Extended Fuzzy $BCK$-subalgebras

Document Type: Research Paper


1 Department of Mathematics, Hubei University for Nationalities, Enshi, Hubei 445000, China

2 Department of Mathematics, Payame Noor University, Tehran, Iran

3 Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran


This  paper extends the notion of fuzzy $BCK$-subalgebras to fuzzy hyper $BCK$-subalgebras and defines an extended fuzzy $BCK$-subalgebras. This study  considers  a type of fuzzy hyper  $BCK$-ideals  in this  hyperstructure  and  describes   the  relationship  between hyper  $BCK$-ideals and  fuzzy hyper  $BCK$-ideals.  In fact, it tries to introduce   a  strongly  regular  relation  on hyper $BCK$-algebras. Moreover,  by using  the   fuzzy hyper  $BCK$-ideals, it defines a congruence  relation  on (weak commutative) hyper $BCK$-algebras  that under some conditions is strongly regular and  the quotient of any hyper $BCK$-algebra via this relation  is a $($hyper  $BCK$-algebra$)$ $BCK$-algebra.


[1] M. Bakhshi, M. M. Zahdi and R. A. Borzooei, Fuzzy (positive, weak) implicative hyper BCK-
ideals, Iranian Journal of Fuzzy Systems, 1(2) (2004), 63-79.
[2] R. A. Borzooei, R. Ameri and M. Hamidi, Fundamental relation on hyper BCK-algebras, An.
Univ. oradea, fasc. Mat., 21(1) (2014), 123{136.
[3] G. R. Biyogmam, O. A. Heubo-Kwegna and J. B. Nganou, Super implicative hyper BCK-
algebras, Int. J. Pure Appl. Math., 76(2) (2012), 267-275.
[4] J. Chvalina, S. Hoskova-Mayerova and A. D. Nezhad, General actions of hyperstructures and
some applications, An. St. Univ. Ovidius Constanta, 21(1) (2013), 59{82.
[5] P. Corsini, Prolegomena of hypergroup theory, Second Edition, Aviani Editor, 1993.
[6] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Klwer Academic Pub-
lishers, 2002.
[7] J. Dongho, Category of fuzzy hyper BCK-algebras, arXiv:1101.2471.
[8] P. F. He and X. L. Xin, Fuzzy hyperlattices, Comput. Math. Appl., 62 (2011), 4682{4690.
[9] S. Hoskova, Topological hypergroupoids, Comput. Math. Appl., 64 (2012), 2845{2849.
[10] Y. Imai and K. Iseki, On axiom systems of propositional calculi, XIV, Proc. Japan Acad.
Ser. A Math. Sci., 42 (1966), 19{22.
[11] Y. B. Jun, M. M. Zahedi, X. L. Xin and R. A. Borzooei, On hyper BCK-algebras, Ital. J.
Pure Appl. Math., 10 (2000), 127{136.
[12] Y. B. Jun and X. L. Xin, Fuzzy hyper BCK-ideals of hyper BCK-algebras, Sci. Math. Jpn.,
53(2) (2001), 353{360.
[13] Y. B. Jun, M. S. Kang and S. Z. Song, Several types of bipolar fuzzy hyper BCK-ideals in
hyper BCK-algebras, Honam Math. J., 34(2) (2012), 145{159.
[14] V. Leoreanu-Fotea, Fuzzy hypermodules, Comput. Math. Appl., 57 (2009), 466{475.

[15] F. Marty, Sur une Generalization de la notion de groupe, 8th Congres Math. Scandinaves,
Stockholm., (1934), 45{49.
[16] J. Meng and Y. B. Jun, BCK-algebra, Kyung Moonsa, Seoul, 1994.
[17] H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, (Third Edition), Chapman
and Hall/CRC. Boca Raton, 2005.
[18] M. K. Sen, R. Ameri and G. Chowdhury, Fuzzy hypersemigroups, Soft Comput., 12 (2008),
[19] X. Xie, Fuzzy ideals extensions in semigroups, Kyungpook Math. J., 42(1) (2002), 39{49.
[20] X. L. Xin and P. Wang, States and measures on hyper BCK-algebras, J. Appl. Math., (2014),
[21] L. A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), 338{353.
[22] J. Zhan, Fuzzy regular relations on hyperquasigroups, J. Math. Res. Exposition, Nov., 30(6)
(2010), 1083{1090.