Ghanbari, M. (2016). A new approach for solving fuzzy linear Volterra integro-differential equations. Iranian Journal of Fuzzy Systems, 13(6), 69-87. doi: 10.22111/ijfs.2016.2822

Mojtaba Ghanbari. "A new approach for solving fuzzy linear Volterra integro-differential equations". Iranian Journal of Fuzzy Systems, 13, 6, 2016, 69-87. doi: 10.22111/ijfs.2016.2822

Ghanbari, M. (2016). 'A new approach for solving fuzzy linear Volterra integro-differential equations', Iranian Journal of Fuzzy Systems, 13(6), pp. 69-87. doi: 10.22111/ijfs.2016.2822

Ghanbari, M. A new approach for solving fuzzy linear Volterra integro-differential equations. Iranian Journal of Fuzzy Systems, 2016; 13(6): 69-87. doi: 10.22111/ijfs.2016.2822

A new approach for solving fuzzy linear Volterra integro-differential equations

^{}Department of Mathematics, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran

Abstract

In this paper, a fuzzy numerical procedure for solving fuzzy linear Volterra integro-differential equations of the second kind under strong generalized differentiability is designed. Unlike the existing numerical methods, we do not replace the original fuzzy equation by a $2\times 2$ system of crisp equations, that is the main difference between our method and other numerical methods. Error analysis and numerical examples are given to show the convergency and efficiency of the proposed method, respectively.

[1] R. Alikhani and F. Bahrami, Global solutions of fuzzy integro-dierential equations under generalized dierentiability by the method of upper and lower solutions, Information Sciences, 295 (2015), 600{608. [2] R. Alikhani, F. Bahrami and A. Jabbari, Existence of global solutions to nonlinear fuzzy Volterra integro-dierential equations, Nonlinear Analysis: Theory, Methods & Applications, 75(4) (2012), 1810{1821. [3] G. A. Anastassiou and S. G. Gal, On a fuzzy trigonometric approximation theorem of Weierstrass-type, J. Fuzzy Math., 9(3) (2001), 701{708. [4] K. Balachandran and P. Prakash, On fuzzy volterra integral equations with deviting argu- ments, Journal of Applied Mathematics and Stochastic Analysis, 2 (2004), 169{176. [5] B. Bede and S. G. Gal, Almost Periodic fuzzy-number valued functions, Fuzzy Sets and Systems, 147 (2004), 385{403. [6] B. Bede and S. G. Gal, Generalizations of dierentiablity of fuzzy number valued function with application to fuzzy dierential equations, Fuzzy Sets and Systems, 151 (2005), 581{599. [7] B. Bede and S. G. Gal, Quadrature rules for integrals of fuzzy-number-valued functions, Fuzzy Sets and Systems, 145 (2004), 359{380. [8] Y. Chalco-Cano and H. Roman-Flores, On new solutions of fuzzy dierential equations, Chaos, Solitons and Fractals, 38 (2008), 112{119. [9] D. Dubois and H. Prade, Towards fuzzy dierential calculus. I. Integration of fuzzy mappings, Fuzzy Sets and Systems, 8(1) (1982), 1{17. [10] D. Dubois and H. Prade, Towards fuzzy dierential calculus. II. Integration on fuzzy intervals, Fuzzy Sets and Systems, 8(2) (1982), 105{116. [11] D. Dubois and H. Prade, Towards fuzzy dierential calculus: III, dierentiation, Fuzzy Sets and Systems, 8 (1982), 225{233. [12] S. G. Gal, Approximation theory in fuzzy setting, in: G.A. Anastassiou (Ed.), Handbook of Analytic-Computational Methods in Applied Mathematics, Chapman Hall, CRC Press, (2000), 617{666. [13] M. Ghatee and S. M. Hashemi, Ranking function-based solutions of fully fuzzied minimal coast ow problem, Information Sciences, 177 (2007), 4271{4294. [14] R. Goetschel and W. Voxman, Elementary fuzzy calculus, Fuzzy sets and Systems, 18 (1986), 31{43. [15] S. Hajighasemi, T. Allahviranloo, M. Khezerloo, M. Khorasany and S. Salahshour, Existence and uniqueness of solutions of fuzzy volterra integro-dierential equations, IPMU, Part II, CCIS 81, (2010), 491{500. [16] O. Kaleva, Fuzzy dierential equations, Fuzzy Sets and Systems, 24 (1987), 301{317. [17] J. Y. Park and H. K. Han, Existence and uniqueness theorem for a solution of fuzzy Volterra integral equations, Fuzzy Sets and Systems, 105 (1999), 481{488. [18] J. Y. Park and J. U. Jeong, A note on fuzzy integral equations, Fuzzy Sets and Systems, 108 (1999), 193{200. [19] M. L. Puri and D. Ralescu, Dierentials of fuzzy functions, J. Math. Anal. Appl., 91 (1983), 552{558. [20] M. L. Puri and D. Ralescu, Fuzzy random variables, J. Math. Anal. Appl., 114 (1986), 409{422. [21] A. Ralston and P. Rabinowitz, First course in numerical analysis, McGraw-Hill, 1978. [22] S. Salahshour and T. Allahviranloo, Application of fuzzy dierential transform method for solving fuzzy Volterra integral equations, Applied Mathematical Modelling, 37(3) (2013), 1016{1027. [23] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, 24(3) (1987), 319{ 330. [24] S. J. Song, Q.Y. Liu and Q. C Xu, Existence and comparison theorems to Volterra fuzzy integral equation in (En;D), Fuzzy Sets and Systems, 104 (1999), 315{321.

[25] C. Wu and Z. Gong, On Henstock integral of fuzzy-number-valued functions I, Fuzzy Sets and Systems, 120 (2001), 523{532.