NET-THEORETICAL L-GENERALIZED CONVERGENCE SPACES

Document Type: Research Paper

Author

Department of Mathematics, Hebei University of Science and Technology, Shijiazhuang 050018, P.R. China

Abstract

In this paper, the de nition of net-theoretical L-generalized convergence
spaces is proposed. It is shown that, for L a frame, the category of
enriched L-fuzzy topological spaces can be embedded in that of L-generalized
convergence spaces as a re
ective subcategory and the latter is a cartesianclosed
topological category.

Keywords


[1] J. Adamek, H. Herrlich and G. E. Strecker, Abstract and concrete categories, Wiley, New
York, 1990.
[2] U. Hohle, Probabilistic topologies induced by L-fuzzy uniformities, Manuscipta Math., 38
(1982), 289-323.
[3] U. Hohle, Many valued topology and its appplications, Kluwer Academic Publishers, 2001.
[4] U. Hohle and A. P. Sostak, Axiomatic foundations of xed-basis fuzzy topology, Chapter
3 In: Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, (U. Hohle, S. E.
Rodabaugh, eds.), Kluwer Academic Publishers, Boston/Dordrecht/London, (1999), 123-272.
[5] G. Jager, A category of L-fuzzy convergence spaces, Quaest. Math., 24 (2001), 501-517.

[6] G. Jager, Subcategories of lattice valued convergence spaces, Fuzzy Sets and Systems, 156
(2005), 1-24.
[7] P. Johnstone, Stone spaces, Cambridge University Press, Cambridge, 1982.
[8] D. C. Kent, Convergence functions and their related topologies, Fund. Math., 54 (1964),
125-133.
[9] Y. M. Liu and M. K. Luo, Fuzzy topology, World Scienti c Publishing, Singapore, 1997.
[10] R. Lowen, Convergence in fuzzy topological spaces, Gen. Topol. Appl., 10 (1979), 147-160.
[11] G. Preu, Foundations of topology: an approach to convenient topology, Kluwer Academic
Publishers, Dordrecht/Boston/London, 2002.
[12] P. M. Pu and Y. M. Liu, Fuzzy topology: I. neighborhood structure of a fuzzy point and
Moore-Smith convergence, J. Math. Anal. Appl., 76 (1980), 571-599.
[13] S. E. Rodabaugh, Powerset operator foundations for poslat fuzzy set theories and topologies,
Chapter 2 In: Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, (U. Hohle,
S. E. Rodabaugh, eds.), Kluwer Academic Publishers, Boston/Dordrecht/London, (1999),
91-116.
[14] W. Yao, On many-valued strati ed L-fuzzy convergence spaces, Fuzzy Sets and Systems, 159
(2008), 2503-2519.
[15] W. Yao, On L-fuzzifying convergence spaces, Iranian Journal of Fuzzy Systems, 6 (2009),
63-80.
[16] Y. L. Yue and J. M. Fang, Fuzzy ideals and fuzzy limit structures, Iranian Journal of Fuzzy
Systems, 5 (2008), 55-64.