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ABSTRACT. In this paper, an observer based fuzzy adaptive controller (FAC) is designed for 
a class of large scale systems with non-canonical non-affine nonlinear subsystems. It is 
assumed that functions of the subsystems and the interactions among subsystems are 
unknown. By constructing a new class of state observer for each follower, the proposed 
consensus control method solves the problem of unmeasured states of nonlinear non-
canonical non-affine subsystems. The main characteristics of the proposed observer-based 
intelligent controller are: 1) on-line adaptation of the controller and the observer parameters, 
2) ultimate boundedness of both the output and the observer errors, 3) boundedness of all 
signals involved, 4) employing experts’ knowledge in the controller design procedure and 5) 
chattering avoidance. The simulation results are further carried out to demonstrate better the 
effectiveness of the proposed fuzzy based consensus controller method. 
 
 

1. Introduction 

To control large scale systems, one usually faces poor knowledge of the plant 
parameters and interconnections among subsystems. An adaptive control technique 
can then serve as an appropriate candidate for such applications to be employed. Large 
scale interconnected systems appear in a variety of engineering applications such as 
power systems, manufacturing processes, and communication systems.  

As a result of both tunable structure of the Fuzzy Adaptive Controller (FAC) and using 
the experts’ knowledge in controller design procedure, FAC attracted many 
researchers to develop appropriate controllers for nonlinear systems especially for 
large scale systems (LSS). 

In the recent years, FAC has been fully studied. Initially, Takagi-Sugeno (TS) fuzzy 
systems have been used to model nonlinear systems and then TS based controllers 
have been designed with guaranteed stability [6,7]. Modeling affine nonlinear systems 
and designing stable TS fuzzy based controllers have been employed in [14]. 
Designing of a sliding mode fuzzy adaptive controller for a class of multivariable TS 
fuzzy systems was presented in [1]. In [11, 25], the non-affine nonlinear function were 
first approximated by the TS fuzzy systems, and then a stable TS fuzzy controller as 
well as observer have been designed for the obtained model. In these papers, due to the 
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assumption that the systems should be linearizable around some operating points 
modeling and designing of appropriate controllers could then be simply done. 

The linguistic fuzzy systems have also been used to design controllers for nonlinear 
systems. [40,34,16,32,44] have considered linguistic fuzzy systems to design stable 
adaptive controller for affine systems based on feedback linearization and furthermore 
in [32,44], it has been considered that the zero dynamics should be stable. Stable FAC 
based on sliding mode was designed for affine systems in [18]. Designing FAC for 
affine chaotic systems was presented in [29,2]. Designing stable FAC and linear 
observers for a class of affine nonlinear systems was fully discussed in [35,28,43,13]. 
Fuzzy adaptive sliding mode controllers were presented for a class of affine nonlinear 
time delay systems in [42,17,3]. The output feedback FAC for a class of affine 
nonlinear MIMO systems was suggested in [41].  

A robust adaptive fuzzy controller, based on a linear state observer, for a class of 
affine nonlinear systems has been presented in [12]. In [31], direct and indirect 
adaptive output-feedback fuzzy decentralized controllers for a class of large-scale 
affine nonlinear systems have been developed based on linear observers. [36] 
presented fuzzy adaptive controllers for a class of affine nonlinear systems. This 
method guarantied ultimately boundedness of tracking error. A direct adaptive fuzzy 
controller for a non-minimum phase two-axis inverted pendulum servomechanism has 
been presented based on real-time implementation in [37]. The main drawbacks of 
these methods are the restricted conditions imposed on the system dynamics. For 
example, it is assumed that the control gain is bounded to some known functions or 
constant values.  

[19,21] developed stable FAC for a class of non-affine nonlinear systems. The main 
limitation of these methods is that convergence of tracking errors to zero was not 
guaranteed. [8,9] proposed a decentralized fuzzy model reference state tracking 
controller for a class of canonical nonlinear large scale systems. The main limitations 
of these references are both considering the interaction as a bounded disturbance and 
availability of all states. [10] dealt with designing FAC based on sliding mode for a 
class of large scale affine nonlinear systems. [39] designed FAC for a class of affine 
nonlinear time delayed systems.  In none of these studies, fuzzy adaptive controllers 
were developed for nonlinear non-affine systems.  

The basic idea of consensus control is that all subsystems are driven to an agreement 
by a consensus protocol, which is designed based on local information. In consensus 
control, two control strategies, leaderless consensus and leader-following consensus, 
have been extensively developed. The most of the research results were limited to 
first-order or second-order multi-agent systems [4,24,15,26,46].  

Recently, the high-order consensus problem has received obviously increasing 
attention, and several novel consensus design methods for high-order linear multi-
agent systems have been developed [27]. In [27], the authors proposed a class of l-
order (l > 3) consensus control approaches by generalizing the first-order and second 
order consensus algorithms.  In recent years, the challenging high-order consensus 
control has been extended to nonlinear multi-agent systems [45]. Intelligent adaptive 
backstepping technique for a class of nonlinear strict-feedback or semi-strict feedback 
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systems was discussed in [5,38].The observer-based adaptive control has been well 
developed for a class of both SISO and MIMO nonlinear systems in [33,22,34,23].  

In this paper, we propose a new method to design a stable observer based 
decentralized adaptive controller based on fuzzy systems for a class of large scale non-
canonical non-affine nonlinear systems. The main contributions of this paper are:1) 
on-line adaptation of both the controller and the observer parameters is possible, 2) 
ultimate boundedness of both the output and the observer error and 3) boundedness of 
all signals involved are guaranteed, 4) employing experts’ knowledge in the controller 
design procedure and 5) chattering avoidance are fully provided. Compared with the 
previous studies, which are mainly concentrated on observer-based affine SISO 
subsystems and observer based affine subsystems, the proposed method does indeed 
represent an observer based non-canonical non-affine nonlinear subsystem. 

The remainder of the paper is organized as follows. Section 2 gives the problem 
statement. General concepts of the fuzzy system are formulated in Section 3. Design of 
the proposed fuzzy adaptive controllers and nonlinear observers are fully formulated 
and discussed in Section 4. Section 5 presents simulation results of the proposed 
controller and finally, Section 5 concludes the paper. 

 

2.Preliminaries 

Consider a nonlinear large scale system that consists of N interconnected subsystems 
with uncertain dynamics. The system model of every subsystem can be described by 
the following non-affine non-canonical nonlinear dynamics: 
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where ,i lz declares thl state of the thi subsystem, in is number of the states in the thi  

subsystem, N is the number of the subsystems, i
i,ni

nT
i i,1 = [z , . . . , z ]  z R∈ is the 

state vector of the system which is assumed unavailable for measurement, iu  R∈ is 

the control input, iy R∈ is the subsystem output, i,l ii(z ) g ’s and i i i(z , u ) g are 

unknown smooth nonlinear functions, ,1 ,( )i i lh z ’s are known, one-to-one and onto, 

1 2( , ,..., )i Nz z zΔ  is an unknown nonlinear interconnection term between 

subsystems, and ( )id t′  represent bounded disturbances. 

To linearize the output mapping of the system given in equation (1), the following 
transformation is considered. 
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Use the above transformation and rewrite equation (1) as: 
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This can be further rewritten to the following compact form:  
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The above equation can be revised as 
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where ( )i if x , 0iA  and ib  are defined below. 
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(6) 

The control objective is to design an observer based adaptive fuzzy controller for 
system (1) such that both the tracking error between the leader and the follower and 
the observer error are to be ultimately bounded while all signals in the closed-loop 
system remain bounded and all subsystems track the leader. 

In this paper, we will make the following assumptions concerning system (1) as well 
as the desired trajectory (leader) (t)imx  stated below. 

Assumption 1: without loss of generality, it is assumed that the nonzero function 

u i i i i i if (x , u ) = f  (x , u ) u∂ ∂  satisfies the following conditions: 
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in
u i i min i i

u i i
dm

f (x , u ) f  > 0   (x , u )  × 
f (x , u ) f  

R R
d

dt

≥ ∀ ∈

≥
                     

(7) 

dmf  R∈ is a known constant parameter and will be defined later. Furthermore, the 

following controller and observer design can be reconstructed for minf < 0  in the 
same way. 

Assumption 2: The desired (leader) trajectory im (t) x is generated by the following 
desired reference system. 

0 ( )im i im i i

T
im i im

x A x b r t

y C x

= +⎧⎪
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=⎪⎩

&

                                              

(8) 

where ( )ir t  is the external reference input. 

The interactions can be considered as external inputs as functions of the states of the 
subsystems; thus, they will be bounded by some constant time varying signal, which is 
in general a function of all the states. To make it more suitable for the proposed 
controller derivation, the following assumption is also used.  

Assumption 3: the interconnection term satisfies the following: 

( )1 2 0 1
ˆ( , ,..., ) N T

i N i ij i i jj
m x x x C e xξ ξ

=
≤ +∑ %

                       
(9) 

( )0 1
ˆN T

i ij i i jj
C e xξ ξ

=
+∑ % is an unknown upper bound of the interaction terms. To 

use this upper bound in the controller design procedure, we denote îjζ ’s as estimations 

of ijζ ’s that are adaptively tuned.  

Assumption 4: the external disturbance satisfies the following property. 
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∞
≤

                                                 
(10) 

Now consider ˆ ( )ix t  as an estimation of ( )ix t  and write. 
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where ie stands for the tracking error, îe  presents the observer error and ie% stands for 
the observation error. 

Consider the following tracking error vector. 

i

i

nT
i i,1 i,2 i,n e = [e , e , . . . , e ] R∈

                               
(12) 

Taking the derivative of both sides of equation (7) we have 

( )
i im i 0 0

1 2

iy i

e = x -x ( ) ( )
( , ) ( , ,..., ) ( )

e e

i im i i i i i

i i i i i N i

T
i

A x b r t A x f x
b f x u m x x x d t

C

⎧ ′= + − −
⎪⎪ − + +⎨
⎪ =⎪⎩

& & &

               (13) 

Use equation (6) and rewrite the above equation as: 
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To construct the controller, the dummy variable iv is defined as:  

T
i ic iˆv = ( )+k ei ir t v′+                                                 (16 ) 

The term iv′  is defined below. Consider the vector 
i

T
ic i,1 i,2 i,nk  = [k , k , . . . , k ]  as 

the coefficients of  the polynomial i

i

n -1
i,n i,1( ) +k s +...+kins sψ = , which are chosen 

so that the roots of this polynomial are appropriately located in the open left-half 
plane. This makes the matrix T

ioc i0 i icA =A - b k  Hurwitz.  

By adding and subtracting the term ( )T
ic iˆk e iv′+ from the right-hand side of equation 

(14), we obtain 

T
i0

1 2
T

iy i

ˆe = A e -b k e ( ) b { ( , )
( , ,..., ) ( )+ }

e =C e

i i i ic ii i i i i i

i i N i i

i

f x f x u
v m x x x d t v

⎧ ′− −
⎪

′− + +⎨
⎪
⎩

&

                     

(17 ) 

Using assumption (1), equation (16) and the signal iv , which is not explicitly 

dependent on the control input iu , the following inequality is easily satisfied: 
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( ( , ) ) ( , ) 0i i i i i i i

i i

f x u v f x u
u u

∂ − ∂
= >

∂ ∂                                 
( 18) 

Invoking the implicit function theorem, it is obvious that the nonlinear algebraic 
equation ( , ) 0i i i if x u v− =  is locally soluble for the input iu for an arbitrary

i i(x , v ).  Thus, there exists some ideal controller *
i i iu (x , v ) satisfying the following 

equality for a given in
i i(x , v ) × R R∈ : 
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However, the implicit function theory only guarantees the existence of the ideal 
controller *

i i iu (x ,v ) for system (19), and does not provided a technique for 
constructing any solution even if the dynamics of the system are well known. In the 
following, a fuzzy system and a classical controller will be used to represent the 
unknown ideal controller. 

 

3.Fuzzy Systems 

Figure 1 shows the basic configuration of the fuzzy system considered in this paper. 
Here, we consider a multi-input, single-output fuzzy systems: 

nx U R y V R∈ ⊂ → ∈ ⊂ . Knowing that a multi-output system can be viewed as 
a group of single-output systems, from now on we consider single output fuzzy 
systems. 
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sup ( ) ( )
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The output given by (23) can be rewritten in the following compact form: 

      ( ) ( )Ty x w x θ=                                                     (25) 
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Obviously the denominator term 
1 1

( )l
i

nM

iA
l i

xμ
= =
∑∏  must different from zero for all

x U∈ in order to make the fuzzy system (23) well defined. 

 

4.Observer Based Fuzzy Adaptive Controller Design 

In Section 2, it has been shown that there exists an ideal control signal for achieving 
the control objectives. In this section, we show how to develop a fuzzy system to 
adaptively approximate the unknown ideal controller. Indeed, this section deals with 
the observer and controller design procedure.  

To design a proper observer for the subsystem given in equation (21), this paper 
proposes the following observer error system: 
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(27) 

where ,io inoK k  are the linear observer gain and the nonlinear observer gain, 

respectively. oK is selected to make sure that the characteristic polynomial of 

ioo io i0(A =A -K )T
iC is Hurwitz. 

Defining the observation error ˆi i ie e e= −%  and subtract (16) from (22) to obtain 
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The output error dynamics of the above equation can be given as: 
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where 
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and iB  is the identity matrix, iH (s) is a known stable transfer function. In order to 
use the SPR-Lyapunov design approach, equation (29) is rewritten as 
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function and ( ) ( )i iH s L s  is a proper strictly-positive-real (SPR) transfer function. 

Let m m-1
i i1 imL (s)=s  + b s  +  + b  L with m = n - 1. 

The state-space realization of (31) can be written as 

is is

T
1 2 i

T
iy is is

e = ( ) b { ( )

ˆ( , ,..., )+ ( , ) C }    

e =C e

fioo is is if iu iu if

if N if inof i i is

A e B f x e f d t

m x x x v k e e e
λ

⎧ ′− − +
⎪⎪ ′+ +⎨
⎪
⎪⎩

&% %

% %

% %
       

(32) 

The ideal controller can be represented as: 
* ( )i i i iuu f z ε= +                                                (33) 
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where [ , ]T
i i iz x v=  and *

1 1( ) ( )i i if z w zθ= , and *
1iθ and 1( )i iw z  are consequent 

parameters and a set of normalized basis functions, respectively. iuε is an 

approximation error that satisfies maxiuε ε≤  and max 0ε > . The parameters *
1iθ  are 

determined through the following optimization. 

1

*
1 1 1arg min sup ( ) ( )

i

T
i i i iw z f z

θ
θ θ⎡ ⎤= −⎣ ⎦

                      
(34) 

Denoting the estimate of *
1iθ  as 1iθ  and irobu  as a robust controller to compensate for 

the approximation error, uncertainties, disturbance and the interconnection term,and 

defining ( )T
ij i iC eξ % by T

ji i iC eη % , we rewrite the controller given in (33) as: 

1 1 2 i0ˆ( ) KT T
i i i i irob i iu w z u e Pθ= + +                          (35) 

where irobu is defined by 

( )

0

min min

2

1
min min

1
min min

ˆ

2
1 ˆ ˆ

2

ˆ ˆ ˆ ˆ( , )

T i
is is

NT T ir
irob is is ij i is is icomj

T
is is Ti

inof i i i i i

N C e
f f

uu sign C e x C e u
f f

C ev k e e e P b
f f

ξ

η
=

⎛ ⎞
⎜ ⎟+⎜ ⎟
⎜ ⎟
⎜ ⎟

= + + +⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞′⎜ ⎟⎜ ⎟+ + +

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑

%

% %

%
%

      (36) 

In the above, 1 1( )T
i iw zθ  approximates the ideal controller, 

2

0 1

1ˆ ˆ ˆ
2

N T
i ij j is isj

x C eξ η
=

+ ∑ %  represents the estimate of the interconnection term, 

icomu compensates for the approximation error and uncertainties, iru  is designed to 
compensate for bounded external disturbances, the term 

min 1
ˆ ˆ ˆ( , )( ))T T
inof i i is is i i ik e e C e f e P b+% %  estimates the nonlinear gain of the observer, 

and îv′  is the estimate of iv′ . 

Define the error vector *
1 1 1i i iθ θ θ= −% and use (35) and (36) to rewrite the error 

equation (21) as: 
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T
i i0 i i ic i i 1 1 i

1 2 i

T
iy i i

ˆe = A e -b k e ( )-b {( ( )
) ( , ,..., ) ( )+ }

e =C e

T
i i i irob

iu iu i N i

f x w z u
f m x x x d t v

λ

θ
ε

⎧ ′− +
⎪⎪ ′− + +⎨
⎪
⎪⎩

%&

             

(37) 

Based on equation (35) and (36), the state-space realization of equation (32) can be 
written as 

is is 1 1

T
iy is is

e = ( )-b {( ( )

ˆ) ( )+ ( , ) }    

e =C e
f

T
ioo is is if i i i irob

T
iu iu if if inof i i i i

A e B f x w z u

f d t v k e e C e
λ

θ

ε

⎧ ′− +
⎪⎪ ′− + +⎨
⎪
⎪⎩

& %% %

% %

% %

      (38) 

Assume that 1iP and 2iP  are positive definite solutions of the following matrix Riccati 
equations, respectively. 

1 1 1

2 2 2

1

T
ioo i i ioo i
T
ioc i i ioc i

T T
is i is

A P P A Q

A P P A Q

b P C

+ = −

+ = −

=                                       

(39) 

In equations (39), 1iQ  and 2iQ  are the given positive definite matrices. 

Consider the following update laws. 

0

2

i 2 i
min

1 1 1

0
min

2

min

ˆ

ˆ ˆ( )

( )

ˆ

ˆ ˆ
2

ˆ

i

ji

ir

icom

i

T
is is T T

ino iko is is i

T
i is is i i

T
i is is

T
ji is is i

T
ir u is is

T
icom u is is

T
i v is is

C e
k C e b P e

f

C e w z

C e
f

C e x
f

u C e

u C e

v C e

ξ

η

γ

θ
γ

ξ

γ
η

γ

γ

γ ′

= +

= Γ

=

=

=

=

′ =

%&
%

& %

&
%

& %

& %

& %

& %
               

(40) 
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where ˆ1 1 0, , , , , 0
ir ji icom i

T
u u v ikoηγ γ γ γ γ′Γ = Γ > >  are constant parameters properly 

defined. 

Let’s max(.)λ  and max (.)σ be the maximum eigenvalue and maximum singular value, 
respectively. 

Lemma 4.1. The following inequality holds if m
max 1 max 1

min
( ) ( )d

i i
fQ Pfλ λ≥ − . 

1 12

1 0f

f f

iuT T
is i is is i is

iu iu

f
e Q e e P e

f f
λ

λ λ

+ ≥
&

% % % %

                           

(41) 

Proof: 

From assumption (1) and using the fact that m
max 1 max 1

min
( ) ( )d

i i
fQ Pfλ λ≥ − , 

obviously we can have 

( )max 1 min max 1 m( ) ( ) 0i i dQ f P fλ λ+ ≥
                    

(42) 

This in turn leads to the following inequality. 

( ) 2

max 1 min max 1 m2

1 ( ) ( ) 0i i d is
iu

Q f P f e
f

λ

λ λ+ ≥%

         

(43) 

After some algebraic manipulations, the following inequality is obtained. 

2

max 1 min

1 12 2 2

max 1 m

( )1 1

( )
f

f f f

i isiuT T
is i is is i is

iu iu iu
i d is

Q f ef
e Q e e P e

f f f P f e
λ

λ λ λ

λ

λ

⎛ ⎞
⎜ ⎟+ ≥ ⎜ ⎟⎜ ⎟+⎝ ⎠

& %
% % % %

%
(44) 

And finally use (42) to have the following, which completes the proof. 

1 12

1 0f

f f

iuT T
is i is is i is

iu iu

f
e Q e e P e

f f
λ

λ λ

+ ≥
&

% % % %

                         

(45) 

Q.E.D.  

Lemma 4. 2.Based on lemma (4.1) and equation (42), the following inequality holds. 

max
min

( ) 2
dm

ioo
fA fσ ≤ −

                                     
(46) 
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Proof. using equation (42) and after some algebraic manipulations, the following 
inequality is obtained. 

1 1 1 2T
i ioo i i ioo ioo iooQ A P P A P A≤ + =

                      
(47) 

Using the above equation, we get 

1 1 max 1 max2 2 ( ) ( )i i ioo i iooQ P A P Aλ σ≤ =
               

(48) 

Use (42) and (48) to have the following; this completes the proof. 

max
min

( ) 2
dm

ioo
fA fσ ≤ −

                                    
(49) 

Q.E.D. 

Theorem 4.3.Consider the error dynamical system given in (27) and (38) for the large 
scale system (1) satisfying assumption (1), the interconnection term satisfying 
assumption (3), the external disturbances satisfying assumption (4), and a desired 
trajectory satisfying assumption (2), then the controller structure given in (35), (36) 
with adaptation laws (40) makes the tracking error and the observer error ultimately 
bounded and all signals in the closed loop system bounded as well. 

Proof. consider the following Lyapunov function. 

0

1
1 2 1 1 1

22 2 2 2 21 10

ˆ

1 ˆ ˆ
1
2

f

i ji ir icom i

T T T
is i is i i i i i

iuN

N
i jiji ir icom ino i

u u iko v

e P e e P e
f

V
u u k v

λ

ξ η

θ θ

ηξ
γ γ γ γ γ γ

−

= =

′

⎛ ⎞+ + Γ⎜ ⎟
⎜ ⎟

= ⎜ ⎟
′⎜ ⎟+ + + + + +⎜ ⎟

⎝ ⎠

∑ ∑

% %% %

% %% % % %

         

(50) 

where *
1 1 1i i iθ θ θ= −% , maxir iru u d= −% , maxicom icomu u ε= −%  , ˆ

ino ino inok k k= −% , 

ˆji ji jiη η η= −% ,  0 0 0
ˆ

i i iξ ξ ξ= −%  and ˆi i iv v v′ ′ ′= −% . The time derivative of the 
Lyapunov function becomes. 

( )
0

1 1 12
1

11 0 0
2 2 1 1 1

1 1 1
2

ˆˆ1 ˆ ˆ ˆ ˆ
2

f

f f f

i ji

N
iuT T T

is i is is i is is i is
i iu iu iu

N
ji jijT T T i i

i i i i i i i i

f
V e P e e P e e P e

f f f

e P e e P e

λ

λ λ λ

ξ η

η ηξ ξθ θ
γ γ

=

=−

⎛ ⎞
⎜ ⎟= + +
⎜ ⎟
⎝ ⎠

+ + + Γ + +

∑

∑

&
& && % % % % % %

&& %%
& & % &
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ˆ

ˆˆ

ir icom i

ir ir icom icom i i no no

u u v ko

u u u u v v k k
γ γ γ γ′

′ ′
+ + + +

&& %% & % & %
                               (51) 

Use equations (27) and (38) to rewrite the above equation as: 

is 1 1
1

1 2

1 1

is 1 1

1 1 ( ( )-b {( ( )
2

) ( ) ( , ,..., )+

1ˆ( , ) }) (
2

( )-b {( ( ) )

f

f

f

N
T

ioo is is if i i i
i iu

irob iu iu if i N if

T T T
inof i i is is i is is i ioo is

iu

T
is if i i i irob iu iu

V A e B f x w z
f

u f d t m x x x v

k e e C e P e e P A e
f

B f x w z u f

λ

λ

λ

θ

ε

θ ε

=

′= −

′+ − + +

+ +

′− + −

∑ %& %

% % % % %

%

( )

( )

1 2

1 ioc i0 22

2 ioc i0

1
1 1

( )

ˆ( , ,..., )+ ( , ) })

1 ˆ ˆ ˆA e +K ( , )
2 2

1 ˆˆ ˆA e +K ( , )
2

f

f

f

if

T
if N if inof i i is is

Tiu T T T
is i is i is is i ino i i is is i i

iu

T T T
i i i is is i ino i i is is

T
i

d t

m x x x v k e e C e

f
e P e C e b k e e C e P e

f

e P C e b k e e C e

λ

λ

λ

θ −

+

′+ +

+ + +

+ +

+ Γ

% %

&
% % % % %

% % %

% &

0

10 0
1

ˆ

ˆ ˆˆ ˆ

i ji ir icom i

N
ji jiji i ir ir icom icom i i no no

i
u u v ko

u u u u v v k k

ξ η

η ηξ ξθ
γ γ γ γ γ γ

=

′

′ ′
+ + + + + +

∑ & && &% %% % & % & %

(52) 

Using assumption (1) yields min1 1iuf f
λ
≤  and by assumptions (3), (4) and 

equation (39), we can rewrite (52) as: 

( )

( )

1

2

1 1 12
1

1
min

T
ioc 2 2 ioc 1 1

1
2 2

1 ( )

1 ˆ ˆA A -( ( ) )
2

f

f f
i

i

N
iuT T T

is ioo i i ioo is is i is
i iu iu

Q

T T
i is i is

T T T
i i i i i i i irob iu is is

Q

f
V e A P P A e e P e

f f

f x B P e
f

e P P e w z u C e

λ

λ λ

θ ε

=
−

−

≤ + −

′+

+ + + −

∑
&

& % % % %
1442443

%

% %
1442443

 



An Observer-based Intelligent Decentralized Variable Structure Controller For … 
 

117

( )

0

max
0 1

min min min
2

2 i0 2
min

11 0 0
1 1 1

ˆ

ˆ ˆ ˆ ˆ( , ) K ( , )

ˆˆ

i ji ir

T
Nis is iT T

is is i ij j is isj

T
is is T T T T

ino i i i i is is ino i i i i i is is

N
ji jijT i i ir ir

i i
u

C e vd C e x C e
f f f

C e
k e e e P C e k e e e P b C e

f

u u

ξ η

ξ ξ

η ηξ ξθ θ
γ γ γ

=

=−

′
+ + + +

+ + +

+ Γ + + + +

∑

∑

%
% %

%
% % % %

&& %% % & %% &

ˆ

ˆˆ

icom i

icom icom i i no no

u v ko

u u v v k k
γ γ γ′

′ ′
+ +

&& %& %

(53) 

Using the sigmoid properties, equations (35)-(36), and the fact 2 2 2α β αβ+ ≥ , 
equation (53) can be rewritten as given below. 

( ) ( )

( )
0

1 1 22
1

2 2

1 1 1
min min

0 0
min

1 1 ˆ ˆ
2 2 2

ˆ
ˆˆ - ( )
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ˆˆ (

f

f f

i ji
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N
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is i is is i is i i i
i iu iu
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i i i i i is is ji jij
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V e Q e e P e e Q e
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C e
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λ
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η

ξ

θ η η

ξ ξ
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γ γ γ γ′

′ ′
+ + + +

&& %% & % & %

(54) 

This after some more algebraic manipulations becomes 
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( )

1 1 2
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      (55) 

Use (40) in (55) and write  

1 1
1

2 1
min

1
2

1 1ˆ ˆ ( )
2

f

i

N
T iu

is i i is
i iu iu

M

T T T
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fV e Q P e
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′− +

∑
&

& % %

1442443
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(56) 

Based on the boundedness of the reference signals and 1 2( )T
i if x c x c′ ≤ + , the 

following inequality is easily obtained. 

{

2

1 2 1 2

ˆ

1 1 1 2

ˆ ˆ( )

ˆ
is i

T
i i i i i im im

e e

is i im

c

f x c x c c x x x x x c

c e c e c x c
′≤

′ ≤ + ≤ − + − + +

≤ + + +

%
123

%
14243

        

(57) 

Using (57), equation (56) becomes 
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2 2 2
min min 2 1 1

min min
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The following inequality is then easily obtained: 
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        (59) 

By choosing matrices 2,i iM Q appropriately we can guarantee that V&  is negative 

definite as long as ˆ,is ie e% lie outside the compact set eΩ  defined as 

( )

2 1

min 1 1

1 1 2 1

min 2 min min 1 1
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ˆ
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Q f M c B P

λ

λ λ

⎧ ⎫′
⎪ ⎪≤

−⎪ ⎪⎪ ⎪Ω = ⎨ ⎬
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%

%
       (60) 

According to the standard Lyapunov theorem, we conclude that the observation error 
and accordingly the observer error and the tracking error are all ultimately bounded 
and ˆ,is ie e% will converge to eΩ . In addition, the boundedness of the coefficient 
parameters is guaranteed. This completes the proof. 

Q.E.D. 

To guarantee the boundedness of the parameters in the presence of the unavoidable 
approximation error, the proposed adaptive laws (40) is modified by introducing a 
σ − modification term as follows: 
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(61) 

 

5.Simulation Results 

In this section, we apply the proposed observer based decentralized fuzzy model 
reference adaptive controller to the large scale system consists of two subsystems, 
where each subsystem’s dynamics are described by the following nonlinear non-affine 
form.  

11 11 12 11

12 11 12 1 21 1

1 11

21 21 22 21

22 21 22 2 11 2

2 21

sin( )
sin( ) 1 50 tanh( ) 4sin( ) ( )

sin( )
sin( ) 1 40 tanh( ) 4sin( ) ( )

x x x x
x x x u x d t
y x

x x x x
x x x u x d t
y x

⎧ = + −⎧
⎪⎪ = + − + + +⎨⎪
⎪⎪ =⎪⎩
⎨

= + −⎧⎪
⎪⎪ = + − + + +⎨⎪⎪ =⎪⎩⎩

&

&

&

&

    (62) 

It has been considered that the first leader’s dynamics are described as: 

1 2sin( ) 2sin(3 )r t tπ π= +  

and the second one can be described as: 

2 3sin(2 ) sin(3 )r t tπ π= + . 

Furthermore, it is assumed that 1( ) sin(200 )d t tπ= and 2 ( ) sin(120 )d t tπ= . 

Now we apply the proposed controller defined in (35), (36) to the system defined in 
equation (1). Based on the experts’ knowledge, let to define 

1 2 1 2[ , ] , [ , , ]T T
i i i i i i ix x x z x x v= = and the states of the subsystems are in the range 

of [5, 5]− , furthermore iv are defined over [ 45, 45]− . For each fuzzy system input, 
we define 6 membership functions over the defined sets. Consider that all of the 
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membership functions are defined by the Gaussian function 
2

2

( )( ) exp( )
2j

cχμ χ
δ

−= , 

where c  is center of the membership function and δ  is its variance. We assume that 
all the initial values of controller parameters are set to zero. Furthermore, it has been 
assumed that min 1f = , 1 10Γ = , 

0
2, 2

i ijξ ξγ γ= = , 2
icomuγ = , 5

iruγ = , ˆ 2
ivγ ′ =  

and 10ikoγ = . In addition, we assume that 0.01σ = , 0.01ε = . The parameters 

min,dmf f  and the vector ick  are chosen so that lemma 2 holds. 

As shown in Figures 2 and 3, it is obvious that the performance of the proposed 
controller is promising. Furthermore, in the presence of ( )id t and iuε , it is evident the 
controller has satisfactory performance and is robust against uncertainties and 
disturbances as easily observed in these figures. Figures 4, and 5 show the total input 
of each subsystem as given in equation (35) and (36). 

 

FIGURE 2. Performance of the Proposed Controller in First Subsystem of 

 the First Subsystem 

 

FIGURE 3. Performance of the Proposed Controller in Second Subsystem of 

 the First Subsystem 
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FIGURE4. Control Input of the First Subsystem of the First Subsystem 

 
FIGURE 5. Control Input of the Second Subsystem of the First Subsystem 

Figures 6 and 7 present the estimation of the first and second states of the first 
subsystem with their desired values. 

 
FIGURE 6. The Estimation of the First State of the First Subsystem and the Desired 

Value of the First Subsystem 
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FIGURE 7. The Estimation of the Second State of the first Subsystem of 

 the First Subsystem 
The performance of the proposed observer on the second subsystem and their desired 
trajectories are shown in figure 8 and 9. 

 
FIGURE 8. The Estimation of the First State of the Second Subsystem and the Desired 

Value of the First Subsystem 

 

 
FIGURE9. The Estimation of the Second State of the Second Subsystem of 

 the First Subsystem 

As shown in Figures 6 through 9, it is obvious that the nonlinear state observer can 
generate the estimated states and perform perfectly. Moreover, it is also clear that the 
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output of the system converges to the desired value. The stability of the closed loop 
system, the convergence of the tracking error and the observer error to zero, and 
robustness against external disturbances as well as approximation error are the merits 
of the proposed controller and observer. 

To verify the boundedness of the controller and observer parameters in the first 
subsystem, the trajectories of some of them are depicted in Figures 10 and 11. 

 
FIGURE10. Time Trajectory of the Nonlinear Gain of the Observer in the First 

Subsystem ( 1̂nok ) of the First Subsystem 

 

FIGURE 11. Time Trajectory of the Compensation Term in First Subsystem( 1comu )of 
the First Subsystem 

To validate the boundedness of the controller and observer parameters the in first 
subsystem, the trajectories of some of them are given in Figures 12 –13. 

 
FIGURE12. Time Trajectory of the Nonlinear Gain of the Observer in the Second 

Subsystem ( 2
ˆ

nok )of the First Subsystem 
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FIGURE13. Time Trajectory of the Compensation Term in Second Subsystem 

( 2comu ) of the First Subsystem 
The performance of the second subsystem is also demonstrated in the following figure. 

 
FIGURE 14. Performance of the Proposed Controller in First Subsystem of 

 the First Subsystem 
 

 
FIGURE 15. Performance of the Proposed Controller in Second Subsystem of 

 the First Subsystem 
 

As shown in Figures 14 and 15, it is obvious that the performance of the proposed 
controller is indeed satisfactory. Furthermore, in the presence of ( )id t and iuε , it is 
evident the controller has a promising performance and is robust against uncertainties 
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and disturbances as shown in figures 14 and 15. Figures 16, 17 represent the total input 
history of each subsystem defined in equation (35) and (36). 

 
FIGURE16. Control Input of the First Subsystem of the First Subsystem 

 

 
FIGURE17. Control Input of the Second Subsystem of the First Subsystem 

Figure 18 and 19 presents the estimation of the first and second states of the first 
subsystem with their desired value. 

 
FIGURE18. The Estimation of the First State of the First Subsystem and the Desired 

Value of the First Subsystem 
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FIGURE19. The Estimation of the Second State of the First Subsystem of 

 the First Subsystem 
 

The performance of the proposed observer on the second subsystem and their desired 
trajectories are shown in figure 20 and 21. 

 
FIGURE 20.the Estimation of the First State of the Second Subsystem and the Desired 

Value of the First Subsystem 
 

 
FIGURE 21. The Estimation of the Second State of the Second Subsystem of 

 the First Subsystem 
 

As shown in Figures 18 through 21, it is obvious that the nonlinear state observer can 
generate properly the estimated states and it indeed performs really well. Moreover, it 
is also clear that the output of the system converges to the desired value. The stability 
of the closed loop system, the convergence of both the tracking error and the observer 
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error to zero, and robustness against both external disturbances and approximation 
errors are the merits of the proposed controller and observer as well. 

 

6.Conclusion 

This paper proposed a decentralized fuzzy adaptive consensus controller method for a 
class of non-affine nonlinear multi-subsystem systems with non-canonical uncertain 
nonlinear dynamics. In order to resolve the obstacle deriving from the immeasurable 
states, the adaptive nonlinear state observers are constructed while the 
interconnections and the functions of the subsystems are unknown. Both the observer-
based controller structure and the derived adaptation rules guarantee the boundedness 
of the tracking error and observer error. Robustness against external disturbances and 
approximation errors and using knowledge of experts are the merits of the proposed 
method. The effectiveness of the proposed control method is further verified through 
simulation studies. The future work of the authors is to apply the proposed method on 
the cognitive science. We are currently working on formulating a cognitive based 
structure by extending the main concepts of the proposed intelligent method to furnish 
a better and yet solid framework for the so-called cognitive control. Furthermore, we 
are working on its applications in modeling driver’s steering behavior in turns. 
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