Document Type: Research Paper


1 Department of Mathematics Education (and RINS), Gyeongsang National University, Chinju 660-701, Korea

2 Department of Mathematics, Hanyang University, Seoul 133-791, Korea


Using the notion of bipolar-valued fuzzy sets, the concepts of bipolar
fuzzy (weak, 𝑠-weak, strong) hyper BCK-ideals are introduced, and their
relations are discussed. Moreover, several related properties are investigated.


[1] B. Davvaz, Fuzzy hyperideals in ternary semihyperrings, Iranian Journal of Fuzzy Systems,
6(4) (2009), 21-36.
[2] D. Dubois and H. Prade, Fuzzy sets and systems: theory and applications, Academic Press,
[3] H. Harizavi, Prime weak hyper BCK-ideals of lower hyper BCK-semilattice, Sci. Math. Jpn.,
68 (2008), 353-360.
[4] Y. B. Jun and W. H. Shim, Fuzzy implicative hyper 𝐡𝐢𝐾-ideals of hyper 𝐡𝐢𝐾-algebras,
Internat. J. Math. Math. Sci., 29(2) (2002), 63-70.
[5] Y. B. Jun and X. L. Xin, Scalar elements and hyperatoms of hyper 𝐡𝐢𝐾-algebras, Scientiae
Mathematicae, 2(3) (1999), 303-309.
[6] Y. B. Jun and X. L. Xin, Fuzzy hyper 𝐡𝐢𝐾-ideals of hyper 𝐡𝐢𝐾-algebras, Sci. Math. Jpn.,
53(2) (2001), 353-360.
[7] Y. B. Jun, X. L. Xin, E. H. Roh and M. M. Zahedi, Strong hyper 𝐡𝐢𝐾-ideals of hyper
𝐡𝐢𝐾-algebras, Math. Japonica, 51(3) (2000), 493-498.
[8] Y. B. Jun, M. M. Zahedi, X. L. Xin and R. A. Borzooei, On hyper 𝐡𝐢𝐾-algebras, Italian J.
of Pure and Appl. Math., 8 (2000), 127-136.
[9] K. M. Lee, Bipolar-valued fuzzy sets and their operations, Proc. Int. Conf. on Intelligent
Technologies, Bangkok, Thailand, (2000), 307-312.
[10] K. M. Lee, Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets, and bipolarvalued
fuzzy sets, J. Fuzzy Logic Intelligent Systems, 14(2) (2004), 125-129.
[11] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves,
Stockholm, (1934), 45-49.
[12] L. Torkzadeh, M. Abbasi and M. M. Zahedi, Some results of intuitionistic fuzzy weak dual
hyper K-ideals, Iranian Journal of Fuzzy Systems, 5(1) (2008), 65-78.
[13] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
[14] H. J. Zimmermann, Fuzzy set theory and its applications, Kluwer-Nijhoff Publishing, 1985.