MINIMAL AND STATEWISE MINIMAL INTUITIONISTIC GENERAL L-FUZZY AUTOMATA

Document Type: Research Paper

Authors

1 Department of Mathematics, Graduate University of Advanced Technology, Kerman, Iran

2 Department of Mathematics, Graduate University of Advanced Tech- nology, Kerman, Iran

Abstract

In this note, by considering the notions of the intuitionistic general L-fuzzy automaton and $(\alpha, \beta)$-language, we show that for any $(\alpha, \beta)$-language $\mathcal{L}$, there exists a minimal intuitionistic general L-fuzzy automaton recognizing $\mathcal{L}$.
We prove that the minimal intuitionistic general L-fuzzy automaton is isomorphic with threshold $(\alpha,\beta)$ to any $(\alpha, \beta)$-reduced max-min intuitionistic general L-fuzzy automaton.
%Also, we prove that the minimal intuitionistic general L-fuzzy automaton is an $(\alpha, \beta)$-reduced.
Also, we show that  for any strong deterministic max-min intuitionistic general L-fuzzy automaton there exists a statewise $(\alpha, \beta)$-minimal intuitionistic general L-fuzzy automaton.
In particular, a connection between the minimal and statewise  $(\alpha, \beta)$-minimal intuitionistic general L-fuzzy automaton is presented.
%We show if $\tilde{F}^*$ is an $(\alpha, \beta)$-complete $(\alpha, \beta)$-accessible deterministic max-min intuitionistic general L-fuzzy automaton and it is recognizing $(\alpha, \beta)$-language $\mathcal{L}$, then the minimal $\tilde{F}^*_{\mathcal{L}}$ is homomorphism with threshold $(\alpha, \beta)$ to statewise $(\alpha, \beta)$-minimal $\tilde{F}_{m}^*$, where $\tilde{F}_{m}^*$ is statewise $(\alpha, \beta)$-equivalent to $\tilde{F}^*$.
Also, for a given intuitionistic general L-fuzzy automaton, we present two algorithms, which determines
states of the minimal intuitionistic general L-fuzzy automaton and the statewise $(\alpha, \beta)$-minimal intuitionistic general L-fuzzy automaton.
Finally, by giving some examples, we comparison minimal intuitionistic general L-fuzzy automaton and statewise $(\alpha, \beta)$-minimal intuitionistic general L-fuzzy automaton.

Keywords


[1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
[2] K. Atanassov and S. Stoeva, Intuitionistic L-fuzzy sets. In: R. Trappl (ed.) Cybernetics and
Systems Research 2. Elsevier, North-Holland, (1984), 539-540
[3] N. C. Basak and A. Gupta, On quotient machines of a fuzzy automata and the minimal
machine, Fuzzy Sets and Systems, 125 (2002), 223-229.
[4] W. Cheng and Z. W. Mo, Minimization algorithm of fuzzy nite automata, Fuzzy Sets and
Systems, 141 (2004), 439-448.
[5] M. Doostfatemeh and S. C. Kremer, New directions in fuzzy automata, International Journal
of Approximate Reasoning, 38 (2005), 175-214.
[6] C. L. Giles, C. W. Omlin and K. K. Thornber, Equivalence in knowledge representation:
automata, recurrent neural networks, and dynamical fuzzy systems, Proceedings of IEEE, 87
(1999), 1623-1640.
[7] J. A. Goguen, L-Fuzzy sets, Journal of Mathematical Analysis and Applications, 18 (1967),
145-173.
[8] M. M. Gupta, G. N. Saridis and B. R. Gaines, Fuzzy Automata and Decision Processes,
North Holland, New York, (1977), 111-175.
[9] Y. B. Jun, Intuitionistic fuzzy nite state machines, Journal of Applied Mathematics and
Computing, 17 (2005), 109-120.
[10] Y. B. Jun, Quotient structures of intuitionistic fuzzy nite state machines, Information Sci-
ences, 177 (2007), 4977-4986.
[11] D. S. Malik and JN. Mordeson, Fuzzy Automata and Languages: Theory and Applications,
Chapman Hall, CRC Boca Raton, London, New York, Washington DC, 2002.
[12] A. Mateescu, A. Salomaa, K. Salomaa and S. Yu, Lexical Analysis with a Simple Finite Fuzzy
Automaton Model, Journal of Universal Computer Science, 1 (1995), 292-311.
[13] C. W. Omlin, K. K. Thornber and C. L. Giles, Fuzzy nite-state automata can be deter-
ministically encoded in recurrent neural networks, IEEE Transactions on Fuzzy Systems, 5
(1998), 76-89.
[14] W. Pedrycz and A. Gacek, Learning of fuzzy automata, International Journal of Computa-
tional Intelligence and Applications, 1 (2001), 19-33.
[15] K. Peeva and Behavior, reduction and minimization of nite L-automata, Fuzzy Sets and
Systems, 28 (1988), 171-181.
[16] K. Peeva, Equivalence, reduction and minimization of nite automata over semirings, The-
oretical Computer Science, 88 (1991), 269-285.

[17] D. Qiu, Supervisory control of fuzzy discrete event systems: a formal approach, IEEE Trans-
actions on Systems, Man and CyberneticsPart B, 35 (2005), 72-88.
[18] A. K. Ray, B. Chatterjee and A. K. Majumdar, A formal power series approach to the
construction of minimal fuzzy automata, Information Sciences, 55 (1991), 189-207.
[19] E. S. Santos, Maxmin automata, Information Control, 13 (1968), 363-377.
[20] M. Shamsizadeh and M. M. Zahedi, A note on "Quotient structures of intuitionistic fuzzy
nite state machines", Journal of Applied Mathematics and Computing, 51 (2016), 413-423.
[21] M. Shamsizadeh and M. M. Zahedi, Intuitionistic General Fuzzy Automata, Soft Computing,
20 (2015), 1-15.
[22] M. Shamsizadeh and M. M. Zahedi, Minimal Intuitionistic General L-Fuzzy Automata, Ital-
ian Journal of Pure and Applied Mathematics, 35 (2015), 155-186.
[23] V. Topencharov, K. Peeva, Equivalence, reduction and minimization of nite fuzzy automata,
Journal of Mathematical Analysis and Applications, 84 (1981), 270-281.
[24] W. G. Wee, On generalization of adaptive algorithm and application of the fuzzy sets concept
to pattern classi cation, Ph.D. Thesis, Purdue University, Lafayette, IN,1967.
[25] W. G. Wee and K. S. Fu, A formulation of fuzzy automata and its application as a model of
learning systems, IEEE Transactions on Systems, Man and Cybernetics, 5 (1969), 215-223.
[26] L. Yang and Z. W. Mo, Cascade and Wreath Products of Lattice-Valued Intuitionistic Fuzzy
Finite State Machines and Coverings, Fuzzy Information & Engineering and Operations
Research & Management Advances in Intelligent Systems and Computing, 211 (2014), 97-
106.
[27] X. W. Zhang and Y. M. Li, Intuitionistic fuzzy recognizers and intuitionistic fuzzy nite
automata, Soft Computing, 13 (2009), 611-616.