Thakur, R., Samanta, S., Mondal, K. (2011). GRADATION OF CONTINUITY IN FUZZY TOPOLOGICAL
SPACES. Iranian Journal of Fuzzy Systems, 8(2), 143-159. doi: 10.22111/ijfs.2011.282

Ramkrishna Thakur; S. K. Samanta; K. K. Mondal. "GRADATION OF CONTINUITY IN FUZZY TOPOLOGICAL
SPACES". Iranian Journal of Fuzzy Systems, 8, 2, 2011, 143-159. doi: 10.22111/ijfs.2011.282

Thakur, R., Samanta, S., Mondal, K. (2011). 'GRADATION OF CONTINUITY IN FUZZY TOPOLOGICAL
SPACES', Iranian Journal of Fuzzy Systems, 8(2), pp. 143-159. doi: 10.22111/ijfs.2011.282

Thakur, R., Samanta, S., Mondal, K. GRADATION OF CONTINUITY IN FUZZY TOPOLOGICAL
SPACES. Iranian Journal of Fuzzy Systems, 2011; 8(2): 143-159. doi: 10.22111/ijfs.2011.282

GRADATION OF CONTINUITY IN FUZZY TOPOLOGICAL
SPACES

^{1}Department of Mathematics, Visva-Bharati, Santiniketan-731235,
West Bengal, India

^{2}Department of Mathematics, Kurseong College, Kurseong-734203,
West Bengal, India

Abstract

In this paper we introduce a definition of gradation of continuity in graded fuzzy topological spaces and study its various characteristic properties. The impact of the grade of continuity of mappings over the N-compactness grade is examined. Concept of gradation is also introduced in openness, closed- ness, homeomorphic properties of mappings and T2 separation axiom. Effect of the grades interrelated with N-compactness, closedness, T2 separation and homeomorphism of mappings are studied.

[1] M. E. Abd El-Monsef, S. N. ElDeep, F. M. Zeyada and I. M. Hanafy, On fuzzy -continuity and fuzzy -closed graph, Periodica Mathematica Hungarica, 26(1) (1993), 43-53. [2] M. H. Burton, M. Muraleetharan and J. Gutierrez Garcia, Generalized lters 1, Fuzzy Sets and Systems, 106 (1999), 275-284. [3] M. Caldas, S. Jafari, T. Noiri and M. Simoes, A new generalization of contra-continuity via Levine's g-closed sets, Chaos, Solitons & Fractals, 32(4) (2007), 1597-1603. [4] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190. [5] K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, Gradation of openness : fuzzy topology, Fuzzy Sets and Systems, 49 (1992), 237-242. [6] M. Demirci, On the convergence structure of L-topological spaces and the graded continuity in L-topological spaces, part I-II, International Conference on Applicable and General Topology, August: 12-18, 2001. [7] E. Ekici, Generalization of weakly clopen ansd strongly -b-continuous functions, Chaos, Solitons & Fractals, 38(1) (2008), 79-88. [8] M. S. El. Naschie, Superstring, knots and non-commutative geometry in space, Int. J Theor Phys, 37(12) (1998), 2935-51. [9] M. S. El. Naschie, Topics in the mathematical physics of E-innity theory, Chaos, Solitons & Fractals, 30 (2006), 656-63. [10] M. S. El. Naschie, Quantum gravity, Cliford algebras, fuzzy set theory and fundamental constants of nature, Chaos, Solitons & Fractals, 20 (2004), 437-50. [11] M. S. El. Naschie, Topics of mathematical physics of E-innity theory, Chaos, Solitons & Fractals, 30 (2006), 656-63. [12] M. S. El. Naschie, A review of E-innity theory and mass spectrum of high energy particle physics, Chaos, Solitons & Fractals, 19 (2004), 209-36. [13] F. Jinming, MV-quasi-coincident neighborhood systems in I-topology, Preprint. [14] T. Kubiak, On fuzzy topologies, Ph. D. Thesis, A. Mickiewiez, Poznan, 1985. [15] K. K. Mondal and S. K. Samanta, Fuzzy convergence theory -I, Journal of the Korea Society of Mathematical Education Series B: PAM, 12(1) (2005), 75-91. [16] K. K. Mondal and S. K. Samanta, Fuzzy convergence theory -II, Journal of the Korea Society of Mathematical Education Series B: PAM, 12(2) (2005), 105-124. [17] K. K. Mondal and S. K. Samanta, Fuzzy belongingness, fuzzy quasi-coincidence and conver- gence of generalized fuzzy lters, The Journal of Fuzzy Mathematics, 15(4) (2007). [18] T. Noiri and V. Popa, Faintly m-continuous functions, Chaos, Solitons & Fractals, 19 (2004), 1147-59. [19] P. Pao-Ming and L. Ying Ming, Fuzzy topology I, neighborhood structure of a fuzzy point and Moor-Smith convergence, J. Math. Anal. Appl., 76 (1980), 571-599. [20] D. W. Rosen and T. J. Peters, The role of toplogy in engineering design research, Res Eng Des, 2 (1996), 81-98 [21] A. P. Sostak, On a fuzzy topological structure, Supp. Rend. Circ. Math. Palermo (Ser. II) II, (1985), 89-103. [22] G. Werner, The general fuzzy lter approach to fuzzy topology, I, Fuzzy Sets and Systems, 76 (1995), 205-224.

[23] C. H. Yan and J. X. Fang, L-fuzzy bilinear operator and its continuity, Iranian Journal of Fuzzy Systems, 4(1) (2007), 65-73. [24] M. S. Ying, A new approach for fuzzy topology (I), Fuzzy Sets and Systems, 39 (1991), 302-321. [25] M. S. Ying, On the method of neighborhood systems in fuzzy topology, Fuzzy Sets and Systems, 68 (1994), 227-238. [26] L. Ying-Ming and L. Mao-Kang, Fuzzy topology, World Scientic. [27] A. M. Zahran, O. R. Sayed and A. K. Mousa, Completely continuous functions and R-map in fuzzifying topological space, Fuzzy Sets and Systems, 158 (2007), 409-23.