$.

Definition 2.13. [24] Let $I$ be a non-empty subset of a hyper $K$-algebra $H$ and $0 \in I$. Then, $I$ is called a commutative hyper $K$-ideal of

(i) type 1, if for all $x,y,z \in H$, $((xoy)o)z \cap I \neq \emptyset$ and $z \in I$ imply that $(xoy(yox)) \subseteq I$,
(ii) type 2, if for all $x,y,z \in H$, $((xoy)o)z \cap I \neq \emptyset$ and $z \in I$ imply that $(xoy(yox)) \cap I \neq \emptyset$,
(iii) type 3, if for all $x,y,z \in H$, $((xoy)o)z \cap I \neq \emptyset$ and $z \in I$ imply that $xoy(yox) < I$,
(iv) type 4, if for all $x,y,z \in H$, $((xoy)o)z \subseteq I$ and $z \in I$ imply that $(xoy(yox)) \subseteq I$,
(v) type 5, if for all $x,y,z \in H$, $((xoy)o)z \subseteq I$ and $z \in I$ imply that $(xoy(yox)) \cap I \neq \emptyset$,
(vi) type 6, if for all $x,y,z \in H$, $((xoy)o)z \subseteq I$ and $z \in I$ imply that $(xoy(yox)) < I$,
(vii) type 7, if for all $x,y,z \in H$, $((xoy)o)z < I$ and $z \in I$ imply that $(xoy(yox)) \subseteq I$,
(viii) type 8, if for all $x,y,z \in H$, $((xoy)o)z < I$ and $z \in I$ imply that $(xoy(yox)) \cap I \neq \emptyset$,
(ix) type 9, if for all $x,y,z \in H$, $((xoy)o)z < I$ and $z \in I$ imply that $(xoy(yox)) < I$.

Theorem 2.14. [22] Let $I$ be a non-empty subset of a hyper $K$-algebra $H$ and $0 \in I$. Then, the following statements hold:

(i) If $I$ is a commutative hyper $K$-ideal of type 4, then $I$ is a commutative hyper $K$-ideal of types 5 and 6.
(ii) If $I$ is a commutative hyper $K$-ideal of type 6, then $I$ is a commutative hyper $K$-ideal of type 9.
(iii) If $I$ is a commutative hyper $K$-ideal of type 5, then $I$ is a commutative hyper $K$-ideal of type 6.
(iv) If $I$ is a commutative hyper $K$-ideal of type 9, then $I$ is a commutative hyper $K$-ideal of type 3.

Definition 2.15. [24] Let $I$ be a non-empty subset of $H$ such that $0 \in I$. Then, $I$ is called a positive implicative hyper $K$-ideal of
(i) type 1, if for all $x,y,z \in H$, $(xoy) \subseteq I$ and $(yoz) \subseteq I$ imply that $(xoz) \subseteq I$,
(ii) type 2, if for all $x,y,z \in H$, $(xoy) \subseteq I$ and $(yoz) \subseteq I$ imply that $(xoz) \cap I \neq \emptyset$,
(iii) type 3, if for all $x,y,z \in H$, $(xoy) \subseteq I$ and $(yoz) \subseteq I$ imply that $(xoz) \subseteq I$,
(iv) type 4, if for all $x,y,z \in H$, $(xoy) \subseteq I$ and $(yoz) \cap I \neq \emptyset$ imply that $(xoz) \subseteq I$,
(v) type 5, if for all $x,y,z \in H$, $(xoy) \subseteq I$ and $(yoz) \cap I \neq \emptyset$ imply that $(xoz) < I$,
(vi) type 6, if for all $x,y,z \in H$, $(xoy) \subseteq I$ and $(yoz) \cap I \neq \emptyset$ imply that $(xoz) < I$,
(vii) type 7, if for all $x,y,z \in H$, $(xoy) \subseteq I$ and $(yoz) \subseteq I$ imply that $(xoz) < I$,
(viii) type 8, if for all $x,y,z \in H$, $(xoy) \subseteq I$ and $(yoz) \subseteq I$ imply that $(xoz) \cap I \neq \emptyset$,
(ix) type 9, if for all $x,y,z \in H$, $(xoy) \subseteq I$ and $(yoz) \subseteq I$ imply that $(xoz) \subseteq I$,
(x) type 10, if for all $x,y,z \in H$, $(xoy) \cap I \neq \emptyset$ and $(yoz) \subseteq I$ imply that $(xoz) \subseteq I$,
(xi) type 11, if for all $x,y,z \in H$, $(xoy) \cap I \neq \emptyset$ and $(yoz) \subseteq I$ imply that $(xoz) \subseteq I$,
(xii) type 12, if for all $x,y,z \in H$, $(xoy) \cap I \neq \emptyset$ and $(yoz) \subseteq I$ imply that $(xoz) \subseteq I$,
(xiii) type 13, if for all $x,y,z \in H$, $(xoy) \cap I \neq \emptyset$ and $(yoz) \cap I \neq \emptyset$ imply that $(xoz) \subseteq I$,
(xiv) type 14, if for all $x,y,z \in H$, $(xoy) \cap I \neq \emptyset$ and $(yoz) \cap I \neq \emptyset$ imply that $(xoz) \subseteq I$,
(xv) type 15, if for all $x,y,z \in H$, $(xoy) \cap I \neq \emptyset$ and $(yoz) \cap I \neq \emptyset$ imply that $(xoz) \subseteq I$,
(xvi) type 16, if for all $x,y,z \in H$, $(xoy) \cap I \neq \emptyset$ and $(yoz) \subseteq I$ imply that $(xoz) \subseteq I$,
(xvii) type 17, if for all $x,y,z \in H$, $(xoy) \cap I \neq \emptyset$ and $(yoz) \subseteq I$ imply that $(xoz) \subseteq I$,
(xviii) type 18, if for all $x,y,z \in H$, $(xoy) \cap I \neq \emptyset$ and $(yoz) \subseteq I$ imply that $(xoz) \subseteq I$,
(xix) type 19, if for all $x,y,z \in H$, $(xoy) < I$ and $(yoz) \subseteq I$ imply that $(xoz) \subseteq I$,
(xx) type 20, if for all $x,y,z \in H$, $(xoy) < I$ and $(yoz) \subseteq I$ imply that $(xoz) \subseteq I$,
(xxi) type 21, if for all $x,y,z \in H$, $(xoy) < I$ and $(yoz) \subseteq I$ imply that $(xoz) \subseteq I$,
(xxii) type 22, if for all $x,y,z \in H$, $(xoy) < I$ and $(yoz) \subseteq I$ imply that $(xoz) \subseteq I$,
(xxiii) type 23, if for all $x,y,z \in H$, $(xoy) < I$ and $(yoz) \subseteq I$ imply that $(xoz) \subseteq I$,
Some Hyper K-algebraic Structures Induced by Max-Min General Fuzzy Automata

(\text{i}) (xoz) < I,
(\text{xxvi}) \text{type 26, if for all } x, y, z \in H, ((xoy)oz) < I \text{ and } (yoz) < I \text{ imply that } (xoz) \cap I \neq \emptyset,
(\text{xxvii}) \text{type 27, if for all } x, y, z \in H, ((xoy)oz) < I \text{ and } (yoz) < I \text{ imply that } (xoz) \subseteq I.

\textbf{Definition 2.16.} [3] Let \( H \) be a hyper K-algebra. If 0ox = \{0\}, for all \( x \in H \), then we say that \( H \) satisfies the zero condition.

\textbf{Definition 2.17.} [3] If there is an element 1 \in X of a hyper K-algebra X satisfying \( x \leq 1 \), for all \( x \in X \), then the element 1 is called the unit of \( X \). A hyper K-algebra with a unit is a bounded hyper K-algebra.

\textbf{Theorem 2.18.} [3] Let \((H, o, 0)\) be a hyper K-algebra, which satisfies the zero condition. Then, \((H, o, 0)\) can be extended to a bounded hyper K-algebra.

Let \( H \) to be a bounded hyper K-algebra with unit 1. So, Nx means lox.

\textbf{Definition 2.19.} [25] A non-empty subset \( D \) of \( H \) is called a dual positive implicative hyper K-ideal of type 3 (DPIHKI-T3) if it satisfies:

(i) \( 1 \in D \),
(ii) \( N((NxoNy)oNz) < D \) and \( N(NyoNz) < D \) imply that \( N(NxoNz) \subseteq D \), \( \forall x, y, z \in H \).

\textbf{Theorem 2.20.} [25] Let \( 1 \in D \subseteq H \). Then, \( D \) is a DPIHKI-T3 if and only if \( N(NxoNz) \subseteq D \), for all \( x, z \in H \).

\textbf{Definition 2.21.} [25] A non-empty subset \( D \) of \( H \) is called a dual positive implicative hyper K-ideal of type 4 (DPIHKI-T4) if it satisfies:

(i) \( 1 \in D \),
(ii) \( N((NxoNy)oNz) \subseteq D \) and \( N(NyoNz) < D \) imply that \( N(NxoNz) \subseteq D \), \( \forall x, y, z \in H \).

\textbf{Theorem 2.22.} [25] \( D \) is a DPIHKI-T4 if and only if \( N((NxoNy)oNz) \subseteq D \) implies that \( N(NxoNz) \subseteq D \), \( \forall x, y, z \in H \).

\textbf{Theorem 2.23.} [25] If \( D \) is a DPIHKI-T3 of \( H \), then \( D \) is a DPIHKI-T4.

\textbf{Definition 2.24.} [25] A non-empty subset \( D \) of \( H \) is called a dual positive implicative hyper K-ideal of type 2 (DPIHKI-T2) if it satisfies:

(i) \( 1 \in D \),
(ii) \( N((NxoNy)oNz) < D \) and \( N(NyoNz) \subseteq D \) imply that \( N(NxoNz) \subseteq D \), \( \forall x, y, z \in H \).
Theorem 2.25. [25] $D$ is a DPIHKI-T2 if and only if $N(NyoNz) \subseteq D$ implies that $N(NxoNz) \subseteq D$, $\forall x, y, z \in H$.

Theorem 2.26. [25] If $D$ is a DPIHKI-T3, then $D$ is a DPIHKI-T2.

Definition 2.27. [25] A non-empty subset $D$ of $H$ is called a dual positive implicative hyper K-ideal of type 1 (DPIHKI-T1) if it satisfies:

(i) $1 \in D$,
(ii) $N((NxoNy)oNz) \subseteq D$ and $N(NyoNz) \subseteq D$ imply that $N(NxoNz) \subseteq D$, $\forall x, y, z \in H$.

Theorem 2.28. [25] If $D$ is a DPIHKI-T2, T3 or T4, then $D$ is a DPIHKI-T1.

Definition 2.29. [25] Let $D$ be a non-empty subset of $H$ and $1 \in D$. Then, $D$ is called a dual commutative hyper $K$-ideal of

(i) type 1, if for all $x, y, z \in H$, $N((NxoNy)oNz) \subseteq D$ and $z \in D$ imply that $N(Nxo(Nyo(NyoNz))) \subseteq D$,
(ii) type 2, if for all $x, y, z \in H$, $N((NxoNy)oNz) \subset D$ and $z \in D$ imply that $N(Nxo(Nyo(NyoNz))) \subseteq D$.

Note that for simplicity of notation we write DCHKI-T1 (T2) instead of dual commutative hyper $K$-ideal of types 1 (2).


Theorem 2.31. [25] A non-empty subset $D$ of $H$ is a DCHKI-T2 if and only if $N(Nxo(Nyo(NyoNz))) \subseteq D$, for all $x, y \in H$.

Definition 2.32. [26] Let $H$ be a hyper BCK-algebra and $A$ be a non-empty subset of $H$. Then, the sets $tA = \{x \in H|a \in aox, \forall a \in A\}$ and $rA = \{x \in H|x \in xoa, \forall a \in A\}$ are called left hyper BCK-stabilizer of $A$ and right hyper BCK-stabilizer of $A$, respectively.

Definition 2.33. [26] A hyper BCK-algebra $H$ is called

(i) weak normal, if $a_r$ is a weak hyper BCK-ideal of $H$ for any element $a \in H$,
(ii) normal, if $a_r$ is a hyper BCK-ideal of $H$ for any element $a \in H$,
(iii) strong normal, if $a_r$ is a strong hyper BCK-ideal of $H$ for any element $a \in H$. 

3. Hyper BCK-algebra Induced by Max-Min General Fuzzy Automata

**Definition 3.1.** Let \((p, \mu^i(p)) \in S_c(q, \mu^i(q))\), where,
\[ S_c(q, \mu^i(q)) = \{(p, \mu^i(p)) | \exists x \in \sum^* \text{ s.t. } \delta^i((p, \mu^i(p)), x, q) > c, \forall t_j \leq t_i \}. \]
Then, the length between \(p\) and \(q\) is defined by,
\[ L(p, \mu^i(p)) = \min\{|x| | \delta^i((p, \mu^i(p)), x, q) > c\}. \]
In other words, \(L(p, \mu^i(p))\) is equal to the min of the length of the involved words \(x\), in the path between \(p\) and \(q\).

**Definition 3.2.** Let \(S_c(q, \mu^i(q)) = \{(q_1, \mu^{i_1} (q_1)), (q_2, \mu^{i_2}(q_2)), \ldots, (q_n, \mu^{i_n}(q_n))\}\). Then, the order of \((q, \mu^i(q))\) is:
\[ \max\{L(q_1, \mu^{i_1}(q_1)), L(q_2, \mu^{i_2}(q_2)), \ldots, L(q_n, \mu^{i_n}(q_n))\} \]
and is denoted by \(\text{ord}(q, \mu^i(q))\). We define the equivalence relation \(\sim\) as follows:
\[ (p, \mu^i(p)) \sim (q, \mu^i(q)) \iff \text{ord}(p, \mu^i(p)) = \text{ord}(q, \mu^i(q)). \]

Now, we denote the equivalence class of \((q, \mu^i(q))\) by \(\overline{q, \mu^i(q)}\).

Note that the order of \((q_0, \mu^0(q_0))\) is equal to zero.

**Theorem 3.3.** Let \(\bar{F}^* = (Q, \sum, \bar{R}, Z, \omega, \delta^*, F_1, F_2)\) be a max-min general fuzzy automaton. We define the following hyper operation on \(Q\):
\[ \forall \bar{q}_1, \bar{q}_2 \in Q^2, \bar{q}_1 \circ \bar{q}_2 = \left\{ \begin{array}{ll}
\bar{q}_1, & \text{if } \bar{q}_1 \neq \bar{q}_2, \bar{q}_2 \neq \bar{q}_0 \neq \bar{q}_1 \\
\{\bar{q}_0, \bar{q}_1\}, & \text{if } \bar{q}_1 = \bar{q}_2 \\
\bar{q}_0, & \text{if } \bar{q}_1 = \bar{q}_0, \bar{q}_2 \neq \bar{q}_0 \\
\bar{q}_1, & \text{if } \bar{q}_1 \neq \bar{q}_0, \bar{q}_2 = \bar{q}_0.
\end{array} \right. \]

It is easy to check that the hyper operation \(\circ\) is well-defined as a function from \(Q \times Q\) to \(P^*(Q) = P(Q) - \{\emptyset\}\), and \(\bar{q}_0\) is the zero element of \(Q\). Then, \((Q, \circ, \bar{q}_0)\) is a hyper BCK-algebra.

**Proof.** First, we need to consider the following situations to show that \((Q, \circ, \bar{q}_0)\) satisfies (HK1) and (HK2).

(i) Let \(\bar{q}_1, \bar{q}_2, \bar{q}_3 \neq \bar{q}_0\) and \(\bar{q}_3 \neq \bar{q}_2 \neq \bar{q}_1 \neq \bar{q}_3\). Then, \((\bar{q}_1 \circ \bar{q}_2) \circ \bar{q}_3 = \bar{q}_1 \circ \bar{q}_2\). Since \(\bar{q}_1 \circ \bar{q}_2 = \{\bar{q}_0, \bar{q}_1\}\), we obtain that \(\bar{q} \ll \bar{q}\) for any \(\bar{q} \in Q\). So, \((\bar{q}_1 \circ \bar{q}_2) \circ \bar{q}_3 \ll \bar{q}_1 \circ \bar{q}_2\) and in this case (HK1) holds.

Also, \((\bar{q}_1 \circ \bar{q}_2) \circ \bar{q}_3 = \bar{q}_1 \circ \bar{q}_3 = \bar{q}_1\) and \((\bar{q}_1 \circ \bar{q}_2) \circ \bar{q}_3 = \bar{q}_1 \circ \bar{q}_2 = \bar{q}_1\). Thus, in this case, (HK2) holds.

(ii) Let \(\bar{q}_1, \bar{q}_2, \bar{q}_3 \neq \bar{q}_0\) and \(\bar{q}_1 = \bar{q}_2 \neq \bar{q}_3\). Then, \((\bar{q}_1 \circ \bar{q}_2) \circ \bar{q}_3 = \bar{q}_1 \circ \bar{q}_2\). So, \((\bar{q}_1 \circ \bar{q}_2) \circ \bar{q}_3 \ll \bar{q}_1 \circ \bar{q}_2\) and in this case (HK1) holds.

On the other hand, \((\bar{q}_1 \circ \bar{q}_2) \circ \bar{q}_3 = \{\bar{q}_0, \bar{q}_1\} \circ \bar{q}_3 = \{\bar{q}_0, \bar{q}_1\}\) and \((\bar{q}_1 \circ \bar{q}_2) \circ \bar{q}_3 = \bar{q}_1 \circ \bar{q}_2 = \{\bar{q}_0, \bar{q}_1\}\). Therefore, in this case (HK2) holds.
(iii) Let \( q_1, q_2, q_3 \neq q_0 \) and \( q_4 = q_3 \neq q_2 \). Then, \((q_1, q_3) o (q_2, q_3) = \{q_0, q_1\} o q_3 = \{q_0, q_1\} \) and \( q_1 o q_2 = q_1 \). Since \( q_0 o q_4 = q_0 \), we obtain that \( q_0 \ll q_1 \). Also, we know that \( q_0 \ll q_1 \). Hence, \((q_1, q_3) o (q_2, q_3) \ll q_1 o q_2 \) and in this case (HK1) holds. Also, \((q_1, q_3) o q_3 = q_0 o q_1 = q_0 \) and \((q_1, q_3) o q_2 = (q_0, q_1) o q_2 = q_0, q_1 \). So, in this case (HK2) holds.

(iv) Let \( q_1, q_2, q_3 \neq q_0 \) and \( q_4 = q_3 \neq q_2 \). Then, \((q_1, q_3) o (q_2, q_3) = q_0 o (q_0, q_2) = q_1 \) and \( q_1 o q_2 = q_1 \). Thus, \((q_1, q_3) o (q_2, q_3) \ll q_1 o q_2 \) and in this case (HK1) holds. On the other hand, \((q_1, q_3) o q_3 = q_1 o q_3 = q_1 \) and \((q_1, q_3) o q_2 = q_1 o q_2 = q_1 \). Therefore, in this case (HK2) holds.

(v) Let \( q_1 = q_2 = q_3 \). Then, \((q_1, q_3) o (q_2, q_3) = \{q_0, q_1\} o (q_0, q_1) = \{q_0, q_1\} \) and \( q_1 o q_2 = q_1 \). So, \((q_1, q_3) o (q_2, q_3) \ll q_1 o q_2 \) and in this case \((Q, o, q_0)\) satisfies (HK1). Also, \((q_1, q_3) o q_3 = (q_1, q_3) o q_1 = (q_1, q_3) o q_2 \). Hence, in this case \((Q, o, q_0)\) satisfies (HK2).

(vi) Let \( q_2, q_3 \neq q_0, q_4 = q_0 \) and \( q_2 = q_3 \). Then, \((q_1, q_3) o (q_2, q_3) = q_0 o q_2 = q_0 \) and \( q_1 o q_2 = q_0 o q_2 = q_0 \). Thus, \((q_1, q_3) o (q_2, q_3) \ll q_1 o q_2 \) and in this case (HK1) holds. On the other hand, \((q_1, q_3) o q_3 = q_0 o q_3 = q_0 \) and \((q_1, q_3) o q_2 = q_0 o q_2 = q_0 \). So, in this case (HK2) holds.

(vii) Let \( q_2, q_3 \neq q_0, q_1 = q_0 \) and \( q_2 = q_3 \). Then, \((q_1, q_3) o (q_2, q_3) = q_0 o (q_0, q_2) = q_0 \) and \( q_1 o q_2 = q_0 o q_2 = q_0 \). Therefore, \((q_1, q_3) o (q_2, q_3) \ll q_1 o q_2 \) and in this case \((Q, o, q_0)\) satisfies (HK1). Also, \((q_1, q_3) o q_3 = q_0 o q_3 = q_0 \) and \((q_1, q_3) o q_2 = q_0 o q_2 = q_0 \). So, in this case \((Q, o, q_0)\) satisfies (HK2).

(viii) Let \( q_1, q_3 \neq q_0, q_2 = q_0 \) and \( q_1 = q_3 \). Then, \((q_1, q_3) o (q_2, q_3) = q_1 o q_3 = q_1 \) and \( q_1 o q_2 = q_0 o q_2 = q_1 \). Hence, \((q_1, q_3) o (q_2, q_3) \ll q_1 o q_2 \) and in this case (HK1) holds. On the other hand, \((q_1, q_3) o q_3 = q_1 o q_3 = q_1 \) and \((q_1, q_3) o q_2 = q_0 o q_2 = q_1 \). Thus, in this case (HK2) holds.

(ix) Let \( q_1, q_3 \neq q_0, q_2 = q_0 \) and \( q_1 = q_3 \). Then, \((q_1, q_3) o (q_2, q_3) = \{q_0, q_1\} o q_3 = \{q_0, q_1\} \) and \( q_1 o q_2 = q_1 o q_2 = q_1 \). Since \( q_0 \ll q_1 \) and \( q_1 \ll q_1 \), we obtain that \((q_1, q_3) o (q_2, q_3) \ll q_1 o q_2 \) and in this case \((Q, o, q_0)\) satisfies (HK1). Also, \((q_1, q_3) o q_3 = q_0 o q_3 = q_0 \) and \((q_1, q_3) o q_2 = (q_0, q_1) o q_2 = q_0 o q_2 = q_0 \). Hence, in this case \((Q, o, q_0)\) satisfies (HK2).

(x) Let \( q_1, q_3 \neq q_0, q_3 = q_0 \) and \( q_1 \neq q_2 \). Then, \((q_1, q_3) o (q_2, q_3) = q_0 o q_3 = q_1 \) and \( q_1 o q_2 = q_1 \). Therefore, \((q_1, q_3) o (q_2, q_3) \ll q_1 o q_2 \) and in this case (HK1) holds. On the other hand, \((q_1, q_3) o q_3 = q_0 o q_3 = q_0 \) and \((q_1, q_3) o q_2 = q_0 o q_2 = q_1 \). So, in this case (HK2) holds.
(xi) Let \( Q_1, Q_2 \neq Q_0 \) and \( Q_1 = Q_2 \). Then, \((Q_1oQ_2)\circ(Q_2oQ_3) = Q_1oQ_2 = \{Q_0, Q_1\} \) and \( Q_1oQ_2 = \{Q_0, Q_1\} \). Since \( Q_0 \ll Q_2 \) and \( Q_0 \ll \overline{Q} \), we get that \( Q_0oQ_0 \ll \overline{Q_1oQ_2} \) and in this case \( (Q, o, \overline{Q}) \) satisfies (HK1).

Also, \( (Q_1oQ_2)\circ(Q_2oQ_3) = \{Q_0, Q_1\} \) and \( (Q_1oQ_2)\circ(Q_2oQ_3) = \{Q_0, Q_1\} \). Thus, in this case \( (Q, o, \overline{Q}) \) satisfies (HK2).

(xii) Let \( Q_1 = Q_3 = Q_0 \) and \( Q_2 \neq Q_0 \). Then, \((Q_1oQ_3)\circ(Q_2oQ_3) = \{Q_0, Q_1\} = Q_0 \) and \( \overline{Q_1oQ_2} = \overline{Q_0} \). Therefore, \( (Q_1oQ_3)\circ(Q_2oQ_3) \ll \overline{Q_1oQ_2} \) and in this case (HK1) holds.

On the other hand, \( (Q_1oQ_3)\circ(Q_2oQ_3) = \{Q_0, Q_1\} = Q_0 \) and \( (Q_1oQ_3)\circ(Q_2oQ_3) = \{Q_0, Q_1\} = Q_0 \). Hence, in this case (HK2) holds.

(xiii) Let \( Q_1 = Q_3 = Q_0 \) and \( Q_2 \neq Q_0 \). Then, \((Q_1oQ_3)\circ(Q_2oQ_3) = \{Q_0, Q_1\} = Q_0 \) and \( \overline{Q_1oQ_2} = \overline{Q_0} \). So, \( (Q_1oQ_3)\circ(Q_2oQ_3) \ll \overline{Q_1oQ_2} \) and in this case \( (Q, o, \overline{Q}) \) satisfies (HK1).

On the other hand, \( (Q_1oQ_3)\circ(Q_2oQ_3) = \{Q_0, Q_1\} = Q_0 \) and \( (Q_1oQ_3)\circ(Q_2oQ_3) = \{Q_0, Q_1\} = Q_0 \). Thus, this case \( (Q, o, \overline{Q}) \) satisfies (HK2).

(xiv) Let \( Q_2 = Q_3 = Q_0 \) and \( Q_1 \neq Q_0 \). Then, \((Q_1oQ_3)\circ(Q_2oQ_3) = \{Q_0, Q_1\} = Q_0 \) and \( \overline{Q_1oQ_2} = \overline{Q_1} \). Therefore, \( (Q_1oQ_3)\circ(Q_2oQ_3) \ll \overline{Q_1oQ_2} \) and in this case (HK1) holds.

On the other hand, \( (Q_1oQ_3)\circ(Q_2oQ_3) = \{Q_0, Q_1\} = Q_0 \) and \( (Q_1oQ_3)\circ(Q_2oQ_3) = \{Q_0, Q_1\} = Q_0 \). Hence, in this case (HK2) holds.

So, we showed that \( (Q, o, \overline{Q}) \) satisfies (HK1) and (HK2).

Now, we should prove that \( (Q, o, \overline{Q}) \) satisfies (HK3).

By definition of the hyper operation “\( o \)”, we know that \( \overline{Q_1oQ_2} = \overline{Q_1} \) or \( \{\overline{Q_0}, \overline{Q_1}\} \) or \( \overline{Q_0} \), for any \( Q_1, Q_2 \in \overline{Q} \). Also, we know that \( Q_0 \ll \overline{Q_1} \) and \( Q_0 \ll \overline{Q_1} \). So, \( (Q, o, \overline{Q}) \) satisfies (HK3).

To prove (HK4), let \( \overline{Q_1} \ll \overline{Q_2} \). If \( \overline{Q_1} = \overline{Q_2} \), then we are done. Otherwise, since \( \overline{Q_2} \), there exists just one case:

(i) Let \( \overline{Q_1} = \{\overline{Q_0}, \overline{Q_2}\} = \overline{Q_0} \). Then, \( \overline{Q_2}o\overline{Q_1} = \overline{Q_2}o\overline{Q_0} = \overline{Q_2} \). Thus, \( \overline{Q_2} \not\ll \overline{Q_1} \), and this is a contradiction.

So, we showed that \( (Q, o, \overline{Q}) \) is a hyper BCK-algebra.

\[ \square \]

**Theorem 3.4.** Let \( (Q, o, \overline{Q}) \) be the hyper BCK-algebra, as defined in Theorem 3.3. Then, \( (\overline{Q}, o, \overline{Q}) \) is

1. a strong normal hyper BCK-algebra, and
2. a simple hyper BCK-algebra.

**Proof.** (1) By definition of hyper operation “\( o \)”, we obtain that \( \overline{Q} \) is a strong hyper BCK-ideal. So, \( (Q, o, \overline{Q}) \) is a strong normal hyper BCK-algebra.

(2) Let \( \overline{Q_1} \neq \overline{Q_2} \) and \( \overline{Q_1} \neq \overline{Q_0} \). Then, \( \overline{Q_1}o\overline{Q_2} = \overline{Q_1} \) and \( \overline{Q_2}o\overline{Q_1} = \overline{Q_2} \). Hence, \( \overline{Q_1} \neq \overline{Q_2} \) and \( \overline{Q_2} \ll \overline{Q_1} \). So, we get that \( (Q, o, \overline{Q}) \) is a simple hyper BCK-algebra.

\[ \square \]
Example 3.5. Consider the max-min GFA in Figure 1 with several transition overlaps. It is specified as:

\[
\hat{F}^* = (Q, \sum, \hat{R}, Z, \omega, \hat{\delta}^*, F_1, F_2), \quad \text{where } Q = \{q_0, q_1, q_2, q_3, q_4\} \text{ is the set of states, } \\
\sum = \{a, b\} \text{ is the set of input symbols, } \hat{R} = \{(q_0, 1)\}, \quad Z = \emptyset \text{ and } \omega \text{ is not applicable, } \\
Q_{\text{act}}(t_0) = \{q_0\}, \quad Q_{\text{act}}(t_1) = \{q_1, q_4\}, \quad Q_{\text{act}}(t_2) = \{q_1, q_2, q_4\}, \quad Q_{\text{act}}(t_3) = \{q_2, q_3\}, \ldots, \\
\text{and}
\]

\[
\begin{align*}
1_F_1(\mu, \delta) = \delta, & \quad F_2() = \mu^{t+1}(q_m) = \bigwedge_{i=1}^{n}(F_1(\mu^i(q_i), \delta(q_i, a_k, q_m))), \\
2_F_1(\mu, \delta) = \text{Min}(\mu, \delta), & \quad F_2() = \mu^{t+1}(q_m) = \bigwedge_{i=1}^{n}(F_1(\mu^i(q_i), \delta(q_i, a_k, q_m))), \\
3_F_1(\mu, \delta) = \text{Min}(\mu, \delta), & \quad F_2() = \mu^{t+1}(q_m) = \bigvee_{i=1}^{n}(F_1(\mu^i(q_i), \delta(q_i, a_k, q_m))), \\
4_F_1(\mu, \delta) = \text{Max}(\mu, \delta), & \quad F_2() = \mu^{t+1}(q_m) = \bigwedge_{i=1}^{n}(F_1(\mu^i(q_i), \delta(q_i, a_k, q_m))), \\
5_F_1(\mu, \delta) = \text{Max}(\mu, \delta), & \quad F_2() = \mu^{t+1}(q_m) = \bigvee_{i=1}^{n}(F_1(\mu^i(q_i), \delta(q_i, a_k, q_m))), \\
6_F_1(\mu, \delta) = \text{Min}(\mu, \delta), & \quad F_2() = \mu^{t+1}(q_m) = \sum_{i=1}^{n} F_1(\mu^i(q_i), \delta(q_i, a_k, q_m))/n, \\
7_F_1(\mu, \delta) = \frac{\mu + \delta}{2}, & \quad F_2() = \mu^{t+1}(q_m) = \bigwedge_{i=1}^{n}(F_1(\mu^i(q_i), \delta(q_i, a_k, q_m))),
\end{align*}
\]

where \( n \) is the number of simultaneous transitions to the active state \( q_m \) at time \( t + 1 \).

If we choose \( 1_F_1(\mu, \delta) = \delta \), \( F_2() = \mu^{t+1}(q_m) = \bigwedge_{i=1}^{n}(F_1(\mu^i(q_i), \delta(q_i, a_k, q_m))) \),

then we have:

\[
\begin{align*}
\mu^{10}(q_0) &= 1, \\
\mu^{11}(q_1) &= F_1(\mu^{10}(q_0), \delta(q_0, a, q_1)) = F_1(1, 0.4) = 0.4, \\
\mu^{11}(q_1) &= F_1(\mu^{10}(q_0), \delta(q_0, a, q_1)) = F_1(1, 0.5) = 0.5, \\
\mu^{12}(q_1) &= F_1(\mu^{11}(q_1), \delta(q_1, a, q_2)) = F_1(0.5, 0.4) = 0.4, \\
\mu^{12}(q_2) &= F_1(\mu^{11}(q_1), \delta(q_1, a, q_2)) = F_1(0.4, 0.8) = 0.8, \\
\mu^{12}(q_4) &= F_1(\mu^{11}(q_1), \delta(q_1, a, q_4)) = F_1(0.4, 0.35) = 0.35, \\
\mu^{12}(q_2) &= F_1(\mu^{12}(q_4), \delta(q_4, b, q_2)) \land F_1(\mu^{12}(q_2), \delta(q_2, b, q_2)) \\
&= F_1(0.4, 0.1) \land F_1(0.8, 0.6) = 0.1 \land 0.6 = 0.1, \\
\mu^{13}(q_3) &= F_1(\mu^{12}(q_1), \delta(q_1, b, q_3)) \land F_1(\mu^{12}(q_2), \delta(q_2, b, q_3)) \land F_1(\mu^{12}(q_4), \delta(q_4, b, q_3)) \\
&= F_1(0.4, 0.3) \land F_1(0.8, 0.45) \land F_1(0.35, 0.7) = 0.3 \land 0.45 \land 0.7 = 0.3.
\end{align*}
\]

There are two simultaneous transitions to the active state \( q_2 \) at time \( t_3 \) and there are three simultaneous transitions to the active state \( q_3 \) at time \( t_3 \). Table 1 shows these findings:
Some Hyper K-algebraic Structures Induced by Max-Min General Fuzzy Automata

Figure 1. The GFA of Example 3.5

Table 1. Active States and Their Membership Values (mvs) at Different Times in Example 3.5

<table>
<thead>
<tr>
<th>$t$</th>
<th>$t_0$</th>
<th>$t_1$</th>
<th>$t_2$</th>
<th>$t_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Lambda$</td>
<td>$\Lambda$</td>
<td>$\Lambda$</td>
<td>$\Lambda$</td>
<td>$\Lambda$</td>
</tr>
<tr>
<td>$Q_{act}(t)$</td>
<td>$Q_{act}(t)$</td>
<td>$Q_{act}(t)$</td>
<td>$Q_{act}(t)$</td>
<td>$Q_{act}(t)$</td>
</tr>
<tr>
<td>$mv^1$</td>
<td>1.0</td>
<td>0.4</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>$mv^2$</td>
<td>1.0</td>
<td>0.4</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>$mv^3$</td>
<td>1.0</td>
<td>0.4</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>$mv^4$</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>$mv^5$</td>
<td>1.0</td>
<td>0.4</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>$mv^6$</td>
<td>1.0</td>
<td>0.7</td>
<td>0.75</td>
<td>0.575</td>
</tr>
</tbody>
</table>

If $\mu F_i(\mu, \delta) = Max(\mu, \delta)$, $F_2() = \mu^{t+1}(q_{in}) = \bigvee_i F_i(\mu^t(q_i), \delta(q_i, a_k, q_{in}))$, then we have:

$$\tilde{\delta}^+((q_0, \mu^t(q_0)), a^2, q_1) = \bigvee_{q' \in Q_{act}(t_1)} [\tilde{\delta}(q_0, \mu^t(q_0), a, q') \land \tilde{\delta}((q', \mu^{t+1}(q'), a, q_1)]$$

$$[\tilde{\delta}(q_0, \mu^t(q_0)), a, q_1) \land \tilde{\delta}((q_1, \mu^{t+1}(q_1)), a, q_1)]$$

$$\lor [\tilde{\delta}(q_0, \mu^t(q_0)), a, q_1) \land \tilde{\delta}((q_4, \mu^{t+1}(q_4)), a, q_1)$$

$$= [F_1(\mu^t(q_0), \delta(q_0, a, q_1)) \land F_1(\mu^{t+1}(q_1), \delta(q_1, a, q_1))$$

$$\lor [F_1(\mu^t(q_0), \delta(q_0, a, q_4)) \land F_1(\mu^{t+1}(q_4), \delta(q_4, a, q_1))$$

$$= [F_1(1, 0.4) \land F_1(1, 0.4)] \lor [F_1(1, 0.5) \land F_1(1, 0.4)]$$

$$= [1 \land 1] \lor [1 \land 1] = 1 \lor 1 = 1.$$
If we choose $2F_1(\mu, \delta) = \text{Min}(\mu, \delta)$, $F_2() = \mu^{i+1}(q_m) = \bigcap_{i=1}^{n}(F_1(\mu^i(q_i), \delta(q_i, a_k, q_m)))$, then we have:

$$S_{0.1}(q_2, \mu^{i2}(q_2)) = \{(q_1, \mu^{i1}(q_1)), (q_4, \mu^{i1}(q_4)), (q_0, \mu^{i0}(q_0))\},$$

since,

$$\delta^*(q_1, \mu^{i1}(q_1), a, q_2) = \delta((q_1, \mu^{i1}(q_1), a, q_2) = F_1(\mu^{i1}(q_1), \delta(q_1, a, q_2)) = \text{Min}(0.4, 0.8) = 0.4 > c,$$

$$\delta^*(q_4, \mu^{i1}(q_4), a, q_2) = \bigvee_{q' \in Q_{act}(t_2)} \left[ \delta((q_4, \mu^{i1}(q_4), a, q', \delta((q_4, \mu^{i1}(q_4), a, q_2)) = [\delta((q_4, \mu^{i1}(q_4), a, q_1) \wedge \delta((q_4, \mu^{i1}(q_4), a, q_2)]
\lor [\delta((q_4, \mu^{i1}(q_4), a, q_2) \wedge \delta((q_4, \mu^{i2}(q_4), a, q_2)]
\lor [\delta((q_4, \mu^{i1}(q_4), a, q_4) \wedge \delta((q_4, \mu^{i2}(q_4), a, q_2)]
\lor [F_1(0.5, 0.4) \wedge F_1(0.4, 0.8)] \lor [F_1(0.5, 0) \wedge F_1(0.35, 0)]
\lor [0.4] \lor [0] = 0.4 > c,$$

$$\delta^*(q_0, \mu^{i0}(q_0), a, q_2) = \bigvee_{q' \in Q_{act}(t_1)} \left[ \delta((q_0, \mu^{i0}(q_0), a, q', \delta((q_0, \mu^{i0}(q_0), a, q_2)) = [\delta((q_0, \mu^{i0}(q_0), a, q_1) \wedge \delta((q_0, \mu^{i1}(q_0), a, q_2)]
\lor [\delta((q_0, \mu^{i0}(q_0), a, q_2) \wedge \delta((q_0, \mu^{i2}(q_0), a, q_2)]
\lor [F_1(1, 0.4) \wedge F_1(0.4, 0.8)] \lor [F_1(1, 0.5) \wedge F_1(0.5, 0)]
\lor [0.4] \lor [0] = 0.4 > c.$$
Since $\cup O$ and $\cup N$ (1) Then, we consider two cases:

(1) $y = q_0$.

Since $xoy = xoq_0 = x$ and $xoy \cap I \neq \emptyset$, we obtain that $x \in I$.

(2) $y \neq q_0$.

In this case, if $x \notin I$, then $x \neq q_0, x \neq q_1, \ldots, x \neq q_n$. So, $xoy = xoq_r = x$. Since $xoy \cap I \neq \emptyset$, we get that $x \in I$, which is a contradiction. \[\square\]

**Theorem 3.7.** Let $I$ be the subset of $Q$ which is defined in Theorem 3.3. Then, $I$ is a positive implicative hyper $K$-ideal of type 1. Let $x, y, z \in Q$ and $(xoy)oz \subseteq I$ and $(yoz) \subseteq I$. Then, we should consider two cases:

(1) $x = y$. Since $yoz = xoz$ and $yoz \subseteq I$, we obtain that $xoz \subseteq I$.

(2) $x \neq y$. By definition of the hyper operation "$o"$, it is easy to see that $x \in xoy$ and $xoy \neq \emptyset$, for all $x, y \in Q$. So, $x \in (xoy)oz$. Since $(xoy)oz \subseteq I$, we obtain that $x \in I$. Also, $xoz = x \cup xoq = \{x, q_0\}$. Thus, by definition of $I$, we get that $(xoz) \subseteq I$. Hence, $I$ is a positive implicative hyper $K$-ideal of type 1.

Now, we show that $I$ is a positive implicative hyper $K$-ideal of type 10. Let $x, y, z \in Q$, $((xoy)oz \cap I \neq \emptyset$ and $(yoz) \subseteq I$. Then, we should consider two cases:

(1) $x = y$. Since $yoz = xoz, yoz \subseteq I$ and $yoz \neq \emptyset$, we obtain that $xoz \subseteq I$ and $(xoz) \cap I \neq \emptyset$.

(2) $x \neq y$. Since $xoy = x \cup ((xoy)oz \cap I \neq \emptyset, we get that $(xoz) \cap I \neq \emptyset$. So, we conclude that $I$ is a positive implicative hyper $K$-ideal of type 10.
The proofs for other cases are similarly developed using suitable modifications.

\begin{remark}
Note that Theorem 3.7 does not hold for types 11, 13, 18, 20, 22 and 27. To this end, we first consider type 11.

Let $I = \{\overline{q_6}, \overline{q_4}\}$, $x, y, z \neq \overline{q_6}$, $x = z = \overline{q_2}$ and $x \neq y = \overline{q_1}$. Then, $(xoy)oz = xo \overline{z} = \{\overline{q_6}, \overline{q_2}\}$ and $(yo)oz = y = \overline{q_1}$. So $(xoy)oz \cap I \neq \emptyset$ and $(yo)oz \subseteq I$. But $xo \overline{z}(\overline{q_6}, \overline{q_2}) \not\subseteq I$. Hence, I is not a positive implicative hyper $K$-ideal of type 11.

Then, we show type 27. Since $\overline{q_6} \not\in \overline{q_6}$ and $\overline{q_1} \not\in \overline{q_1}$, we get that $(xoy)oz \not\subseteq I$ and $(yo)oz \not\subseteq I$. But, $xo \overline{z}(\overline{q_6}, \overline{q_2}) \not\subseteq I$. So, I is not a positive implicative hyper $K$-ideal of types 27. Similarly, we can prove that I is not a positive implicative hyper $K$-ideal of types 13, 18, 20 and 22.
\end{remark}

\begin{theorem}
Let $(\overline{Q}, o, \overline{q_6})$ be the hyper BCK-algebra as defined in Theorem 3.3. Then, every non-empty subset of $\overline{Q}$ is an $\overline{q_6}$-absorbing set.

Proof. By definition of the hyper operation “$o$” we know that $\overline{q_1} \cap \overline{q_6} = \overline{q_1}$, for all $\overline{q_1} \in \overline{Q}$. So, it is easy to see that for all non-empty subset of $\overline{Q}$, we have:

$x \in I \text{ and } y \in \overline{q_6} \implies xo y \subseteq I$.
\end{proof}

\begin{theorem}
Let $(\overline{Q}, o, \overline{q_6})$ be the hyper BCK-algebra as defined in Theorem 3.3. Then, every subset of $\overline{Q}$ which contains $\overline{q_6}$ is a commutative hyper $K$-ideal of types 2, 3, 4, 5, 6, 8 and 9 (see [24]).

Proof. First, we show that $I$ is a commutative hyper $K$-ideal of type 4. We know that I is a strong hyper $K$-ideal. So, I is a weak hyper $K$-ideal and a hyper $K$-ideal too. Let $(xoy)oz \subseteq I$ and $z \in I$, for all $x, y, z \in \overline{Q}$. Since $x \in xoy$, for all $x, y \in \overline{Q}$ and I is a weak hyper $K$-ideal, we obtain that $(xoy) \subseteq I$. Hence, $x \in I$. Now, we consider two cases:

1. $x \neq y$.
Since $y(x) = y$, we get that $y(x) = y = \{\overline{q_6}, y\}$. So, $xo(y(x)) = xo\{\overline{q_6}, y\} = x$. Thus, $(x)(y(x)) \subseteq I$

2. $x = y$.
Since $y(x) = y = \{\overline{q_6}, y\}$, we get that $y(x) = y = \{\overline{q_6}, y\}$. So, $xo(y(x)) = xo\{\overline{q_6}, y\} = \{\overline{q_6}, y\}$. Therefore, $xo(y(x)) \subseteq I$ and I is a commutative hyper $K$-ideal of type 4.

Now, we show that I is a commutative hyper $K$-ideal of type 8. Let $(xoy)oz \not\subseteq I$ and $z \in I$, for all $x, y, z \in \overline{Q}$. Then, we have two cases:

1. $x = y$.
Since $y(x) = y = \{\overline{q_6}, y\}$, we get that $y(x) = y = \{\overline{q_6}, y\}$. Hence, $xo(y(x)) = xo\{\overline{q_6}, y\} = \{\overline{q_6}, y\}$. Also, since $\overline{q_6} \in \{\overline{q_6}, y\}$ and $\overline{q_6} \in I$,
we conclude that \( xo(yo(yox)) \cap I \neq \emptyset. \)

(2) \( x \neq y. \)

Since \((xo)oz < I, z \in I \) and \( I \) is a hyper \( K \)-ideal, we obtain that \( x \in I. \) Also, \( yo(yox) = yo(y) = \{\overline{y}, y\}. \) So, \( xo(yo(yox)) = xo(\overline{y}, y) = x \) and \( xo(yo(yox)) \cap I \neq \emptyset. \)

Thus, \( I \) is a commutative hyper \( K \)-ideal of type 8.

By Theorem 2.13, we can prove that \( I \) is a commutative hyper \( K \)-ideal of types 3, 4, 5, 6, 8 and 9.

Now, it is enough to prove that \( I \) is a commutative hyper \( K \)-ideal of type 2. Let \(((xo)oz) \cap I \neq \emptyset \) and \( z \in I, \) for all \( x, y, z \in \overline{Q}. \) Then, we have two cases:

(1) \( x = y. \)

Since \( \overline{y} \in xo(yo(yox)) = \{\overline{y}, x\}, \) we conclude that \( xo(yo(yox)) \cap I \neq \emptyset. \)

(2) \( x \neq y. \)

Since \((xo)oz \cap I = (xo)oz \cap I \neq \emptyset, z \in I \) and \( I \) is a strong hyper \( K \)-ideal, we obtain that \( x \in I. \) Also, we know that \( x \in xo(yo(yox)). \) So, \( xo(yo(yox)) \cap I \neq \emptyset \) and \( I \) is a commutative hyper \( K \)-ideal of type 2. \( \square \)

**Remark 3.11.** Note that Theorem 3.10 does not hold for types 1 and 7.

To this end, first consider type 1. Let \( I = \{\overline{q_0}, \overline{q_1}\}, x, y, z \not\in \overline{q_0}, x = y = \overline{q_2} \) and \( x \neq z = \overline{q_1}. \)

Then, \((xo)oz = \{\overline{q_0}, \overline{q_2}\}oz = \{\overline{q_0}, \overline{q_2}\} \not\subset I. \) So, \((xo)oz \cap I \neq \emptyset \) and \( z \in I. \)

But, \( xo(yo(yox)) = \{\overline{q_0}, \overline{q_2}\} \not\subset I. \) Hence, \( I \) is not a commutative hyper \( K \)-ideal of type 1.

Then, we show type 7. Since \( \overline{q_0} < \overline{q_1}, \) we get that \((xo)oz < I. \)

But, \( xo(yo(yox)) = \{\overline{q_0}, \overline{q_1}\} \not\subset I. \) So, \( I \) is not a commutative hyper \( K \)-ideal of type 7.

4. Dual Positive Implicative and Commutative Hyper \( K \)-ideal

By Theorem 2.8, let \( H \) be a hyper \( K \)-algebra as in Theorem 3.3; in other words, \( H = (\overline{Q}, o, \overline{q_0}). \)

Then, by Definition 2.16, \( H \) satisfies the zero condition and hence by Theorem 2.18 can be extended to a bounded hyper \( K \)-algebra with unit as follows:

Let \( e \not\in H \) and \( H_1 = H \cup \{e\}. \) Define the hyper operation "\( o_1 \)" on \( H_1 \) as follows:

\[
\overline{q_1}o_1\overline{q_2} = \begin{cases} 
\{e\}, & \text{if } \overline{q_1} = e, \overline{q_2} \in H \\
\{\overline{q_0}\}, & \text{if } \overline{q_1} = \overline{q_2} = e \\
\overline{q_0}, & \text{if } \overline{q_1} \in H, \overline{q_2} = e \\
\overline{q_1}, & \text{if } \overline{q_1}, \overline{q_2} \in H.
\end{cases}
\]

In the remainder of this section, let \( D \) be a non-empty subset of a bounded hyper \( K \)-algebra \( H_1 \) containing \( e. \)

**Example 4.1.** Consider the max-min general fuzzy automata \( \hat{F}^* = (Q, \sum, \hat{R}, Z, \omega, \hat{\delta}, F_1, F_2) \) in Example 3.5. According to the definition of hyper operation "\( o_1 \)" , we have Table 3.
The converse is proved similarly using proof of Theorem 4.2.

\[ \begin{array}{cccccc}
q_1 & q & q_2 & q_3 & q_4 \\
\{q_0\} & \{e\} & \{e\} & \{e\} & \{e\} \\
\{q_0\} & \{q_0\} & \{q_0\} & \{q_0\} & \{q_0\} \\
\{q_1\} & \{q_0, q_1\} & \{q_0\} & \{q_0\} & \{q_0\} \\
\{q_2\} & \{q_0, q_2\} & \{q_2\} & \{q_0, q_2\} & \{q_2\} \\
\{q_0\} & \{q_0, q_1\} & \{q_0\} & \{q_0\} & \{q_0\} \\
\end{array} \]

Table 3. The Hyper Operation "0 Index 1" on the Equivalence Classes of States in Example 3.5

**Theorem 4.2.** Let \( D \) be a subset of \( H_1 \). Then, \( D \) is a DPIHKI-T3 if and only if \( \overline{q_0} \in D \).

**Proof.** Let \( \overline{q_0} \in D \). By definition of \( H_1 \), we have:

\[
e o_1((e o_1 x) o_1 (e o_1 y)) = e o_1(e o_1 e) = e o_1 \overline{q_0} = \{e\} \subseteq D, \forall x, y \in H.
\]

Also, \( e o_1((e o_1 x) o_1 (e o_1 e)) = e o_1(e o_1 \overline{q_0}) = e o_1 e = \{\overline{q_0}\}, \forall x \in H. \)

Furthermore,

\[
e o_1((e o_1 e) o_1 (e o_1 x)) = e o_1(\overline{q_0} o_1 e) \subseteq \{\overline{q_0}, e\}, \forall x \in H
\]

and

\[
e o_1((e o_1 e) o_1 (e o_1 e)) = e o_1(\overline{q_0} o_1 \overline{q_0}) = e o_1 \overline{q_0} = \{e\}. \]

Since \( e \) and \( \overline{q_0} \in D \), then \( e o_1((e o_1 x) o_1 (e o_1 y)) \subseteq D, \forall x, y \in H_1. \) Thus, \( D \) is a DPIHKI-T3.

Conversely, let \( D \) be a DPIHKI-T3. We prove that \( \overline{q_0} \in D \). On the contrary, let \( \overline{q_0} \notin D \). Then, \( e o_1((e o_1 e) o_1 (e o_1 e)) = e o_1 \overline{q_0} = \{e\} \subseteq D. \) Also, \( (e o_1 \overline{q_0}) o_1 (e o_1 e) = \{\overline{q_0}\}. \) Since \( \overline{q_0} \notin D \), thus \( D \) is not a DPIHKI-T3, which is a contradiction. Therefore, \( \overline{q_0} \in D \). \( \square \)

**Remark 4.3.** If \( D = \{e\} \), then \( D \) is not a DPIHKI-T4.

By (HK2) and definition of \( H_1 \), we have, \( \overline{q_0} o_1 \overline{q_0} = (e o_1 e) o_1 \overline{q_0} = (e o_1 \overline{q_0}) o_1 e = e o_1 e = \overline{q_0}. \) So, we get that

\[
e = e o_1 \overline{q_0} = e o_1(\overline{q_0} o_1 \overline{q_0}) = e o_1((e o_1 e) o_1 (e o_1 e)) = e o_1(((e o_1 \overline{q_0}) o_1 (e o_1 \overline{q_0})) o_1 (e o_1 e)) \subseteq D.
\]

Also, \( \overline{q_0} = e o_1 e = e o_1(\overline{q_0} e) = e o_1((e o_1 \overline{q_0}) o_1 (e o_1 e)). \) Now, since \( \overline{q_0} \notin D \), we have, \( N(N \overline{q_0} o_1 N e) \subseteq D. \) Thus, \( D \) is not a DPIHKI-T4.

**Theorem 4.4.** Let \( D \) be a subset of \( H_1 \). Then, \( D \) is a DPIHKI-T4 if and only if \( \overline{q_0} \in D \).

**Proof.** Let \( \overline{q_0} \in D \). Then, by Theorems 4.2 and 2.23 we conclude that \( D \) is a DPIHKI-T4.

The converse is proved similarly using proof of Theorem 4.2. \( \square \)
**Remark 4.5.** If $D = \{ e \}$, then $D$ is not a DPIHK-T2.

By definition of $H_1$, we get that $e_0 \overline{(o_1 e)} = \{ e \}$ and $\overline{q_0 o_1 q_0} = \{ \overline{q_0} \}$. Also, we have,

$$e_0((e_0 e) o_1 (e_0 e)) = e_0(\overline{q_0 o_1 q_0}) = \{ e \} \subseteq D,$$

and

$$e_0((e_0 \overline{q_0} o_1 (e_0 e)) = e_0(\overline{q_0 q_0}) = e_0 = \{ \overline{q_0} \} \subseteq D.$$

Since $\overline{q_0} \notin D$, thus $N(N_{\overline{q_0} o_1 N e}) \notin D$. Therefore, $D$ is not a DPIHKI-T2.

**Theorem 4.6.** Let $D$ be a subset of $H_1$. Then, $D$ is a DPIHKI-T2 if and only if $q_0 \in D$.

*Proof.* Let $\overline{q_0} \in D$. Then, by Theorems 4.2 and 2.26 we conclude that $D$ is a DPIHKI-T2.

The converse is proved similarly using proof of Theorem 3.2. $\square$

**Theorem 4.7.** Let $D$ be a subset of $H_1$. Then, $D$ is a DPIHKI-T1.

*Proof.* We consider two cases: (i) $\overline{q_0} \in D$ and (ii) $\overline{q_0} \notin D$.

(i) If $\overline{q_0} \in D$, then by Theorems 4.2 and 2.28 we conclude that $D$ is a DPIHKI-T1.

(ii) Let $\overline{q_0} \notin D$ and on the contrary let $D$ not be a DPIHKI-T1.

Then, there are $x, y, z \in H$ such that

$$e_0((e_0 x) o_1 (e_0 y)) o_1 (e_0 z) \subseteq D, \quad (1)$$

and

$$e_0((e_0 y) o_1 (e_0 z)) \subseteq D, \quad (2)$$

while

$$e_0((e_0 x) o_1 (e_0 z)) \notin D. \quad (3)$$

If $x$ and $z \in H$ or $x = z = e$, then by some manipulations we conclude that (3) dose not hold, and this is a contradiction. If $x \in H$ and $z = e$, then for $y = e$, the inclusion (1) dose not hold, and for $y \in H$, (2) dose not hold, and so this case is impossible.

If $x = e$ and $z \in H$. Then, we consider two cases:

(a) $e \in \overline{q_0 o_1 e}$, and (b) $e \notin \overline{q_0 o_1 e}$.

(a) If $e \in \overline{q_0 o_1 e}$, then (1) dose not hold, which is a contradiction.

(b) If $e \notin \overline{q_0 o_1 e}$, then (2) dose not hold, which is not true.

Therefore, also in this case $D$ is a DPIHKI-T1. $\square$
Theorem 4.8. Let $e \in D \subseteq H_1$ and $D \neq \{e\}$. Then, the following statements are equivalent:

(i) $\overline{q_0} \in D$,
(ii) $D$ is a DCHKI-T1,
(iii) $D$ is a DPIHKI-T2.

Proof. (i)$\rightarrow$(ii) Let $\overline{q_0} \in D$. Then, for any $x, y \in H_1$, by definition of $H_1$ we can obtain that $N(Nx_0(Ny_0(Nx_0))) \subseteq \{\overline{q_0}, e\} \subseteq D$. Therefore, $D$ is a DCHKI-T1.

(ii)$\rightarrow$(i) Let $D$ be a DCHKI-T1. We prove that $\overline{q_0} \in D$. On the contrary, let $\overline{q_0} \notin D$.

Consider $x \in D - \{e\}$. So by definition of $H_1$ we get that $N((Nx_0(Ne_0)) = \{e\} \subseteq D$ and also $\overline{q_0} \in N(Nx_0(Ne_0(Nx_0)))$. Hence,

$$N((Nx_0(Ne_0(Nx_0))) \notin D.$$

Therefore, $D$ is not a DCHKI-T1, which is a contradiction.

(i)$\rightarrow$(iii) This follows from Theorem 4.6. \(\square\)

Theorem 4.9. Let $D = \{e\}$. Then, $D$ is a DCHKI-T1.

Proof. The proof is similar to the proof of Theorem 4.8. \(\square\)

Remark 4.10. Let $\overline{q_0} \notin D$. Then, $D$ is not a DCHKI-T2 (DPIHKI-T3).

Since $\overline{q_0} \in (\overline{q_0}e_0) \cap (e_0e)$, then we get that $\overline{q_0} \in N(N\overline{q_0}(Neo_1(Ne_0N\overline{q_0}))$, and so $N((\overline{q_0}e_0(Ne_0(Ne_0N\overline{q_0}))) \notin D$. Therefore, by Theorem 2.30, $D$ is not a DCHKI-T2. Similarly, we can show that $D$ is not a DPIHKI-T3.

5. Conclusion

The connections of max-min general fuzzy automaton theory with another field, known as hyper structure theory were presented. We pointed out that the concept of automaton leads to important results, both in mathematics and in theoretical computer science. Here, two BCK-algebras were found induced by a max-min general fuzzy automaton. Two important questions arose:

i) Is it possible to find a max-min general fuzzy automaton which is induced by a BCK-algebra?

ii) Is there any relationship between the concept of connectedness (semi-connectedness) between two states $p$ and $q$ with respect to a fuzzy subset of the set of states of a max-min general fuzzy automaton and the concepts of (positive implicative) commutative hyper K-ideals of the induced hyper BCK-algebra?
REFERENCES


Khadijeh Abolpour*, Department of Mathematics, Islamic Azad University, Kerman Branch, Kerman, Iran

E-mail address: abolpor_kh@yahoo.com

Mohammad Mehdi Zahedi, Department of Mathematics, Tarbiat Modares University, Tehran, Iran

E-mail address: zahedi_mm@modares.ac.ir

Masoome Golmohamadian, Department of Mathematics, Tarbiat Modares University, Tehran, Iran

*Corresponding author