STRATIFIED \((L,M)\)-FUZZY Q-CONVERGENCE SPACES

B. PANG AND Y. ZHAO

Abstract. This paper presents the concepts of \((L,M)\)-fuzzy Q-convergence spaces and stratified \((L,M)\)-fuzzy Q-convergence spaces. It is shown that the category of stratified \((L,M)\)-fuzzy Q-convergence spaces is a bireflective subcategory of the category of \((L,M)\)-fuzzy Q-convergence spaces, and the former is a Cartesian-closed topological category. Also, it is proved that the category of stratified \((L,M)\)-fuzzy topological spaces can be embedded in the category of stratified \((L,M)\)-fuzzy Q-convergence spaces as a reflective subcategory, and the former is isomorphic to the category of topological stratified \((L,M)\)-fuzzy Q-convergence spaces.

1. Introduction

Fuzzy convergence theory takes an important part in the development of fuzzy topology. In recent years, fuzzy convergence theory deserves wide attention. With respect to different kinds of fuzzy topological spaces, there have been different kinds of fuzzy convergence structures. In the situation of \(L\)-topology, Lowen [17] defined the concept of a prefilter as a subset of \(I^X\) in order to study the theory of fuzzy topology. Min [18] proposed fuzzy limit structures by means of prefilters. Using stratified \(L\)-filters, Jäger [8] introduced stratified \(L\)-fuzzy convergence spaces (which are called stratified \(L\)-generalized convergence spaces in [9]). There are some following works to study the properties of this kind of fuzzy convergence structures [4, 5, 10, 11, 12, 15, 16, 27]. In the framework of \(L\)-fuzzifying topology, Xu [26] introduced fuzzifying convergence structures by means of classical filters. Yao [28] introduced \(L\)-fuzzifying convergence structures using \(L\)-filters of ordinary subsets. In \((L,M)\)-fuzzy setting, Güloğlu et al. [6] introduced the concept of \(I\)-fuzzy convergence structures by means of \(I\)-filters. Pang and Fang [19, 20] used \(L\)-filters to define \(L\)-fuzzy Q-convergence structures and studied its separation properties. Later, Pang proposed the concepts of \((L,M)\)-fuzzy convergence spaces [21, 22] and enriched \((L,M)\)-fuzzy convergence spaces [23], and studied their categorical properties and their categorical relations with \((L,M)\)-fuzzy topological spaces.

Compared with \(L\)-topological spaces [2], stratified \(L\)-topological spaces [7] have better properties in some aspects. In a natural way, the stratification condition is generalized to \((L,M)\)-fuzzy topological spaces, generating stratified \((L,M)\)-fuzzy topological spaces (called weakly enriched \((L,M)\)-fuzzy topological spaces in [7]). From the viewpoint of convergence theory, stratified \(L\)-generalized convergence
structures in the sense of Jäger provide a good tool for interpreting stratified \(L \)-topology. In [13] introduced stratified \(L \)-\(M \)-\(N \)-convergence tower spaces, which can induce stratified \((L, M)\)-fuzzy convergence spaces. Actually, the “stratification” of \(L \)-topology and \((L, M)\)-fuzzy topology depends on the “stratification” of stratified \(L \)-filters. This motivates us to how to define “stratified \((L, M)\)-fuzzy convergence structures” by using \(L \)-filters or \((L, M)\)-fuzzy filters without the “stratification” condition.

In this paper, we will focus on fuzzy convergence structures in the framework of stratified \((L, M)\)-fuzzy topological spaces. We will first generalize \(L \)-fuzzy \(Q \)-convergence structures to \((L, M)\)-fuzzy \(Q \)-convergence structures. Based on this new concept, we will introduce stratified \((L, M)\)-fuzzy \(Q \)-convergence structures and study its relations with \((L, M)\)-fuzzy \(Q \)-convergence structures. Further, we will investigate the categorical properties of stratified \((L, M)\)-fuzzy \(Q \)-convergence structures and study its relations with stratified \((L, M)\)-fuzzy topologies in a categorical sense.

2. Preliminaries

Throughout this paper, both \(L \) and \(M \) denote completely distributive lattices and \(' \) is an order-reversing involution on \(L \). The smallest element and the largest element in \(L \) (\(M \)) are denoted by \(\perp_L \) (\(\perp_M \)) and \(\top_L \) (\(\top_M \)), respectively. For \(a, b \in L \), we say that \(a \) is wedge below \(b \) in \(L \), in symbols \(a \prec b \), if for every subset \(D \subseteq L \), \(\bigvee D \geq b \) implies \(d \geq a \) for some \(d \in D \). A complete lattice \(L \) is completely distributive if and only if \(b = \bigvee \{ a \in L \mid a \prec b \} \) for each \(b \in L \). An element \(a \) in \(L \) is called coprime if \(a \leq b \lor c \) implies \(a \leq b \) or \(a \leq c \). The set of nonzero coprime elements in \(L \) (\(M \)) is denoted by \(J(L) \) (\(J(M) \)), respectively.

For a nonempty set \(X \), \(L^X \) denotes the set of all \(L \)-subsets on \(X \). The smallest element and the largest element in \(L^X \) are denoted by \(\perp_L^X \) and \(\top_L^X \), respectively. \(L^X \) is also a completely distributive De Morgan algebra when it inherits the structure of the lattice \(L \) in a natural way, by defining \(\bigvee, \bigwedge, \leq \) and \(' \) pointwisely. For each \(x \in X \) and \(a \in L \), the \(L \)-subset \(x_a \), defined by \(x_a(y) = a \) if \(y = x \), and \(x_a(y) = \perp_L \) if \(y \neq x \), is called a fuzzy point. The set of nonzero coprime elements in \(L^X \) is denoted by \(J(L^X) \). It is easy to see that \(J(L^X) = \{ x_\lambda \mid x \in X, \lambda \in J(L) \} \). We say that a fuzzy point \(x_\lambda \in J(L^X) \) quasi-coincides with \(A \), denoted by \(x_\lambda \sqsubseteq A \), if \(\lambda \not\in A'(x) \) or equivalently \(x_\lambda \not\in A' \). The relation “does not quasi-coincide with” is denoted by \(\sim \). For \(a \in L \), \(a \) denotes the constant mapping \(X \rightarrow L \). Let \(\varphi : X \rightarrow Y \) be a mapping. Define \(\varphi^- : L^X \rightarrow L^Y \) and \(\varphi^+: L^Y \rightarrow L^X \) by \(\varphi^-(A)(y) = \bigvee_{\varphi(x)=y} A(x) \) for \(A \in L^X \) and \(y \in Y \), and \(\varphi^+(B) = B \circ \varphi \) for \(B \in L^Y \), respectively.

Definition 2.1. [29] A mapping \(F : L^X \rightarrow M \) is called an \((L, M)\)-fuzzy filter on \(X \) if it satisfies:

\[
\begin{align*}
(\text{LMF}1) \quad & F(\perp_L^X) = \perp_M, \quad F(\top_L^X) = \top_M; \\
(\text{LMF}2) \quad & F(A \land B) = F(A) \land F(B).
\end{align*}
\]

The family of all \((L, M)\)-fuzzy filters on \(X \) is denoted by \(\mathcal{F}_{LM}(X) \). On the set \(\mathcal{F}_{LM}(X) \) of all \((L, M)\)-fuzzy filters on \(X \), we define an order by \(F \leq G \) if \(F(A) \leq G(A) \) for all \(A \in L^X \). Obviously, \((\mathcal{F}_{LM}(X), \leq) \) is a partially ordered set.
Example 2.2. [21] For each \(x_\lambda \in J(L^X) \), we define \(\hat{q}(x_\lambda) : L^X \rightarrow M \) as follows:
\[
\forall A \in L^X, \quad \hat{q}(x_\lambda)(A) = \begin{cases} \top_M, & x_\lambda \hat{q} A, \\ \bot_M, & x_\lambda \neg \hat{q} A. \end{cases}
\]
Then \(\hat{q}(x_\lambda) \) is an \((L, M)\)-fuzzy filter.

Definition 2.3. [29] Let \(F \in \mathcal{F}_L(M) \) and \(\varphi : X \rightarrow Y \) be a mapping. Then \(\varphi^\tau(F) : L^Y \rightarrow M, A \mapsto F(\varphi^\tau(A)) \) is an \((L, M)\)-fuzzy filter on \(Y \) and is called the image of \(F \) under \(\varphi \).

Definition 2.4. [14, 25] An \((L, M)\)-fuzzy topology on \(X \) is a mapping \(\tau : L^X \rightarrow M \) which satisfies:

- (LFT1) \(\tau(\bot_X) = \tau(\top_X) = \top_M \);
- (LFT2) \(\tau(A \land B) \geq \tau(A) \land \tau(B) \);
- (LFT3) \(\tau(\bigvee_{j \in J} A_j) \geq \bigwedge_{j \in J} \tau(A_j) \).

For an \((L, M)\)-fuzzy topology \(\tau \) on \(X \), the pair \((X, \tau)\) is called an \((L, M)\)-fuzzy topological space.

A continuous mapping between \((L, M)\)-fuzzy topological spaces \((X, \tau_X)\) and \((Y, \tau_Y)\) is a mapping \(\varphi : X \rightarrow Y \) such that \(\tau_X(\varphi^\tau(A)) \geq \tau_Y(A) \) for each \(A \in L^Y \).

The category of \((L, M)\)-fuzzy topological spaces with continuous mappings as morphisms will be denoted by \((L, M)\)-\textbf{FTop}.

Definition 2.5. [7] An \((L, M)\)-fuzzy topology \(\tau \) on \(X \) is called stratified if it satisfies:

- (SLFT) \(\forall a \in L, \tau(a) = \top_M \).

For a stratified \((L, M)\)-fuzzy topology \(\tau \) on \(X \), the pair \((X, \tau)\) is called a stratified \((L, M)\)-fuzzy topological space. The full subcategory of \((L, M)\)-\textbf{FTop}, consisting of stratified \((L, M)\)-fuzzy topological spaces, is denoted by \((S(L, M))\)-\textbf{FTop}.

Definition 2.6. [3] An \((L, M)\)-fuzzy quasi-coincident neighborhood system on \(X \) is defined to be a set \(\mathcal{Q} = \{Q_{x_\lambda} \mid x_\lambda \in J(L^X)\} \) of mappings \(Q_{x_\lambda} : L^X \rightarrow M \) satisfying the following conditions:

- (LFQ1) \(Q_{x_\lambda}(\bot_X) = \top_M \), \(Q_{x_\lambda}(\top_X) = \bot_M \);
- (LFQ2) \(Q_{x_\lambda}(A) \neq \bot_M \) implies \(x_\lambda \hat{q} A \);
- (LFQ3) \(Q_{x_\lambda}(A \land B) = Q_{x_\lambda}(A) \land Q_{x_\lambda}(B) \).

The pair \((X, \mathcal{Q})\) is called an \((L, M)\)-fuzzy quasi-coincident neighborhood space, and it will be called topological if it satisfies moreover,

- (LFQ4) \(Q_{x_\lambda}(A) = \bigvee_{x_\lambda \hat{q} B \leq A} \bigwedge_{y_\lambda \hat{q} B} Q_{y_\lambda}(B) \).

A continuous mapping between two \((L, M)\)-fuzzy quasi-coincident neighborhood spaces \((X, Q^X)\) and \((Y, Q^Y)\) is a mapping \(\varphi : X \rightarrow Y \) such that \(Q^X_{x_\lambda}(\varphi^\tau(A)) \geq Q^Y_{\varphi(x_\lambda)}(A) \) for each \(x_\lambda \in J(L^X) \) and \(A \in L^X \).

Proposition 2.7. [3] Let \(\mathcal{Q} = \{Q_{x_\lambda} \mid x_\lambda \in J(L^X)\} \) be an \((L, M)\)-fuzzy quasi-coincident neighborhood system on \(X \) and define \(\tau^\mathcal{Q} : L^X \rightarrow M \) by
\[
\forall A \in L^X, \quad \tau^\mathcal{Q}(A) = \bigwedge_{x_\lambda \hat{q} A} Q_{x_\lambda}(A).
\]
Then τ^Q is an (L, M)-fuzzy topology on X.

Proposition 2.8. [3] Let τ be an (L, M)-fuzzy topology on X and define $Q^\tau_{x\lambda} : L^X \rightarrow M$ by

$$\forall A \in L^X, \ Q^\tau_{x\lambda}(A) = \bigvee_{x\lambda \leq B \leq A} \tau(B).$$

Then $Q^\tau = \{Q^\tau_{x\lambda} | x\lambda \in J(L^X)\}$ is an (L, M)-fuzzy quasi-coincident neighborhood system on X. Moreover, $\tau(A) = \bigwedge_{x\lambda \leq A} Q^\tau_{x\lambda}(A)$.

Definition 2.9 (Adámek et al. [1]). A category A is called a topological category over Set provided that for any set X, any class J, any family $((X_j, \xi_j))_{j \in J}$ of A-objects and any family $((\varphi_j : X \rightarrow X_j))_{j \in J}$ of mappings, there exists a unique A-structure ξ on X which is initial with respect to the source $(\varphi_j : X \rightarrow (X_j, \xi_j))_{j \in J}$. This means that for an A-object (Y, η), a mapping $\psi : (Y, \eta) \rightarrow (X, \xi)$ is an A-morphism iff for all $j \in J$, $\varphi_j \circ \psi : (Y, \eta) \rightarrow (X_j, \xi_j)$ is an A-morphism.

The class of objects of a category A is denoted by $|A|$. For more notions related to category theory we refer to [1, 24].

3. Stratified (L, M)-fuzzy Q-convergence Spaces

In this section, we will introduce the concepts of (L, M)-fuzzy Q-convergence spaces and stratified (L, M)-fuzzy Q-convergence spaces. Also, we will study their relations in a categorical sense.

Definition 3.1. An (L, M)-fuzzy Q-convergence structure on X is a mapping $qc : F_{LM}(X) \rightarrow L^X$ which satisfies:

- (LFQC1) $x\lambda \leq qc(\hat{}(x\lambda))$;
- (LFQC2) $F \leq G$ implies $qc(F) \leq qc(G)$.

For an (L, M)-fuzzy Q-convergence structure qc on X, the pair (X, qc) is called an (L, M)-fuzzy Q-convergence space.

Definition 3.2. A mapping $\varphi : (X, qc_X) \rightarrow (Y, qc_Y)$ between (L, M)-fuzzy Q-convergence spaces is called continuous provided that $x\lambda \leq qc_X(\varphi)$ implies $\varphi(x\lambda) \leq qc_Y(\varphi^\rightarrow(F))$ for each $F \in F_{LM}(X)$ and $x\lambda \in J(L^X)$. That is, $\varphi^\rightarrow(qc_X(F)) \leq qc_Y(\varphi^\rightarrow(F))$ for each $F \in F_{LM}(X)$.

It is easy to check that all (L, M)-fuzzy Q-convergence spaces and their continuous mappings form a category, denoted by (L, M)-FQC.

Remark 3.3. When $L = M$, the concept of (L, M)-fuzzy Q-convergence structures in Definition 3.1 is exactly the concept of L-fuzzy Q-convergence structures in [19].

Sometimes, we need to compare more than one (L, M)-fuzzy Q-convergence structure on a common domain X, so we define as follows:

Definition 3.4. For two (L, M)-fuzzy Q-convergence spaces (X, qc_1) and (X, qc_2), we say that (X, qc_2) is finer than (X, qc_1), or (X, qc_1) is coarser than (X, qc_2), denoted by $(X, qc_2) \leq (X, qc_1)$, if the identity mapping $id_X : (X, qc_2) \rightarrow (X, qc_1)$ is continuous, that is, we have $qc_2(F) \leq qc_1(F)$ for each $F \in F_{LM}(X)$. We also write $qc_2 \leq qc_1$ in this case.
Example 3.5. Let X be a nonempty set.

1. Define $qc_* : \mathcal{F}_{LM}(X) \rightarrow L^X$ as follows:
 \[
 \forall F \in \mathcal{F}_{LM}(X), \quad qc_*(F) = \begin{cases}
 \top^X, & \exists x_\lambda \in J(L^X) \text{ s.t. } \hat{q}(x_\lambda) \leq F; \\
 \bot^X, & \text{otherwise.}
 \end{cases}
 \]
 It is easy to verify that qc_* is the finest (L,M)-fuzzy Q-convergence structure on X.

2. Define $qc^* : \mathcal{F}_{LM}(X) \rightarrow L^X$ as follows:
 \[
 \forall F \in \mathcal{F}_{LM}(X), \quad qc^*(F) = \top^X.
 \]
 It is easy to check that qc^* is the coarsest (L,M)-fuzzy Q-convergence structure on X.

Next we introduce the notion of stratified (L,M)-fuzzy Q-convergence spaces and study its relations with (L,M)-fuzzy Q-convergence spaces.

Definition 3.6. An (L,M)-fuzzy Q-convergence structure qc on X is called stratified provided that

(SLFQC) If $x_\lambda \leq qc(F)$ and $\lambda \not\leq a'$, then $\mathcal{F}(a) = \top_M$.

The pair (X,qc) is called a stratified (L,M)-fuzzy Q-convergence space.

The full subcategory of (L,M)-FQC, consisting of stratified (L,M)-fuzzy Q-convergence spaces, is denoted by $S(L,M)$-FQC.

Remark 3.7. In the axiom (SLFQC), we call an (L,M)-fuzzy filter F λ-stratified provided that $\lambda \not\leq a'$ implies $\mathcal{F}(a) = \top_M$. In this case, (SLFQC) can be interpreted as "$x_\lambda \leq qc(F)$ implies that F is λ-stratified". This means that only the λ-stratified (L,M)-fuzzy filter can converge to x_λ.

Theorem 3.8. The category $S(L,M)$-FQC is a topological category over Set.

Proof. We need only prove the existence of initial structures. Let $\{(X_j,qc_j)\}_{j \in J}$ be a family of stratified (L,M)-fuzzy Q-convergence spaces and X be a nonempty set. If $\{\varphi_j : X \rightarrow (X_j,qc_j)\}_{j \in J}$ is a source, then $qc^X : \mathcal{F}_{LM}(X) \rightarrow L^X$ defined by

\[
\forall F \in \mathcal{F}_{LM}(X), \quad qc^X(F) = \bigwedge_{j \in J} \varphi_j^\downarrow(qc_j(\varphi_j^\uparrow(F)))
\]

is a stratified (L,M)-fuzzy Q-convergence structure on X. In fact,

(LFQC1) it suffices to remark that for a mapping $\varphi : X \rightarrow Y$ and the fuzzy point filter $\hat{q}(x_\lambda)$, we have for $A \in L^Y$, $\varphi^\uparrow(\hat{q}(x_\lambda))(A) = \hat{q}(x_\lambda)\varphi^\uparrow(A) = \hat{q}(\varphi(x_\lambda))(A)$, i.e., $\varphi^\uparrow(\hat{q}(x_\lambda)) = \hat{q}(\varphi(x_\lambda))$. This implies that

\[
qc^X(\hat{q}(x_\lambda)) = \bigwedge_{j \in J} \varphi_j^\downarrow(qc_j(\varphi_j(x_\lambda))) = \bigwedge_{j \in J} \varphi_j^\downarrow(\varphi_j(x_\lambda)) \geq x_\lambda.
\]

(LFQC2) Obviously.

(SLFQC) If $x_\lambda \leq qc^X(F)$ and $\lambda \not\leq a'$, then $\varphi_j(x_\lambda) \leq qc_j(\varphi_j^\uparrow(F))$ for each $j \in J$.

Since qc_j satisfies (SLFQC), we know

\[
\mathcal{F}(a) = \mathcal{F}(\varphi_j^\uparrow(a)) = \varphi_j^\uparrow(\mathcal{F}(a)) = \top_M.
\]
Let further \((Y, qc^Y) \in \mathcal{S}(L, M)-\text{FQC}\) and \(\varphi : Y \rightarrow X\) be a mapping. Assume that \(\varphi_j \circ \varphi\) is continuous for every \(j \in J\). Then for each \(G \in \mathcal{F}_{LM}(Y)\), we have
\[
y_{\mu} \leq qc^Y(G) \quad \Rightarrow \quad \varphi_j \circ \varphi(y)_{\mu} \leq qc_j((\varphi_j \circ \varphi)^{\varphi_j}(G)) \quad \text{for each} \quad j \in J
\]
\[
\Rightarrow \quad \varphi_j(\varphi(y))_{\mu} \leq qc_j(\varphi_j^{\varphi_j}(\varphi_j^{\varphi_j}(G))) \quad \text{for each} \quad j \in J
\]
\[
\Rightarrow \quad \varphi(y)_{\mu} \leq \bigwedge_{j \in J} \varphi_j^{\varphi_j}(qc_j(\varphi_j^{\varphi_j}(G)))
\]
\[
\Rightarrow \quad \varphi(y)_{\mu} \leq qc^X(\varphi^{\varphi_j}(G)).
\]
This shows \(\varphi : (Y, qc^Y) \rightarrow (X, qc^X)\) is continuous. Therefore, \(\varphi\) is continuous if and only if \(\varphi_j \circ \varphi\) is continuous for each \(j \in J\), as desired.

Example 3.9 (Product space). Let \(\{(X_j, qc_j)\}_{j \in J}\) be a family of stratified \((L, M)\)-fuzzy Q-convergence spaces and \(\{p_k : X := \prod_{j \in J} X_j \rightarrow (X_k, qc_k)\}_{k \in J}\) be the source formed by the family of the projection mappings \(\{p_k : \prod_{j \in J} X_j \rightarrow X_k\}_{k \in J}\). The stratified \((L, M)\)-fuzzy Q-convergence structure on \(X\), denoted by \(\prod_{j \in J} qc_j\), that is initial with respect to \(\{p_j : X \rightarrow (X_j, c_j)\}_{j \in J}\), is called the product stratified \((L, M)\)-fuzzy Q-convergence structure and the pair \((X, \prod_{j \in J} qc_j)\) is called the product space. For the product of two stratified \((L, M)\)-fuzzy Q-convergence spaces \((X, qc_X)\) and \((Y, qc_Y)\), we usually write \((X \times Y, qc_{X \times Y})\).

For a nonempty set \(X\), let \(QC_s(X)\) denote the fibre
\[
\{(X, qc) : qc\ is a stratified (L, M)-fuzzy Q-convergence structure on X\}
\]
of \(X\). By Theorem 3.8, we obtain

Corollary 3.10. \((QC_s(X), \leq)\) is a complete lattice.

Corollary 3.11. Let \((Y, qc_Y)\) be a stratified \((L, M)\)-fuzzy Q-convergence space and \(\varphi : X \rightarrow Y\) be a mapping. Define \(qc_X : \mathcal{F}_{LM}(X) \rightarrow L^X\) by
\[
\forall F \in \mathcal{F}_{LM}(X), \quad qc_X(F) = \varphi^-(qc_Y(\varphi^{\varphi}(F))).
\]
Then \(qc_X\) is a stratified \((L, M)\)-fuzzy Q-convergence structure on \(X\).

Theorem 3.12. \(S(L, M)-\text{FQC}\) is a bireflective subcategory of \((L, M)-\text{FQC}\).

Proof. Suppose that \((X, qc)\) is an \((L, M)\)-fuzzy Q-convergence space and
\[
E_{qc} = \{c \mid (X, c) \in \mathcal{S}(L, M)-\text{FQC} \mid \text{and} \ qc \leq c\}.
\]
Let \(qc_r = \bigwedge E_{qc}\). By Corollary 3.10, we know \(qc_r\) is a stratified \((L, M)\)-fuzzy Q-convergence structure on \(X\). Then \(id_X : (X, qc) \rightarrow (X, qc_r)\) is the \(S(L, M)-\text{FQC}\)-bireflection. Next we prove it by two steps.

Step 1: \(id_X : (X, qc) \rightarrow (X, qc_r)\) is continuous. By the definition of \(qc_r\), it is easy to see that \(qc \leq qc_r\), which shows the continuity of \(id_X : (X, qc) \rightarrow (X, qc_r)\).

Step 2: For a stratified \((L, M)\)-fuzzy Q-convergence space \((Y, qc_Y)\) and a mapping \(\varphi : X \rightarrow Y\), the continuity of \(\varphi : (X, qc) \rightarrow (Y, qc_Y)\) implies the continuity of \(\varphi : (X, qc_r) \rightarrow (Y, qc_Y)\). Take any \(x_{\lambda} \in J(L^X)\) and \(F \in \mathcal{F}_{LM}(X)\) such that \(x_{\lambda} \leq qc_r(F)\). Then for each stratified \((L, M)\)-fuzzy Q-convergence space \((X, c)\) satisfying \(qc \leq c\), it follows that \(x_{\lambda} \leq qc(F)\). By Corollary 3.11, we know
that \(qc_X \) is a stratified \((L,M)\)-fuzzy Q-convergence structure on \(X \). Since \(\varphi : (X, qc) \rightarrow (Y, qc_Y) \) is continuous, it is easy to verify that \(qc \leq qc_X \). Hence, we obtain \(x_\lambda \leq qc_X(\mathcal{F}) = \varphi^r(qc_Y(\varphi^s(\mathcal{F}))) \), that is, \(\varphi(x)_\lambda \leq qc_Y(\varphi^s(\mathcal{F})) \). This implies the continuity of \(\varphi : (X, qc_Y) \rightarrow (Y, qc_Y) \).

\[\square \]

4. Relations Between \(S(L,M)\)-FQC and \(S(L,M)\)-FTop

In this section, we will study the relations between stratified \((L,M)\)-fuzzy Q-convergence spaces and stratified \((L,M)\)-fuzzy topological spaces from a categorical aspect.

Definition 4.1. Let \((X, qc)\) be a stratified \((L,M)\)-fuzzy Q-convergence space and \(x_\lambda \in J(L^X) \). Define \(F_{x_\lambda}^qc : L^X \rightarrow M \) by \(F_{x_\lambda}^qc(A) = \bigwedge_{x_\lambda \leq qc}\mathcal{F}(A) \) for each \(A \in L^X \). Then \(F_{x_\lambda}^qc \) is an \((L,M)\)-fuzzy filter, which is called the quasi-coincident neighborhood filter at \(x_\lambda \).

Proposition 4.2. Let \((X, qc)\) be a stratified \((L,M)\)-fuzzy Q-convergence space and define \(\tau^qc : L^X \rightarrow M \) by

\[
\forall A \in L^X, \quad \tau^qc(A) = \bigwedge_{x_\lambda \leq qc} F_{x_\lambda}^qc(A).
\]

Then \(\tau^qc \) is a stratified \((L,M)\)-fuzzy topology on \(X \).

Proof. It suffices to verify that \(\tau^qc \) satisfies (LFT1)–(LFT3) and (SLFT). In fact, \((LFT1) \quad \tau^qc(\bot_X) = \bigwedge_{x_\lambda \leq qc} \mathcal{F}_{x_\lambda}(\bot_X) = \bigwedge \emptyset = \top_M, \)

\[
\tau^qc(\top_X) = \bigwedge_{x_\lambda \geq qc} \mathcal{F}_{x_\lambda}(\top_X) = \bigwedge \top_M = \top_M.
\]

(LFT2) Take any \(A, B \in L^X \). Then

\[
\tau^qc(A) \land \tau^qc(B) = \bigwedge_{x_\lambda \leq qc} \mathcal{F}_{x_\lambda}(A) \land \bigwedge_{x_\lambda \leq qc} \mathcal{F}_{x_\lambda}(B) \leq \bigwedge_{x_\lambda \leq qc(A \land B)} \bigwedge_{y_\mu \leq qc(A \land B)} \mathcal{F}_{x_\lambda}(A) \land \mathcal{F}_{y_\mu}(B) \leq \bigwedge_{x_\lambda \leq qc(A \land B)} \mathcal{F}_{x_\lambda}(A) \land \mathcal{F}_{y_\mu}(B) = \tau^qc(A \land B).
\]

(LFT3) For \(\{A_j \mid j \in J\} \subseteq L^X \), it follows that

\[
\tau^qc\left(\bigvee_{j \in J} A_j \right) = \bigwedge_{x_\lambda \leq qc} \bigwedge_{j \in J} \mathcal{F}_{x_\lambda}(A_j) = \bigwedge_{j \in J} \bigwedge_{x_\lambda \leq qc} \mathcal{F}_{x_\lambda}(A_j) = \tau^qc(\bigvee_{j \in J} A_j).
\]
(SLFT) For each \(a \in L\), it follows that
\[
\tau^{qc}(a) = \bigwedge_{x, \lambda \in \lambda \leq \mu(x)} \bigwedge_{x, \lambda \leq \mu(x)} \mathcal{F}(a)
\]
\[
= \bigwedge_{\lambda \leq \mu} \bigwedge_{x, \lambda \leq \mu(x)} \mathcal{F}(a)
\]
\[
= \top_M. \quad \text{(by (SLFC))}
\]
This shows that \(\tau^{qc}\) is a stratified \((L, M)\)-fuzzy topology on \(X\). \(\square\)

Proposition 4.3. If \(\varphi : (X, qc_X) \rightarrow (Y, qc_Y)\) is continuous, then so is \(\varphi : (X, \tau^{qc_X}) \rightarrow (Y, \tau^{qc_Y})\).

Proof. Since \(\varphi : (X, qc_X) \rightarrow (X, qc_X)\) is continuous, it follows that for each \(\mathcal{F} \in \mathcal{F}_{LM}(X)\),
\[
\varphi^{\rightarrow}(qc_X(\mathcal{F})) \subseteq qc_Y(\varphi^{\rightarrow}(\mathcal{F})).
\]
Then for each \(B \in L_Y\), we have
\[
\tau^{qc_X}(\varphi^{\rightarrow}(B)) = \bigwedge_{x, \lambda \leq \mu(x)} \mathcal{F}^{qc_X}_{\lambda}(\varphi^{\rightarrow}(B))
\]
\[
= \bigwedge_{x, \lambda \leq \mu(x)} \varphi^{\rightarrow}(\mathcal{F}^{qc_X}_{\lambda})(B)
\]
\[
= \bigwedge_{\varphi(x) \leq \mu(B)} \bigwedge_{\varphi(x) \leq \mu(qc_Y(\varphi^{\rightarrow}(\mathcal{F}))} \varphi^{\rightarrow}(\mathcal{F})(B)
\]
\[
\geq \bigwedge_{\varphi(x) \leq \mu(B)} \bigwedge_{\varphi(x) \leq \mu(qc_Y(\varphi^{\rightarrow}(\mathcal{F}))} \mathcal{G}(B)
\]
\[
= \bigwedge_{\varphi(x) \leq \mu(B)} \mathcal{F}^{qc_Y}_{\lambda}(B)
\]
\[
= \tau^{qc_Y}(B).
\]
Thus, \(\varphi : (X, \tau^{qc_X}) \rightarrow (Y, \tau^{qc_Y})\) is continuous. \(\square\)

By Propositions 4.2 and 4.3, we obtain a functor \(\mathbb{F} : S(L, M)\text{-FTop} \rightarrow S(L, M)\text{-FQC}\), defined by
\[
\mathbb{F}(X, \tau) = (X, qc^\tau) \quad \text{and} \quad \mathbb{F}(\varphi) = \varphi.
\]

Proposition 4.4. Let \((X, \tau)\) be an \((L, M)\)-fuzzy topological space and define \(qc^\tau : \mathcal{F}_{LM}(X) \rightarrow L_X^X\) as follows:
\[
\forall \mathcal{F} \in \mathcal{F}_{LM}(X), \quad qc^\tau(\mathcal{F}) = \bigvee_{Q_{y_{\mu}}} y_{\mu}.
\]

Then \(qc^\tau\) is an \((L, M)\)-fuzzy Q-convergence structure on \(X\).
Proof. It is enough to show that \(qc^\tau\) satisfies (LFQC1) and (LFQC2).

(LFQC1) Take any \(x_\lambda \in J(L^X)\). Then \(Q^+_{x_\lambda} \in F_{LM}(X)\) and \(Q^+_{x_\lambda} \leq \hat{q}(x_\lambda)\). Further, it follows that
\[
qc^\tau(\hat{q}(x_\lambda)) = \bigvee_{\hat{q}(x_\lambda) \leq \mu} y_\mu \geq x_\lambda.
\]

(LFQC2) Obviously. \(\square\)

Lemma 4.5. Let \((X, \tau)\) be an \((L, M)\)-fuzzy topological space. Then for each \(x_\lambda \in J(L^X)\) and \(F \in F_{LM}(X)\),
\[
x_\lambda \leq qc^\tau(F) \iff Q^+_{x_\lambda} \leq F.
\]

Proof. The sufficiency is obvious. It suffices to show the necessity. Suppose that \(x_\lambda \leq qc^\tau(F)\). Take any \(A \in L^X\) and \(\alpha \in J(M)\) such that
\[
\alpha \prec Q^+_{x_\lambda}(A) = \bigvee_{x_\lambda \leq B \leq M A \neq \emptyset} \bigwedge \{Q^+_{x_\lambda}(B)\}.
\]
Then there exists \(B_\alpha \in L^X\) such that \(x_\lambda \hat{q} B_\alpha \leq A\) and for each \(\mu q B_\alpha\), it follows that \(\alpha \leq Q^+_{x_\lambda}(B_\alpha)\). Then we have \(qc^\tau(F) \geq x_\lambda \not\in B_\alpha\). By the definition of \(qc^\tau\), there exists \(z_\nu \in J(L^X)\) such that \(Q^+_{z_\nu} \leq F\) and \(z_\nu \not\in B_\alpha\). Thus,
\[
\alpha \leq Q^+_{z_\nu}(B_\alpha) \leq F(B_\alpha) \leq F(A).
\]
By the arbitrariness of \(\alpha\), we get
\[
F(A) \geq \{\alpha \in J(M) \mid \alpha \prec Q^+_{x_\lambda}(A)\} = Q^+_{x_\lambda}(A),
\]
as desired. \(\square\)

Proposition 4.6. Let \((X, \tau)\) be a stratified \((L, M)\)-fuzzy topological space. Then \(qc^\tau\) is a stratified \((L, M)\)-fuzzy Q-convergence structure on \(X\).

Proof. By Proposition 4.4, it is enough to show that \(qc^\tau\) satisfies (SLFQC). For each \(x_\lambda \leq qc^\tau(F)\) and \(\lambda \neq \tau\), by Lemma 4.5, we know \(Q^+_{x_\lambda} \leq F\). Then it follows that
\[
F(\lambda) \geq Q^+_{x_\lambda}(\lambda) = \bigvee_{x_\lambda \leq B \leq \lambda} \tau(B) \geq \tau(\lambda) = \tau_M.
\]
\(\square\)

Proposition 4.7. If \(\varphi : (X, \tau_X) \to (Y, \tau_Y)\) is continuous, then so is \(\varphi : (X, qc^{\tau_X}) \to (Y, qc^{\tau_Y})\).

Proof. Since \(\varphi : (X, \tau_X) \to (Y, \tau_Y)\) is continuous, it follows that \(\varphi : (X, Q^{\tau_X}) \to (Y, Q^{\tau_Y})\) is continuous, that is,
\[
\forall x_\lambda \in J(L^X), \varphi^\to(Q^{\tau_X}_{x_\lambda}) \geq Q^{\tau_Y}_{\varphi(x)_\lambda}.
\]
Then for each \(F \in F_{LM}(X)\), we have
\[
x_\lambda \leq qc^{\tau_X}(F) \iff Q^{\tau_X}_{x_\lambda} \leq F \quad \text{(by Lemma 4.5)}
\]
\[
\implies \varphi^\to(Q^{\tau_X}_{x_\lambda}) \leq \varphi^\to(F)
\]
\[
\implies Q^{\tau_Y}_{\varphi(x)_\lambda} \leq \varphi^\to(F)
\]
\[
\iff \varphi(x)_\lambda \leq qc^{\tau_Y}(\varphi^\to(F)) \quad \text{(by Lemma 4.5)}
\]
\[
\iff x_\lambda \leq \varphi^\prec(qc^{\tau_Y}(\varphi^\to(F))).
\]
By the arbitrariness of x_λ, we obtain $qc^{\tau x}(F) \leq \varphi^{\tau}(qc^{\tau_y}(\varphi^{\tau x}(F)))$, that is, $\varphi^{\tau}(qc^{\tau x}(F)) \leq qc^{\tau_y}(\varphi^{\tau_x}(F))$. This shows that $\varphi : (X, qc^{\tau x}) \rightarrow (Y, qc^{\tau_y})$ is continuous.

By Propositions 4.6 and 4.7, we obtain a functor $\mathcal{G} : S(L, M)\text{-FQC} \rightarrow S(L, M)\text{-FTop}$, defined by

$$\mathcal{G}(X, qc) = (X, \tau^{qc})$$

and $\mathcal{G}(\varphi) = \varphi$.

Theorem 4.8. (\mathcal{G}, \mathcal{F}) is a Galois correspondence. Moreover, \mathcal{G} is a left inverse of \mathcal{F}.

Proof. We need only show that $\mathcal{F} \circ \mathcal{G} \simeq \mathcal{I}_{S(L, M)\text{-FQC}}$ and $\mathcal{G} \circ \mathcal{F} = \mathcal{I}_{S(L, M)\text{-FTop}}$. That is, for a stratified (L, M)-fuzzy Q-convergence structure qc on X and a stratified (L, M)-fuzzy topology τ on X, it follows that $qc^{\tau qc} \geqqc qc$ and $\tau^{qc} = \tau$.

For $qc^{\tau qc} \geqqc qc$, take any $x_\lambda \in J(L^X)$ and $A \in L^X$. It follows that

$$Q^{\tau x_\lambda}(A) = \bigvee_{x_\lambda \in A} \bigwedge_{y_\mu \in B} F_{y_\mu}^{qc}(B) \leq F_{x_\lambda}^{qc}(A).$$

Then $Q^{\tau x_\lambda} \leq F_{x_\lambda}^{qc}$. Further, take any $F \in F_{LM}(X)$. Then

$$x_\lambda \in qc(F) \quad \Rightarrow \quad F_{x_\lambda} \leq F \quad \Rightarrow \quad Q^{\tau x_\lambda} \leq F$$

$$\iff \quad x_\lambda \in qc^{\tau qc}(F).$$

(by Lemma 4.5)

By the arbitrariness of x_λ, we obtain $qc \leqqc^{\tau gc}$.

For $\tau^{qc} = \tau$, by Propositions 2.7 and 4.2, it suffices to show that $Q^{\tau x_\lambda} = F_{x_\lambda}^{\tau}$ for each $x_\lambda \in J(L^X)$. By Lemma 4.5, for each $A \in L^X$, we have

$$F_{x_\lambda}^{\tau}(A) = \bigwedge_{x_\lambda \in qc^{\tau}(F)} F(A) = \bigwedge_{Q^{\tau x_\lambda} \leq F} F(A) = Q^{\tau}_{x_\lambda}(A),$$

as desired.

Corollary 4.9. The category $S(L, M)\text{-FTop}$ can be embedded in the category $S(L, M)\text{-FQC}$ as a reflective subcategory.

In general topology, we all know that the category of topological convergence spaces, which is a special kind of convergence spaces, is isomorphic to the category of topological spaces. In the framework of stratified (L, M)-fuzzy topology, we have the similar conclusion.

Definition 4.10. A stratified (L, M)-fuzzy Q-convergence structure on X is called topological if it satisfies

(LFQ) $x_\lambda \leqqc F_{x_\lambda}^{\tau x}$;

(LFTQ) $F_{x_\lambda}^{qc}(A) = \bigvee_{x_\lambda \in A} \bigwedge_{y_\mu \in B} F_{y_\mu}^{qc}(B)$.

For a topological stratified (L, M)-fuzzy Q-convergence structure c on X, the pair (X, c) is called a topological stratified (L, M)-fuzzy Q-convergence space.

The full subcategory of $S(L, M)\text{-FQC}$, consisting of topological stratified (L, M)-fuzzy Q-convergence spaces, is denoted by $S(L, M)\text{-FTQC}$.
Theorem 4.11. $S(L, M)$-FTQC is isomorphic to $S(L, M)$-FTop.

Proof. By Theorem 4.8, it suffices to show that for each topological stratified (L, M)-fuzzy Q-convergence space (X, qc), $qc^{rev} = qc$. Take any $x_\lambda \in J(L^X)$ and $A \in L^X$. By (LFTQC),

$$Q_{x_\lambda}^{qc}(A) = \bigvee_{x_\lambda B \subseteq A} \tau^{qc}(B)$$

$$= \bigvee_{x_\lambda B \subseteq A} \bigwedge_{y_\mu B} \mathcal{F}_{y_\mu}(B)$$

$$= \mathcal{F}_{x_\lambda}(A).$$

Then for each $F \in \mathcal{F}_{LM}(X)$, by (LFPQC),

$$x_\lambda \leq qc(F) \iff \mathcal{F}_{x_\lambda}^{qc} \leq F$$

$$\iff Q_{x_\lambda}^{qc} \leq F$$

$$\iff x_\lambda \leq qc^{rev}(F).$$ (by Lemma 4.5)

By the arbitrariness of x_λ, we get $qc = qc^{rev}$, as desired. □

5. Cartesian-closedness of $S(L, M)$-FQC

Compared with topological spaces, convergence spaces possess better categorical properties, such as Cartesian-closedness. In the section, we will discuss the Cartesian-closedness of $S(L, M)$-FQC.

There are several ways to show that a category is Cartesian closed. Here we adopt the following way.

Lemma 5.1. [1] Let A be a well-fibred topological category. Then the following statements are equivalent.

(1) A is Cartesian closed.

(2) For each $A \in \mathcal{A}$, the functor $(A \times -)$ preserves final epi-sinks.

In Theorem 3.8, we showed that $S(L, M)$-FQC is a topological category. Next we show it is well-fibred.

Proposition 5.2. $S(L, M)$-FQC is fibre small.

Proof. For a fixed set X, the class of all stratified (L, M)-fuzzy Q-convergence structures on X is a subset of $(L^X)^{LM}(X)$. This shows the fibre-smallness of $S(L, M)$-FQC. □

Lemma 5.3. Let $X = \{x\}$ and let qc be an (L, M)-fuzzy Q-convergence structure on X. Then the following statements are equivalent.

(1) qc is stratified, that is, qc satisfies (SLFQC).

(2) $\forall x_\lambda \in J(L^X), F \in \mathcal{F}_{LM}(X), x_\lambda \leq qc(F)$ iff $F \geq \hat{q}(x_\lambda)$.

(3) $\forall F \in \mathcal{F}_{LM}(X), qc(F) = \bigvee_{F \geq \hat{q}(x_\lambda)} x_\lambda$.

Proof. Since X is a singleton, each L-subset on X is actually a constant L-subset and $J(L^X) = \{x_\lambda | \lambda \in J(L)\}$. Next we show the equivalence of these conditions.

(1)\implies(2): Sufficiency. If $F \geq \hat{q}(x_\lambda)$, then by (LFQC1) and (LFQC2), we have

$$x_\lambda \leq qe(\hat{q}(x_\lambda)) \leq qe(F).$$

Necessity. Take any $\underline{a} \in L^X$ with $x_\lambda \hat{q}\underline{a}$, i.e., $\lambda \not\in a'$. Since $x_\lambda \leq qe(F)$, by (1), we obtain that $F(\underline{a}) = \top_M$. Thus, $F(\underline{a}) \geq \hat{q}(x_\lambda)(\underline{a})$. If $x_\lambda \hat{q}\underline{a}$, then $F(\underline{a}) \geq \bot_M = \hat{q}(x_\lambda)(\underline{a})$. This shows $F \geq \hat{q}(x_\lambda)$.

(2)\implies(3): Straightforward.

(3)\implies(1): Take any $\lambda \in J(L)$ and $a \in L$ such that $\lambda \not\in a'$ and $x_\lambda \leq qe(F)$. Then

$$\lambda \leq qe(F)(x) = \bigvee_{\underline{a} \in L^X} \mu.$$

Since $\lambda \not\in a'$, we know that $\bigvee_{\underline{a} \in L^X} \mu \not\in a'$. Then there exists $\mu \in J(L)$ such that $F \geq \hat{q}(x_\mu)$ and $\mu \not\in a'$, i.e., $x_\mu \hat{a}\underline{a}$. This implies that $F(\underline{a}) \geq \hat{q}(x_\mu)(\underline{a}) = \top_M$, as desired. \hfill \square

By Lemma 5.3, we can obtain the following result.

Proposition 5.4. For a singleton $X = \{x\}$, there is a unique stratified (L, M)-fuzzy Q-convergence structure on X. That is, $S(L, M)$-FQC satisfies the terminal separator property.

By Theorem 3.8, Propositions 5.2 and 5.4, we have

Theorem 5.5. $S(L, M)$-FQC is a well-fibred topological category.

In order to show the Cartesian-closedness of $S(L, M)$-FQC, we will list some conclusions with respect to (L, M)-fuzzy filters in [21].

Lemma 5.6. [21] For a nonempty family $\{F_j\}_{j \in J}$ of (L, M)-fuzzy filters, the following statements are equivalent:

1. There exists an (L, M)-fuzzy filter F such that $F \geq F_j$ for all $j \in J$.
2. $F_{j_1}(A_1) \wedge \cdots \wedge F_{j_n}(A_n) = \bot_M$ if $A_1 \wedge \cdots \wedge A_n = \bot_L^X$ ($n \in \mathbb{N}$, $A_1, \cdots, A_n \in L^X$, $\{j_1, \cdots, j_n\} \subseteq J$).

In the case of existence, we find

$$\left(\bigvee_{j \in J} F_j\right)(A) = \bigvee_{n \in \mathbb{N}} \left[\bigwedge_{j \in J} F_{j_1}(A_1) \wedge \cdots \wedge F_{j_n}(A_n) | A_1 \wedge \cdots \wedge A_n \leq A\right]$$

as the supremum of $\{F_j\}_{j \in J}$ in $(F_{LM}(X), \leq)$. We denote it by $\bigvee_{j \in J} F_j$. For two (L, M)-fuzzy filters F and G, we write $F \vee G \in F_{LM}(X)$ if $F \vee G$ exists.

Lemma 5.7. [21] Let $F \in F_{LM}(Y)$ and $\varphi : X \to Y$ be a mapping. Then the following statements are equivalent:

1. $\varphi^- : F : L^X \to M$ defined by $\varphi^-(F)(A) = \bigvee_{\varphi^-(B) \leq A} F(B)$ is an (L, M)-fuzzy filter on X.
2. $\forall B \in L^Y$, $\varphi^+(B) = \bot_L^X$ implies $F(B) = \bot_M$.

Lemma 5.8. [21] Suppose that \(\perp_L \) is prime. Let \(\{X_j\}_{j \in J} \) be a family of nonempty sets, \(p_k : \prod_{j \in J} X_j \rightarrow X_k \) the projection mapping and \(F_j \in \mathcal{F}_{LM}(X_j) \) \((\forall j \in J) \).

Then \(\bigvee_{j \in J} p_j^\ast(\mathcal{F}_j) \in \mathcal{F}_{LM}\left(\prod_{j \in J} X_j\right) \), which is called the product \((L,M)\)-fuzzy filter and denoted by \(\prod_{j \in J} F_j \). For two \((L,M)\)-fuzzy filters \(\mathcal{F} \) and \(\mathcal{G} \), we write \(\mathcal{F} \times \mathcal{G} \).

Lemma 5.9. [21] Suppose that \(\perp_L \) is prime. Let \(\{X_j\}_{j \in J} \) be a family of nonempty sets, \(p_k : \prod_{j \in J} X_j \rightarrow X_k \) the projection mapping, \(F_j \in \mathcal{F}_{LM}(X_j) \) \((\forall j \in J) \) and \(\mathcal{F} \in \mathcal{F}_{LM}\left(\prod_{j \in J} X_j\right) \). Then the following statements hold:

1. \(\prod_{j \in J} p_j^\ast(\mathcal{F}) \leq \mathcal{F} \).
2. \(p_k^\ast\left(\prod_{j \in J} F_j \right) \geq \mathcal{F}_k, \forall k \in J \).

Lemma 5.10. [21] Suppose that \(\perp_L \) is prime. Let \(\mathcal{F} \in \mathcal{F}_{LM}(X_1), \mathcal{G} \in \mathcal{F}_{LM}(X_2) \) and let \(\varphi : X_1 \rightarrow Y_1 \) and \(\psi : X_2 \rightarrow Y_2 \) be mappings. Then \((\varphi \times \psi)^\ast(\mathcal{F} \times \mathcal{G}) = \varphi^\ast(\mathcal{F}) \times \psi^\ast(\mathcal{G}) \).

Definition 5.11. [1] Let \(\mathbf{A} \) be a category. A family \(\{\varphi_j : A_j \rightarrow A\}_{j \in J} \) of \(\mathbf{A} \)-morphisms indexed by some class \(J \), is called an epi-sink in \(\mathbf{A} \) provided that for any pair \(\alpha, \beta : A \rightarrow D \) of \(\mathbf{A} \)-morphisms such that \(\alpha \circ \varphi_j = \beta \circ \varphi_j \) for each \(j \in J \), it follows that \(\alpha = \beta \).

Lemma 5.12. Let \(\{(X_j, q_{c_j})\}_{j \in J} \) and \((X, q_{c_X}) \) be a family of stratified \((L,M)\)-fuzzy \(Q \)-convergence spaces. Then \(\{\varphi_j : (X_j, q_{c_j}) \rightarrow (X, q_{c_X})\}_{j \in J} \) is an epi-sink if and only if \(X = \bigcup_{j \in J} \varphi_j[X_j] \) \((\varphi_j[X_j] = \{\varphi_j(x^j) \mid x^j \in X_j\}) \).

Proof. The proof of Lemma 6.8 in [21] can be adopted. \(\square \)

Since the category \(S(L,M)-\mathbf{FQC} \) is a topological category, there exists a unique final structure with respect to a sink \(\{(\varphi_j : (X_j, q_{c_j}) \rightarrow X\}_{j \in J} \) in \(S(L,M)-\mathbf{FQC} \). However, here we only explore the concrete form of the final structure with respect to the epi-sink.

Theorem 5.13. Let \(\{(X_j, q_{c_j})\}_{j \in J} \) be a family of stratified \((L,M)\)-fuzzy \(Q \)-convergence spaces and \(X \) be a nonempty set. If \(\{\varphi_j : (X_j, q_{c_j}) \rightarrow X\}_{j \in J} \) is an epi-sink, then \(q_{c_X} : \mathcal{F}_{LM}(X) \rightarrow L^X \) defined by

\[
\forall \mathcal{F} \in \mathcal{F}_{LM}(X), q_{c_X}(\mathcal{F}) = \bigvee \{x^j \in J(L^X) \mid \exists x^j \in X_j, F_j \in \mathcal{F}_{LM}(X_j) \text{ s.t. } \varphi_j(x^j) = x, \varphi_j^\ast(F_j) \leq \mathcal{F} \text{ and } x^j \subseteq q_{c_j}(F_j)\}
\]

is the unique final structure with respect to the epi-sink \(\{\varphi_j : (X_j, q_{c_j}) \rightarrow X\}_{j \in J} \).

Proof. Firstly, we show that \(q_{c_X} \) is a stratified \((L,M)\)-fuzzy \(Q \)-convergence structure on \(X \). That is, \(q_{c_X} \) satisfies \((\text{LFQC}1), (\text{LFQC}2)\) and \((\text{SLFQC})\). In fact, (LFQC1) Take any \(x^j \in J(L^X) \). By Lemma 5.12, we obtain \(x \in \bigcup\varphi_j[X_j] \). Then there exist \(j \in J \) and \(x^j \in X_j \) such that \(\varphi_j(x^j) = x \). Obviously, \(\hat{q}(x^j) \in \mathcal{F}_{LM}(X_j) \),
\(\varphi_j^\rightarrow(q_j(x^i_j)) = q_j(\varphi_j(x^i_j)) = q_j(x^i_j) \) and \(x^i_\lambda \leq qc_j(q_j(x^i_j)) \). This implies that \(x_\lambda \leq qc_j(q_j(x^i_j)) \).

(LFQC2) Straightforward.

(SLFQC) Take any \(\lambda \in J(M) \) and \(a \in L \) such that \(\lambda \not\equiv a' \) and \(x_\lambda \leq qc_X(F) \). Then

\[\lambda \leq qc_X(F)(x) = \bigvee \{ \mu \in J(L) \mid \exists x^i_j \in X_j, F_j \in \mathcal{F}_{LM}(X_j) \]

\[s.t. \varphi_j(x^i_j) = x, \varphi_j^\rightarrow(F_j) \leq F \text{ and } x^i_\mu \leq qc_j(F_j) \} \]

Since \(\lambda \not\equiv a' \), it follows that \(qc_X(F)(x) \not\equiv a' \). This means that there exist \(\mu \in J(L), j \in J \), \(x^i_j \in X_j \) and \(F_j \in \mathcal{F}_{LM}(X_j) \) such that \(\varphi_j(x^i_j) = x, \varphi_j^\rightarrow(F_j) \leq F, x^i_\mu \leq qc_j(F_j) \) and \(\mu \not\equiv a' \). Since \(qc_j \) satisfies (SLFQC), we obtain \(F_j(a) = T_M \). This implies that

\[F(a) \geq \varphi_j^\rightarrow(F_j)(a) = F_j(\varphi_j^\rightarrow(a)) = F_j(a) = T_M. \]

Secondly, let \((Y, qc_Y) \) be a stratified \((L, M)\)-fuzzy Q-convergence space and \(\varphi : X \rightarrow Y \) be a mapping satisfying that \(\varphi \circ \varphi_j : (X_j, qc_j) \rightarrow (Y, qc_Y) \) is continuous for all \(j \in J \). Take any \(F \in \mathcal{F}_{LM}(X) \) and \(x_\lambda \in J(L^X) \) such that \(x_\lambda \leq qc_X(F) \), that is, \(\lambda \leq qc_X(F)(x) \). Let \(\mu \in J(L) \) such that \(\mu \not\equiv \lambda \). Then there exist \(\nu \in J(L), j \in J \), \(x^i_j \in X_j^i \), \(F_j \in \mathcal{F}_{LM}(X_j) \) such that \(\varphi_j(x^i_j) = x, \varphi_j^\rightarrow(F_j) \leq F, x^i_\mu \leq qc_j(F_j) \) and \(\mu \not\equiv \nu \). Obviously, \(x^i_\mu \leq qc_j(F_j) \). By the continuity of \(\varphi \circ \varphi_j \), we obtain \(\varphi(\varphi_j(x^i_j))_\mu \leq qc_Y(\varphi_j^\rightarrow(\varphi_j^\rightarrow(F_j))) \). This implies \(\varphi(x)_\mu \leq qc_Y(\varphi_j^\rightarrow(F)) \). By the arbitrariness of \(\mu \), we obtain \(\varphi(x)_\lambda \leq qc_Y(\varphi_j^\rightarrow(F)) \). This proves the continuity of \(\varphi : (X, qc_X) \rightarrow (Y, qc_Y) \).

As a consequence, the continuity of \(\varphi \circ \varphi_j \) for all \(j \in J \) implies the continuity of \(\varphi \). Hence, we obtain that \(qc_X \) is the final structure on \(X \) with respect to the sink \(\{ \varphi_j : (X_j, qc_j) \rightarrow X \}_{j \in J} \).

\[\varphi_j^\rightarrow(q_j(x^i_j)) = q_j(\varphi_j(x^i_j)) = q_j(x^i_j) \text{ and } x^i_\lambda \leq qc_j(q_j(x^i_j)) \].

\textbf{Theorem 5.14.} Suppose that \(\perp_L \) is prime. Then \(S(L, M)\text{-FQC} \) is Cartesian closed.

\textbf{Proof.} Suppose that \(\{ \varphi_j : (X_j, qc_j) \rightarrow (X, qc_X) \}_{j \in J} \) is a final epi-sink in \(S(L, M)\text{-FQC} \). By Theorem 5.13, we know that

\[\forall F \in \mathcal{F}_{LM}(X), \quad qc_X(F) = \bigvee \{ x_\lambda \in J(L^X) \mid \exists x^i_j \in X_j, F_j \in \mathcal{F}_{LM}(X_j) \]

\[s.t. \varphi_j(x^i_j) = x, \varphi_j^\rightarrow(F_j) \leq F \text{ and } x^i_\mu \leq qc_j(F_j) \} \]

Next we show that for each stratified \((L, M)\)-fuzzy Q-convergence space \((Y, qc_Y) \), the family \(\{1_Y \times \varphi_j : (Y \times X_j, qc_Y \times qc_j) \rightarrow (Y \times X, qc_Y \times qc_X) \}_{j \in J} \) is a final epi-sink in \(S(L, M)\text{-FQC} \).

Let \((Z, qc_Z) \) be a stratified \((L, M)\)-fuzzy Q-convergence space and \(\alpha, \beta : (Y \times X, qc_Y \times qc_X) \rightarrow (Z, qc_Z) \) be continuous such that \(\alpha \circ (1_Y \times \varphi_j) = \beta \circ (1_Y \times \varphi_j) \) for each \(j \in J \). Take each \((y, x) \in X \times X \). Since \(X = \bigcup_{j \in J} \varphi_j[X_j] \), there exist \(j \in J \) and \(x^i_j \in X_j \) such that \(\varphi_j(x^i_j) = x \). Hence, \(\alpha((y, x)) = \alpha((y, \varphi_j(x^i_j))) = \alpha((1_Y \times \varphi_j)((y, x))) = \beta((1_Y \times \varphi_j)((y, x))) = \beta((y, \varphi_j(x^i_j))) = \beta((y, x)) \), i.e., \(\alpha = \beta \). This means \(\{1_Y \times \varphi_j : (Y \times X_j, qc_Y \times qc_j) \rightarrow Y \times X \}_{j \in J} \) is an epi-sink in \(S(L, M)\text{-FQC} \).
In order to show that \(q_{Cy} \times q_{cX} \) is the final structure with respect to the sink \(\{1_Y \times \varphi_j : (Y \times X_j, q_{Cy} \times q_{cX}) \rightarrow Y \times X\}_{j \in J} \), we need only show that for each stratified \((L, M)\)-fuzzy \(Q\)-convergence space \((Z, q_{Zc})\) and each mapping \(\varphi : Y \times X \rightarrow Z \), the continuity of \(\varphi \circ (1_Y \times \varphi_j) \) for each \(j \in J \) implies the continuity of \(\varphi \). Take any \(\mathcal{H} \in F_{LM}(Y \times X) \) and \((y, x)_\lambda \in J(L^Y \times X)\) such that \((y, x)_\lambda \leq (q_{Cy} \times q_{cX})(\mathcal{H})\). By Example 3.10, it follows that \(\lambda \leq q_{Cy}(\mathcal{H})(y) \) and \(\lambda \leq q_{cX}(\mathcal{H})(x) \). Take any \(\mu \in J(L) \) such that \(\mu < \lambda \leq q_{cX}(\mathcal{H})(x) \). Then there exist \(\nu \in J(L) \), \(j \in J \), \(x^j \in X_j \), \(F_j \in F_{LM}(X_j) \) such that \(\varphi_j(x^j) = x \), \(\varphi_j(F_j) \leq p^\varphi_j(\mathcal{H}) \), \(x^j \leq q_{c_j}(F_j) \) and \(\mu \leq \nu \). Thus, we get \(\mu \leq \lambda \leq q_{Cy}(\mathcal{H})(y) \) and \(\mu \leq \nu \leq q_{c_j}(F_j)(x^j) \). By Lemma 5.9 (2), we obtain

\[
\mu \leq q_{Cy}(p^\varphi_j(\mathcal{H}))(y) \land q_{c_j}(F_j)(x^j) \leq (q_{Cy} \times q_{c_j})(p^\varphi_j(\mathcal{H}) \times F_j)((y, x^j)).
\]

That is, \((y, x^j)_\mu \leq (q_{Cy} \times q_{c_j})(p^\varphi_j(\mathcal{H}) \times F_j) \). By the continuity of \(\varphi \circ (1_Y \times \varphi_j) \), we obtain

\[
\varphi(y, x^j)_\mu = (\varphi \circ (1_Y \times \varphi_j))(y, x^j)_\mu \\
\leq q_{Zc}(\varphi \circ (1_Y \times \varphi_j))((p^\varphi_j(\mathcal{H}) \times F_j)) \\
= q_{Zc}(\varphi \circ p^\varphi_j(\mathcal{H}) \times \varphi^\varphi_j(F_j))) \quad \text{(by Lemma 5.10)} \\
\leq q_{Zc}(\varphi \circ (p^\varphi_j(\mathcal{H}) \times p^\varphi_j(F_j))) \\
\leq q_{Zc}(\varphi \circ (\mathcal{H})). \quad \text{(by Lemma 5.9 (2))}
\]

By the arbitrariness of \(\mu \), we obtain \(\varphi(y, x)_\lambda \leq q_{Zc}(\varphi \circ (\mathcal{H})) \). This proves that \(\varphi : (Y \times X, q_{Cy} \times q_{cX}) \rightarrow (Z, q_{Zc}) \) is continuous. As a consequence, we obtain that the family \(\{1_Y \times \varphi_j : (Y \times X_j, q_{Cy} \times q_{cX}) \rightarrow (Y \times X, q_{Cy} \times q_{cX})\}_{j \in J} \) is a final epi-sink in \(S(L, M)\text{-FQC} \). By Lemma 5.1, we know that the category \(S(L, M)\text{-FQC} \) is Cartesian closed.

\[\square\]

6. Conclusions

In this paper, we generalized \(L\)-fuzzy \(Q\)-convergence structures to \((L, M)\)-fuzzy \(Q\)-convergence structures and proposed the concept of stratified \((L, M)\)-fuzzy \(Q\)-convergence structures. This new concept not only provides a good approach to describe stratified \((L, M)\)-fuzzy topology, but also possesses nice categorical properties. For example, the resulting category of stratified \((L, M)\)-fuzzy \(Q\)-convergence spaces is a Cartesian closed topological category. As we all know, stratified \((L, M)\)-fuzzy topological spaces have better properties than \((L, M)\)-fuzzy topological spaces in some aspects. This motivates us to consider topological properties that stratified \((L, M)\)-fuzzy \(Q\)-convergence spaces possess. In the future, we will consider topological properties of stratified \((L, M)\)-fuzzy topological spaces, such as compactness and separation properties.

Acknowledgements. The authors would like to express their sincere thanks to the anonymous reviewers for their careful reading and constructive comments. This work is supported by National Nature Science Foundation Committee (NSFC) of China (No. 61573119), China Postdoctoral Science Foundation (No. 2015M581434), Fundamental Research Project of Shenzhen (No. JCJYJ2012061344110654 and No. JCJYJ20140417172417109).
References

Bin Pang, Shenzhen Graduate School, Harbin Institute of Technology, 518055 Shenzhen, P.R. China
E-mail address: pangbin12058163.com

Yi Zhao*, Shenzhen Graduate School, Harbin Institute of Technology, 518055 Shenzhen, P.R. China
E-mail address: zhaoyisz420@sohu.com

*Corresponding author