[1] M. A. H. Akhand, S. Akter and M. A. Rashid, Velocity tentative particle swarm optimiza-
tion to solve TSP, International Conference on Electrical Information and Communication
Technology (EICT), 2013.
[2] M. Bessaou and P. Siarry, A genetic algorithm with real-value coding to optimize multimodal
continuous function, Structural Multidisciplinary Optimization, 23 (2001), 63{74.
[3] Q. Cui and Y. Sheng, Uncertain Programming Model for Solid Transportation Problem,
Information Journal, 15 (12) (2012), 342{348.
[4] T. E. Davis and J. C. Principe,A simulated annealing-like convergence theory for the simple
genetic algorithm, In R. K. Belew, L.B. Booker (Eds.), Proceedings of the fourth international
conference on genetic algorithms , San Mateo, CA: Morgan Kaufmann, (1991), 174{181.
[5] D. Dubois and H. Prade, Fuzzy sets and system-Theory and application, Academic, New
York, 1980 .
[6] D. Dubois and H. Prade, Ranking fuzzy numbers in the setting of Possibility Theory, Information
Sciences, 30 (1983), 183{224.
[7] K. Durai Raj, A. Antony and C. Rajendran, Fast heuristic algorithms to solve a single-
stage xed-charge transportation problem, International Journal of Operation Research, 6(3)
(2009), 304{329.
[8] R. C. Eberhart and J. Kennedy, A new optimizer using Particle swarm theory, In Proceedings
of the Sixth International Symphosium on micromachine and human science, (1995), 39{43.
[9] A. P. Engelbrecht,Fundamentals of Computational Swarm Intelligence, John Wiley and Sons,
Ltd., 2005.
[10] A. Esmin, A. Aoki, and R. G. Lambert-Torres,Particle swarm optimization for fuzzy mem-
bership functions optimization, IEEE International Conference on System Man Cybernatics,
3 (2002), 6{9.
[11] H. M. Feng, Particle swarm optimization learning fuzzy systems design, In Proceedings of
the ICITA 3rd International Conference on Information Technology and Applications, 1(July
4(7)) (2005), 363{366.
[12] M. Gen, K. Ida, Y. Li and E. Kubota, Solving bicriteria solid transportation problem with
fuzzy numbers by a genetic algorithm, Computer and Industrial Engineering, 29 (1995), 537{
541.
[13] P. K. Giri, M. K. Maiti and M. Maiti, A solid transportation problem with fuzzy random costs
and constraints, International Journal of Mathematics in Operation Research, 4(6) (2012),
651{678.
[14] A. Golnarkar, A. A. Alesheikh and M. R. Malek, Solving best path problem on multimodal
transportation networks with fuzzy costs, Iranian Journal of Fuzzy Systems, 7(3) (2010),
1{13.
[15] J. Gottlieb and L. Paulmann, Genetic algorithms for the xed charge transportation problems
in: Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, (1998), 330{
335.
[16] K. B. Haley, The solid transportation problem, Operation Research, 11 (1962), 446{448.
[17] W. M. Hirsch and G. B. Dantzig, The xed charge transportation problem, Naval Research,
Logistics Quarterly, 15 (1968), 413{424.
[18] F. L. Hitchcock, The distribution of the product from several sources to numerous localities,
Journal of Mathematical Physics, 20 (1941), 224{230.
[19] H. J. Holland, Adaptation in natural and articial systems, University of Michigan press,
1975.
[20] F. Jimnez and J. L. Verdegay, Uncertain solid transportation problems, Fuzzy Sets and Systems,
100 Issues 1-3, 16 November (1998), 45{57.
[21] F. Jimnez and J. L. Verdegay, Solving fuzzy solid transportation problems by an evolutionary
algorithm based parametric approach, European Journal of Operational Research, 117 Issue
3, 16 September (1999), 485{510.
[22] J. Kennedy and R. C., Eberhart, Particle swarm optimisation, In Proceedings of the IEEE
International Joint Conference on Neural Network, IEEE Press, 4 (1995), 1942{1948.
[23] J. L. Kennington and V. E. Unger, A new branch and bound algorithm for the xed charge
transportation problem, Management Sciences, 22 (1976), 1116{1126.
[24] P. Kundu, S. Kar and M. Maiti, Multi-objective multi-item solid transportation problem in
fuzzy environment Appl. Math. Model., 37 (2012), 2028{2038.
[25] P. Kundu, S. Kar and M. Maiti,Fixed charge transportation problem with type-2 fuzzy vari-
ables, Information Sciences, 255 (2014), 170{186.
[26] M. Last and S. Eyal,A fuzzy-based lifetime extension of genetic algorithms, Fuzzy Sets and
Systems, 149 (2005), 1311{1147.
[27] J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar, Comprehensive learning particle swarm
optimizer for global optimization of multimodal functions, IEEE Transactions on Evolutionary
Computation, 10 (June (3)) (2006), 281{295.
[28] B. Liu and Y. K. Liu, Expected value of the fuzzy variable and fuzzy expected value models,
IEEE Transactions on Fuzzy Systems, 10 (2002), 445{450.
[29] B. Liu, Theory and practice of uncertain programming, Physica-Verlag, Heidelberg, 2002.
[30] S. Liu, Fuzzy total transportation cost measures for fuzzy solid transportation problem, Applied
Mathematics and Computation, 174 (2006), 927{941.
[31] B. Liu and K. Iwamura, A note on chance constrained programming with fuzzy coecients,
Fuzzy Sets and Systems, 100 (1998), 229{233.
[32] Z. Michalewicz,Genetic Algorithms + data structures= evolution programs, Springer-Verlag,
AI Series, New York, 1992.
[33] S. Molla-Alizadeh-Zavardehi, S. Sadi Nezhadb, R. Tavakkoli-Moghaddamc and M. Yazdani,
Solving a fuzzy xed charge solid transportation problem by metaheuristics, Mathematics and
Computer Modelling, 57 (2013), 1543{1558.
[34] H. Nezmabadi-Pour, S. Yazdani, M. M. Farsangi and M. Neyestani, A solution to an economic
dispatch problem by fuzzy adaptive genetic algorithm, Iranian Journal of Fuzzy Systems, 8(3)
(2011), 1{21.
[35] A. Ojha, B. Das, S. Mondal and M. Maiti, An entropy based solid transportation problem for
general fuzzy costs and time with fuzzy equality, Mathematics and Computer Modelling, 50
(2009), 166{178.
[36] A. Ojha, B. Das, S. Mondal and M. Maiti, A Solid Transportation Problem for an item
with xed charge vehicle cost and price discounted varying charge using Genetic Algorithm,
Applied Soft Computing, 10 (2010), 100{110.
[37] A. Ojha, B. Das, S. Mondal and M. Maiti Transportation policies for single and multiobjective
transportation problem using fuzzy logic, Mathematics Computer Modelling, 53
(2011), 1637-1646.
[38] I. M. Oliver, D. J. Smith and J. R. C. Holland, A study of permutation crossover operators
on the travelling salesman problem, In: Proceedings of the Second International Conference
on Genetic Algorithms (ICGA'87), Massachusetts Institute of Technology, Cambridge, MA,
(1987), 224{230.
[39] E. D. Schell, Distribution of a product by several properties, In: Proceedings of 2nd Symposium
in Linear Programming, DCS/comptroller, HQ US Air Force, Washington DC, (1955),
615-642.
[40] A. Sengupta and T. K. Pal, Fuzzy preference ordering of interval numbers in decision problems,
Berlin: Springer, 2009.
[41] M. Sun, J. E. Aronson, P. G. Mckeown and D. Dennis,A tabu search heuristic procedure for
xed charge transportation problem, European Journal of Operation Research, 106 (1998),
411{456.
[42] K. P. Wang, L. Huang, C. G. Zhou and W. Pang, Particle swarm optimization for travelling
salesman problem, In Proc. International Conference on Machine Learning and Cybernetics,
November (2003), 1583-1585.
[43] X. Yan, C. Zhang, W. Luo, W. Li, W. Chen and H. Liu, Solve travelling salesman prob-
lem using particle swarm optimization algorithm, International Journal of Computer Science
Issues, 9(6(2)) (2012), 264{271.
[44] L. Yang and L. Liu, Fuzzy xed charge solid transportation problem and algorithm, Applid
Soft Computing, 7 (2007), 879{889.
[45] L. A. Zadeh, Fuzzy Set as a basis for a theory of possibility, Fuzzy Sets and Systems, 1
(1978), 3{28.