GRADATION OF CONTINUITY IN FUZZY TOPOLOGICAL SPACES

Document Type: Research Paper

Authors

1 Department of Mathematics, Visva-Bharati, Santiniketan-731235, West Bengal, India

2 Department of Mathematics, Kurseong College, Kurseong-734203, West Bengal, India

Abstract

In this paper we introduce a defi nition of gradation of continuity in
graded fuzzy topological spaces and study its various characteristic properties.
The impact of the grade of continuity of mappings over the N-compactness
grade is examined. Concept of gradation is also introduced in openness, closed-
ness, homeomorphic properties of mappings and T2 separation axiom. E ffect
of the grades interrelated with N-compactness, closedness, T2 separation and
homeomorphism of mappings are studied.

Keywords


[1] M. E. Abd El-Monsef, S. N. ElDeep, F. M. Zeyada and I. M. Hanafy, On fuzzy -continuity
and fuzzy -closed graph, Periodica Mathematica Hungarica, 26(1) (1993), 43-53.
[2] M. H. Burton, M. Muraleetharan and J. Gutierrez Garcia, Generalized lters 1, Fuzzy Sets
and Systems, 106 (1999), 275-284.
[3] M. Caldas, S. Jafari, T. Noiri and M. Simoes, A new generalization of contra-continuity via
Levine's g-closed sets, Chaos, Solitons & Fractals, 32(4) (2007), 1597-1603.
[4] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
[5] K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, Gradation of openness : fuzzy topology,
Fuzzy Sets and Systems, 49 (1992), 237-242.
[6] M. Demirci, On the convergence structure of L-topological spaces and the graded continuity in
L-topological spaces, part I-II, International Conference on Applicable and General Topology,
August: 12-18, 2001.
[7] E. Ekici, Generalization of weakly clopen ansd strongly -b-continuous functions, Chaos,
Solitons & Fractals, 38(1) (2008), 79-88.
[8] M. S. El. Naschie, Superstring, knots and non-commutative geometry in space, Int. J Theor
Phys, 37(12) (1998), 2935-51.
[9] M. S. El. Naschie, Topics in the mathematical physics of E-in nity theory, Chaos, Solitons
& Fractals, 30 (2006), 656-63.
[10] M. S. El. Naschie, Quantum gravity, Cliford algebras, fuzzy set theory and fundamental
constants of nature, Chaos, Solitons & Fractals, 20 (2004), 437-50.
[11] M. S. El. Naschie, Topics of mathematical physics of E-in nity theory, Chaos, Solitons &
Fractals, 30 (2006), 656-63.
[12] M. S. El. Naschie, A review of E-in nity theory and mass spectrum of high energy particle
physics, Chaos, Solitons & Fractals, 19 (2004), 209-36.
[13] F. Jinming, MV-quasi-coincident neighborhood systems in I-topology, Preprint.
[14] T. Kubiak, On fuzzy topologies, Ph. D. Thesis, A. Mickiewiez, Poznan, 1985.
[15] K. K. Mondal and S. K. Samanta, Fuzzy convergence theory -I, Journal of the Korea Society
of Mathematical Education Series B: PAM, 12(1) (2005), 75-91.
[16] K. K. Mondal and S. K. Samanta, Fuzzy convergence theory -II, Journal of the Korea Society
of Mathematical Education Series B: PAM, 12(2) (2005), 105-124.
[17] K. K. Mondal and S. K. Samanta, Fuzzy belongingness, fuzzy quasi-coincidence and conver-
gence of generalized fuzzy lters, The Journal of Fuzzy Mathematics, 15(4) (2007).
[18] T. Noiri and V. Popa, Faintly m-continuous functions, Chaos, Solitons & Fractals, 19 (2004),
1147-59.
[19] P. Pao-Ming and L. Ying Ming, Fuzzy topology I, neighborhood structure of a fuzzy point and
Moor-Smith convergence, J. Math. Anal. Appl., 76 (1980), 571-599.
[20] D. W. Rosen and T. J. Peters, The role of toplogy in engineering design research, Res Eng
Des, 2 (1996), 81-98
[21] A. P. Sostak, On a fuzzy topological structure, Supp. Rend. Circ. Math. Palermo (Ser. II) II,
(1985), 89-103.
[22] G. Werner, The general fuzzy lter approach to fuzzy topology, I, Fuzzy Sets and Systems,
76 (1995), 205-224.

[23] C. H. Yan and J. X. Fang, L-fuzzy bilinear operator and its continuity, Iranian Journal of
Fuzzy Systems, 4(1) (2007), 65-73.
[24] M. S. Ying, A new approach for fuzzy topology (I), Fuzzy Sets and Systems, 39 (1991),
302-321.
[25] M. S. Ying, On the method of neighborhood systems in fuzzy topology, Fuzzy Sets and Systems,
68 (1994), 227-238.
[26] L. Ying-Ming and L. Mao-Kang, Fuzzy topology, World Scienti c.
[27] A. M. Zahran, O. R. Sayed and A. K. Mousa, Completely continuous functions and R-map
in fuzzifying topological space, Fuzzy Sets and Systems, 158 (2007), 409-23.