A SOLUTION TO AN ECONOMIC DISPATCH PROBLEM BY A FUZZY ADAPTIVE GENETIC ALGORITHM

Document Type: Research Paper

Authors

1 Electrical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran

2 Electrical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran

3 Electrical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

In practice, obtaining the global optimum for the economic dispatch {bf (ED)}
problem with ramp rate limits and prohibited operating zones is presents difficulties. This paper presents a new and
efficient method for solving the economic dispatch problem with non-smooth cost functions using a
Fuzzy Adaptive Genetic Algorithm (FAGA). The proposed algorithm  deals  with the issue of
controlling the exploration and exploitation capabilities of a heuristic search algorithm in which
the real version of Genetic Algorithm (RGA) is equipped with a Fuzzy Logic Controller (FLC)
which can efficiently explore and exploit optimum solutions. To validate the results obtained
by the proposed FAGA, it is compared with a Real Genetic Algorithm (RGA). Moreover, the results
obtained by FAGA and RGA are also compared with those obtained by other  approaches reported in the literature.
It was observed that the FAGA outperforms the other methods in solving the power system economic
load dispatch problem in terms of quality, as well as convergence and success rates.

Keywords


bibitem{Caponio:FAMA}
A. Caponio, G. L. Cascella, F. Neri, N. Salvatore and M. Sumner, {it A fast adaptive memetic
algorithm for off-line and on-line control design of PMSM drives}, IEEE Trans. on Systems, Man and
Cybernetics-Part B, Special Issue on Memetic Algorithms, {bf 37}textbf{(1)} (2007), 28-41.


bibitem{Chatu:PSOforED}
K. T. Chaturvedi, M. Pandit and L. Srivastava, {it Self-organizing hierarchical particle swarm
optimization for nonconvex economic dispatch}, IEEE Trans. Power Syst., {bf 23}textbf{(3)}
(2008), 1079-1087.

 

bibitem{Chen:LS-ED}
P. H. Chen and H. C. Chang, {it Large-scale economic dispatch by genetic algorithm}, IEEE Trans.
Power Syst., {bf 10}textbf{(4)} (1995), 1919-1926.


bibitem{Chiang:ImpGA}
C. L. Chiang, {it Improved genetic algorithm for power economic dispatch of units with valve-
point effects and multiple fuels}, IEEE Trans. Power Syst., {bf 20}textbf{(4)} (2005), 1690-1699.

 

bibitem{Eiben:PCinEA}
A. E. Eiben, R. Hinterding and Z. Michlewicz, {it Parameter control in evolutionary algorithms},
IEEE Transaction on Evolutionary Computation, {bf 3}textbf{(2)} (1999), 124-141.

bibitem{Gaing:PSOforED}
Z. L. Gaing, {it Particle swarm optimization to solving the economic dispatch considering the
generator constraints}, IEEE Trans. Power Syst., {bf 18}textbf{(3)} (2003), 1187-1195.

 

bibitem{Herrera:MAwithCHC}
F. Herrera, N. Krasnogor and D. Molina, {it Real-coded memetic algorithms with crossover hill-
climbing}, Evolutionary Computation, {bf 12}textbf{(3)} (2004), 273-302.

bibitem{Herrera:ACofPmbyFLC}
F. Herrera and M. Lozano, {it Adaptive control of mutation probability by fuzzy logic
controllers}, Parallel Processing Solving from Nature VI, Berlin: Springer, (2000), 335-344.

bibitem{Herrera:AFO}
F. Herrera and M. Lozano, {it Adaptive fuzzy operators based on coevolution with fuzzy
behaviours}, IEEE Transaction on Evolutionary Computation, {bf 5}textbf{(2)} (2001), 1-18.

bibitem{Herrera:FAGA}
F. Herrera and M. Lozano, {it Fuzzy adaptive genetic algorithm: design, taxonomy, and future
directions}, Soft Computing, {bf 7}textbf{} (2003), 545-562.


bibitem{Krasnogor:MA}
N. Krasnogor and J. Smith, {it A tutorial for competent memetic algorithms: model, taxonomy and
design issues}, IEEE Trans. Evol. Comput., {bf 9}textbf{(5)} (2005), 474-488.


bibitem{Lee:Adp-NN}
K. Y. Lee, A. Sode-Yome and J. H. Park, {it Adaptive Hopfield neural network for economic load
dispatch}, IEEE Trans. Power Syst., {bf 13}textbf{(2)} (1998), 519-526.

bibitem{Lin:TSforED}
W. M. Lin, F. S. Cheng and M. T. Tsay, {it An improved tabu search for economic dispatch with
multiple minima}, IEEE Trans. Power Syst., {bf 17}textbf{(1)} (2002), 108-112.


bibitem{Mehdizadeh:H-PSO}
E. Mehdizadeh, S. Sadi-nezhad and R. Tavakoli-moghaddam, {it Optimaization of fuzzy clastering
criteria by a hybrid PSO and fuzzy c--means clustering algorithm}, Iranian Journal of Fuzzy
Systems, {bf 5}textbf{(3)} (2008), 1-14

bibitem{Net:MA-home-page}
Memetic Algorithms Home Page, http://www.densis.fee.unicamp.br/$sim$moscato /memetic_ home.
html.

bibitem{Mrz:FLandMAforQAP}
P. Merz and B. Freisleben, {it Fitness landscape analysis and memetic algorithms for the
quadratic assignment problem}, IEEE Trans. Evol. Comput., {bf 4}textbf{(4)} (2000), 337-352.

 

bibitem{Moscato:MA}
P. Moscato, {it On evolution, search, optimization, genetic algorithms and martial arts: towards
memetic algorithms}, Memetic Algorithms Home Page,  http://www. densis. fee. unicamp. br /$sim
$moscato /memetic_ home. html.

 

bibitem{Neyestani:MAforED}
M. Neyestani, M. M. Farsangi and H. Nezamabadi-pour, {it Memetic algorithm for economic dispatch
with nonsmooth cost functions}, Accepted by Iranian Journal of Electrical and Computer Engineering
(IJECE) (in Farsi).

 

bibitem{Oreo:ED-POZ}
S. O. Orero and M. R. Irving, {it Economic dispatch of generators with prohibited operating
zones: a genetic algorithm approach}, Proc. Inst. Elect. Eng. Gen. Transm. Distrib., {bf
143}textbf{(6)} (1996), 529-534.

 

bibitem{Park:PSOforED}
J. B. Park, K. S. Lee, J. R. Shin and K. Y. Lee, {it A particle swarm optimization for economic
dispatch with nonsmooth cost functions}, IEEE Trans. Power Syst., {bf 20}textbf{(1)} (2005), 34
-42.

 

bibitem{Rashedi:GSA}
E. Rashedi, H. Nezamabadi-pour and S. Saryazdi, {it GSA: a gravitational search algorithm},
Information Sciences, {bf 179}textbf{(13)} (2009), 2232-2248.

bibitem{Selva:PSOforED}
A. I. Selvakumar and K. Thanushkodi, {it A new particle swarm optimization solution to nonconvex
economic dispatch problems}, IEEE Trans. Power Syst., {bf 22}textbf{(1)} (2007), 42-51.

bibitem{Sinha:EPforED}
N. Sinha, R. Chakrabarti and P. K. Chattopadhyay, {it Evolutionary programming techniques for
economic load dispatch}, IEEE Trans. Evol. Comput., {bf 7}textbf{(1)} (2003), 83-94.


bibitem{Sum:EDbyACO}
T. Sum-im, {it Economic dispatch by ant colony search algorithm}, Proc. IEEE Conference on
Cybernetics and Intelligent Systems, (2004), 416-421.


bibitem{Wang:EDbyDE}
S. K. Wang, J. P. Chiou and C. W. Liu, {it Non-smooth/non-convex economic dispatch by a novel
hybrid differential evolution algorithm}, IET Generation Transmission & Distribution, {bf
1}textbf{(5)} (2007), 793-803.

bibitem{Wong:SA}
K. P. Wong and C. C. Fung, {it Simulated annealing based economic dispatch algorithm}, Proc.
Inst. Elect. Eng. C, {bf 140}textbf{(6)} (1993), 509-515.

bibitem{Wong:GA-SA-ED}
K. P. Wong and Y. W. Wong, {it Genetic and genetic simulated-annealing approaches to economic
dispatch}, Proc. Inst. Elect. Eng. Gen. Transm. Distrib., {bf 141}textbf{(5)} (1994), 507-513.


bibitem{Yang:EPforED}
H. T. Yang, P. C. Yang and C. L. Huang, {it Evolutionary programming based economic dispatch for
units with non-smooth fuel cost functions}, IEEE Trans. Power Syst., {bf 11}textbf{(1)} (1996),
112-118.


bibitem{Zeng:FAGA}
X. Zeng and B. Rabenasolo, {it A fuzzy logic based design for adaptive genetic algorithms},
European Congress on Intelligent Techniques and Soft Computing, (1997), 660-664.