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ABSTRACT. In this note, by considering the notions of the intuitionistic general
L-fuzzy automaton and (a, 8)-language, we show that for any («, 8)-language
L, there exists a minimal intuitionistic general L-fuzzy automaton recogniz-
ing £. We prove that the minimal intuitionistic general L-fuzzy automaton is
isomorphic with threshold (e, 8) to any («, 8)-reduced max-min intuitionistic
general L-fuzzy automaton. Also, we show that for any strong determinis-
tic max-min intuitionistic general L-fuzzy automaton there exists a statewise
(a, B)-minimal intuitionistic general L-fuzzy automaton. In particular, a con-
nection between the minimal and statewise (o, 8)-minimal intuitionistic gen-
eral L-fuzzy automaton is presented. Also, for a given intuitionistic general
L-fuzzy automaton, we present two algorithms, which determines states of
the minimal intuitionistic general L-fuzzy automaton and the statewise («, 8)-
minimal intuitionistic general L-fuzzy automaton. Finally, by giving some
examples, we comparison minimal intuitionistic general L-fuzzy automaton
and statewise («, 8)-minimal intuitionistic general L-fuzzy automaton.

1. Introduction

Fuzzy automaton was introduced by Wee [24] in 1967 and Santos [19] in 1968.
Fuzzy finite automata have many applications in different branches of science, for
example in learning system, pattern recognition, neural networks and database the-
ory [6, 8, 11, 13, 14, 17, 25]. The intuitionistic fuzzy sets introduced by Atanassov
[1] have been found to be highly useful to deal with vagueness. Atanassov by adding
non-membership value, which may express more accurate and flexible information
as compared with fuzzy sets. Using the notion of intuitionistic fuzzy sets, Jun [9]
introduced the notion of intuitionistic fuzzy finite state machines as a generaliza-
tion of fuzzy finite state machines. Based on the papers [9, 10], Zhang and Li [27]
discussed intuitionistic fuzzy recognizers and intuitionistic fuzzy finite automata.
Atanassov and Stoeva generalized the concept of IFS to Intuitionistic L-fuzzy sets
[2] where L is an appropriate lattice. Thus on the basis of lattice-valued intuitionis-
tic fuzzy sets, Yang et al. [26] introduced the concept of lattice-valued intuitionistic
fuzzy finite state machines. In 2004, Doostfatemeh and Kremer [5] extended the
notion of fuzzy automaton and gave the notion of general fuzzy automaton. Their
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key motivation of introducing the notion general fuzzy automaton was the insuf-
ficiency of the current literature to handle the applications which rely on fuzzy
automaton as a modeling tool, assigning membership values to active states of a
fuzzy automaton, resolve the multi -membership. Another important insufficiency
of the current literature is the lack of methodologies which enable us to define and
analyze the continuous operation of fuzzy automaton. In 2015, Shamsizadeh and
Zahedi gave the notion of max-min intuitionistic general fuzzy automaton [21, 20].
The present authors [22] gave the notion of max-min intuitionistic general L-fuzzy
automaton (IGLFA) and («, 8)-language for an IGLFA.

Note that the state minimization is a fundamental problem in automaton the-
ory. So, it is important to study in the intuitionistic fuzzy automaton. There are
many papers on the minimization problem of fuzzy finite automaton. For example,
minimization of the mealy type of fuzzy finite automaton is discussed in [4], mini-
mization of fuzzy finite automaton with crisp final states without outputs is studied
in [3], minimization of deterministic finite automaton with fuzzy (final) states in
[12] for more information see [16, 15, 18, 23].

In this paper first, we prove that for any («, 8)-language, there exists a minimal
intuitionistic general L-fuzzy automaton. Also, we give an algorithm which com-
putes the states of the minimal automaton with time complexity O(|Q|/@!+3| X ||Q1+1
|Z]), where X is the set of alphabet, @ is the set of states and Z is the set of out-
puts. We show that the minimal IGLFA is isomorphic with threshold (o, 8) to any
(a, B)-reduced, (o, 8)-complete, («, 3)-accessible, deterministic max-min IGLFA.
Also, we prove that the minimal IGLFA is an («, 8)-reduced.

In section 4, we present an algorithm to generate the statewise minimal of the
max-min IGLFA with time complexity O(|X||Q|*). Furthermore, we show that for
any strong deterministic max-min IGLFA there exists a statewise («, 3)-minimal
IGLFA. Moreover, if F* is an («, 3)-complete, (c, 3)-accessible, deterministic max-
min IGLFA and it is recognizing (v, 8)-language £, then the minimal F 7 is ho-
momorphism with threshold (o, 8) to statewise (o, §)-minimal F*, where F* is
statewise («, 3)-equivalent to F*.

2. Preliminaries
We give some definitions which are necessary for the other parts.

Definition 2.1. [1] Let A in E is given. An intuitionistic fuzzy set (IFS) AT on
FE is an object of the following form

At = {<x,uA(x),yA(x)>|x € £},

where the functions ps : E — [0,1] and v4 : E — [0,1] define the values of
membership and non-membership of element = in F to the set A, respectively. For
every t € B, 0 < pa(x) +va(z) < 1.

In what follows, we denote the set AT by A.
Let L = (L,<r,0,1) be a bounded (complete) lattice. An L-fuzzy set A on E is
function A: E — L [7].
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Definition 2.2. [2] Let X be a nonempty set and L be a bounded lattice with an
involutive order reversing unary operation N : L — L. An intuitionistic L-fuzzy
set (ILFS) is an object of the form A = {(x, u(x),v(z))|z € E}, where y and v are
functions p: E — L,v : E — L in which for every x € X, u(z) < N(v(x)).

In the rest of paper, it is assumed that L = (L,<p,7,S5,0,1) is a bounded
lattice, where endowed with an Lt-norm T, an Lt-conorm S, the least element 0
and the greatest element 1, also with an involutive order reversing unary operation
N:L— L.

Notation 1. Let A, B € L. We define A <;, B if and only if A <; B and A # B.
Also, suppose that A > B if and only if B <j, A.

Definition 2.3. [22] An intuitionistic general L-fuzzy automaton (IGLFA) F is a
ten-tuple machine denoted by F = (@, X, R,Z,6,0, Fy, Fs, F3, Fy), where

(1) @ is a set of states,

(2) X is a finite set of input symbols, X = {a1,as,...,an},

(3) R is the ILFS of start states, R = {(q, u'(q), v'o(q))|q € R}, where R is a
finite subset of @,

(4) Z is a finite set of output symbols, Z = {b1,bs, ..., b},

(5) 6:(Qx L xL)x X xQ— L x L is the augmented transition function,

(6) @:(Q xLxL)xZ— L x L is the output function,

(7) Fy = (FL',F?), where F{ : L x L — L is an Lt-norm which is called the
membership assignment function. Furthermore, FY : L x L — L is an
Lt-conorm, where is the dual of Fif respect to involutive negation and it is
called non-membership assignment function.

(8) Fy = (Ff, Fy), where Ff : L x L — L is an Lt-norm and which is called
the membership assignment output function. Moreover, Fy : L x L — L is
an Lt-conorm which is called non-membership assignment output function,
where it is the dual of F respect to the involutive negation.

(9) F3 = (F{9, FJT), where F{T : L* — L is an Lt-norm and is called the
multi-non-membership function. Also, FZ° : L* — L is an Lt-conorm,
where it is the dual of F:.;ST respect to the involutive negation and it is
called the multi-membership function.

(10) Fy = (FS, F7T), where FPT : L* — L is an Lt-norm and is called the
multi-non-membership output function. Moreover, F{° : L* — L is an
Lt-conorm, where it is the dual of F'7 respect to the involutive negation
and is multi-membership output function.

Let Quet(t;) be the set of all active states at time ¢; for every ¢ > 0. We have
Qact (tO) = Rand Qact (tl) = {(Q7 /”'ti (Q)a vl (Q)) ‘ El(qlv Mti_l (q/)a i (q/)) € Qact (ti—l)a
Jda € X,5(¢,a,q) € A, uti(q) >, 0}, for every positive integer i.

Since Qquet(t;) is an ILFS, to show that a state ¢ belongs to Quct(t;), we write

q € Domain(Qa.t(t;)) and for simplicity of notation we denote it by ¢ € Q et ().

We assume that pf(q) = 0 and v (q) = 1, for every q € @ such that ¢ ¢ R and
pto(q) > 0, for every q € R.
In the sequel, we assume that the max-min IGLFA has a finite number of states.
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Definition 2.4. [22] Let F' be an IGLFA. We define the max-min intuitionistic
general L-fuzzy automaton F* = (Q, X, R, Z,6*, &, F1, Fa, F5, Fy), where §* : Qqct X
X" XQ—=LxL,Quet = {Qact(to)a Qact(tl)v Qact(tZ)a } and for every i > 0,

< . . 1 if p=q

5* ti t; A —

1((q, 1" (q), v (9)), A, p) {0 otherwise” (1)
and

- , , 0 if p=

65((q, 1" (q),v" (q)), A, p) ={ b=

1 otherwise (2)
Also, for every i > 0, 6;((q, 1" (), ¥ (q)), uiy1,p) = 01((q, u**(q), " (q)), wis1,D)
and 05 ((¢, 1" (q), v (9)), wiy1,p) = 02((q, u**(q), ¥"(q)), wis1, p) and recursively,
01 (g, 1 (@), v"° (@), wrtiz..tn, p) =
V{61((g, (), " (@) w1, p1) A S1((pr, 1 (p1), v (p1)), 2, p2) A .. )
AL ((Pr—1, 1" (Pr—1), V" (Pr=1)), tn, P)|P1 € Qact (t1), -, Prn-1 € Qact (tn—1)},
35 (g, 1 (9),v"°(@)), 1tz tn, p) =
A{82((q, 1" (q), " (), w1, 1) V 82 ((p1, ' (1), v (p1)), uz, p2) V ... 0
V 82((Prn—1, 1" (pr—1), V" (Pr-1)), tn, ) |P1 € Qact(t1), - Prn1 € Qact (tn—1)},
in which u; € X for every 1 < i < n and w;41 is the entered input at time ¢; for

every 0 <¢<n—1.

Let F* = (Q,X, R, Z,6*,&, F\, Fy, F3, F}) be a max-min IGLFA. Then the car-
dinality of F* is defined by |}~7 *I = |Q|. In the rest of this paper, we denote every
max-min IGLFA F* = (Q,X,é,& 5*,&/,F1,F2,F3,F4) with F*. Also, for every
bounded lattice L, we suppose that a, 8 € L and a <j, N(f).

Definition 2.5. [22] Let F* be a max-min IGLFA. Then

(1) F* is (a, B)-complete, if for each ¢ € Q,a € X there exists p € @ such that
61((]70”1)) >L and 62((17 a7p) <r ﬂa ~ 5

(2) g€ Qis (o, 6)-accessiblg if there exist p € R,z € X* such that 05 ((p, p'° (p),
vio(p)),x,q) >r o and 03((p, p (p), v* (p)), z, q) <1 B,

(3) F*is («a, B)-accessible if for every q € @, ¢ is an («, 8)-accessible.

Definition 2.6. [22] Let F* be a max-min IGLFA. Then we say that F* is de-
terministic if there exists a unique pg € R such that p'®(pg) > 0 and for every
q € Q,a € X there exists at most one p € @ such that d2(q, a,p) <g, 1.

Definition 2.7. [22] Let F* be a max-min IGLFA. Then the (a, 3)-language rec-
ognized by F* is a subset of X* defined by:
LYP(F) = {z € X7[67 ((p, 1" (), V" (P)), m, )n (g, 07 (g), v (g)), b)> Ly,
55 ((p, 1° (p), v"° (p)), @, V@2 (g, 1 1% (9), 101V (), b ) <8,
for some pe R,q € Q,b,b € Z}.
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Definition 2.8. [22] Let X be a nonempty finite set. Then subset £ of X* is
called recognizable (a, §)-language if there exists a max-min IGLFA F* such that
L= LYP(F).

Definition 2.9. [22] Let F** be an (o, 3)-accessible, («, 8)-complete, deterministic
max-min IGLFA. We define a relation on Q by ¢1p*?qs if and only if

{w € X SI((QL /’Lti (q1)7 Vti (Q1))a w, q) A (:.)1 ((qa ,U/ti+‘w| (Q)7 Vti—Hw‘ (Q)), b) > Q,
03 ((qu, 1" (qu), V' (qn)), w, q) V @2 ((q, w1 (q), "1 (), ) <1 B,
for some b,b' € Z,q € Q} =

85 (g2, 1 (g2), V7 (g2)), w, ) A @1 ((g, 71N (q), v+ (9)), ) >1 a,

05 (g2, 1 (2), 1" (g2))s w, @) V @2 ((q, p'971 (), v 11 ()),0) <1 B,
for some b,b' € Z,q € Q},

{we X*

where q1 € Qqet(ti) and g2 € Qact(25)-

Definition 2.10. [22] We say that the («, B)-accessible, («, 8)-complete, deter-
ministic max-min IGLFA F* is («, 3)-reduced if q;p*?qo implies that ¢; = ¢q, for
every qi, ¢z € Q.
Definition 2.11. [22] Let FF = (Q1,X, Ry, Z1,0%,@, Fy, Fy, F5, Fy) and F} =
(Q27X~, RQ,22,5:*,®’7F1,F2,F3,F4) be two max-min IGLFA. A homomorphism
from Fy onto Fy with threshold («, ), is a function £ from @y onto @2 such
that for every ¢’,¢” € Q1, w € X and by, by € Z the following conditions hold:
(1) (1S, (d) >L o & v (¢) <i B S, (E(d) >L a & vy, (E(d) <w B),
(2)
(61(q/,u7q”) >« & 62(q/au7q//) <r ﬁ —
01(&(d'),u,8(q")) >1 a & 55(8(a"),u,€(¢")) <c B),
(3) (wi(q',b1) >1 a &wa(q',b2)<pB== wi(§(q'),b)>L a& wa(§(q'),b2) <LB),
for some b,b’ € Z'.
We say that £ is an isomorphism with threshold («, ) if and only if £ is a homomor-

phism with threshold («, 8) that is one-one and (w1 (¢’,b1) > @ & wa(q’,b2) <r B)
if and only if (wi(£(¢'),b) >1 a & wa(&(q'),b2) <r, B), for some b, b’ € Z’.

Definition 2.12. [22] Let £ be an (o, 8)-language. A relation R, on X* is defined
as follow:

For any two strings  and y in X™*, xR,y if for every z € X* either zz,yz € L or
xz,yz ¢ L.

3. Minimal Intuitionistic General L-Fuzzy Automata with
One Initial State

Definition 3.1. For any («, 8)-language £ C X* and u € X*, a subset £, of X*
defined by £, = {v € X* |uv € L} is called a right quotient of £ with respect to u.
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Let Q; = {Lu|u € X*} be the set of all right quotients of £ and define R =
{La},p(La) = 1,00 (Ly) = 0,Z = {b}, a mapping oz : Qz x X x Qg — L x L
by:

5[,1 (‘Cuvaaﬁv) = n Zf ‘C“a : ‘CU )
0 otherwise (5)
m Zf Eua = »Cv
4] Eua wav = )
c2(Lus @ Lo) {1 otherwise (6)

and wy : Qg X Z — L x L by:

wer (Lo, b) = Yo ifuel

A 0 otherwise’ (7)
ne ifuel

1 otherwise’ (8)

where 1,72, 11,12 € Ly y1 Ay >p a,m Ve <g B and v <p N(n1),72 <p N(n2).

Theorem 3.2. For any («, B)-language L C X*, the following properties are equiv-
alent:

(1) Qr is finite,

(2) L is a recognizable («, B)-language.
Proof. 1= 2. First, let Q be finite. Then Ff = (Q, X, L, {b},05,0r, F1, Fa, Fs,
Fy) is a IGLFA. We show that £L*#(F}) = L. If w € £, then wg1(Ly,b) >1 o and
wra(Ly,b) <r, B. Also, we have

521((‘6/\7 /Jtﬂ (LA)7 iz (‘C/\))? w, ‘Cw) > Q,
and ~
7o (Lo, 1 (La), v (La)), w, Lo) <L B.
Hence, w € L8 (F}). Now, let w € L>P(F}). Then there exists £, € Q. such that

521((['/\7HtO(LA)7VtO(£A))7w7‘CZ) /\Uvﬁl((ﬁzvut0+lw‘(ﬁz)vVt0+|w‘(‘cz))7b) >rLQ, (9)

and

O2a((L, 1 (£a), "0 (L)) w, L) V Dea((Ley T (L), v 1(L2)),B) <2 B (10
By considering (3.1) and (3.1), we have £, = L,,. Also, (3.2) and (3.2) imply that
we1 (L, b) >1 a and wea(Ly,b) <p B. Therefore, w € L. Hence, L*P(F%) = L.

2 = 1. Suppose that £ be a recognizable («, 5)-language for some («, 3)-accessible,
(v, B)-complete, deterministic max-min IGLFA F* = (Q, X, {qo}, Z,6*,&, Fy, Fy, F3,
Fy). Define a map f: Q — Qr by f(q) = L., where

57 (g0, 1" (90), " (90)), u, @) >1, @ and 63 ((qo, ' (q0), " (90)), u, ¢) <1, B-

It is clear that the map f is well defined and surjective. So, |Q.| < |Q| and hence,
Q@ is finite. O
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Example 3.3. Let the bounded lattice L = (L, <, T, S,0, 1) as in Figure 1, where
L ={0,a,b,¢,d,1} and N(0) =1,N(1) =0,N(a) =b,N(b) = a,N(c) =d,N(d) =
c. Suppose that £ = {u, v}*uv{u, v}* U{u, v}*vu{u,v}* be a (a, b)-language. Then

1
[

FiGURE 1. The Bounded Lattice L of Example 3.3

by Definition 3.1, Lo = £, L, = v{u,v}* UL, L, = w{u,v}* UL, L2 = Ly, Loy =
Lyy = X* = Lypy = L2, L2 = L,,. Therefore, we have F: as in Figure 2.

&

ulkf..

u. (c, d)

u. (c, d)

u, v. (c, d)

F1GURE 2. The Max-Min IGLFA of Example 3.3
The following algorithm determines the states of minimal automaton.

1. Algorithm (states of minimal automaton)
Step 1: input: (a, 3)-accessible max-min IGLFA F* = (Q, X, R, Z,6*, &,
Fy, Fy, Fy, F4) and a, 8 € L,a <p, N(ﬁ),
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Step 2: A, = {z € X*||z| =1}, let I =0,
Step 3: qlbg’ﬁqg if and only if
@1 (g1, 1 (q1), V" (@1)), b1) >1 o & Da((qu, ph (@), V" (1)), b)) <1 B <=
@1((a2, 1" (g2), V" (g2)), b2) >1 o & @a((g2, 1" (a2), v (a2)). b5) <r B
for some by, b}, ba, b5 € Z, where ¢1 € Qqct(t;) and a2 € Qqet (1),
Step 4: | =1+1,
Step 5: qlbf’ﬁqg if and only if qlLlO‘_’qug and
{w € X*[67 ((q1, i (q1), v (1)), w, q) A1 ((q, pti TN (q), i+l (9)),01) > a,
85 (a1, 1" (q1), V" (1)), w, @) V @2 (g, 1" 1V (q), 17100 (), b)) < B, |w| =1} =
{w € X*|67 (g2, 1" (q2),v"7 (g2)), w, q) A @1 ((q, u'5 1" (q), 5+ (q)),b1) > a,
35 (a2, 19 (q2),v" (a2)), w, q) V @2 ((q, '3 11 (q), 111\ (g)), b)) <1, B, |w| =1},
for some l)1,171,l)2,b2 € Z, where 1 € Qact(ti), ¢2 € Qact(t;5),
Step 6: if ¢;" 1 =" go to next step, else go to Step 5,
Step 7: %P =y ’ﬁ,
Step 8: output: (*F,

Now, consider the (a,f3)-accessible max-min IGLFA F*. Suppose that ¢1:*?gs.
Since F™* is («, 3)-accessible. Then there exist u,v € X* such that

ST((qu ,u‘tU (q0)7 Vto (QO))7 u, Q1) > Q, g;((‘]oa uto (QO)v Vto (qO))7 u, Q1) <r 57
and

55 (g0, 1™ (q0), ™ (q0)), v, 42) >1 @, 85 (g0, 1™ (q0), ™ (q0)), v, 42) <i B-
Therefore, by Algorithm 1, £, = L,.

Steps 4 to 6 of the Algorithm 1, are a loop. The loop must be repeated at most
O(|Q]) times. The order of time complexity to calculate I = 1 is O(|Q|?| X||Z|),
to calculate I = 2 is O(|Q|*|X||Z|). If we continue this process, then the time
complexity of calculating this algorithm is O(|Q|I@1+3| X |IQ1+1|Z)).

Example 3.4. Consider the bounded lattice L = (L, <, T, S,0,1) as in Figure 1,
and let £ = {u,v}*uv{u,v}* U {u, v}*vu{u,v}* be a (a,b)-language. Suppose that
F* as in Figure 3, and a = a and § = b. It is clear that £*#(F*) = £. Then by
Algorithm 1, we have

Stage 1: go10"" qa, qotg 10§ g,

Stage 2: ¢2:%7q4,

Stage 3: g2t5"qu.
Therefore, we have :** = {[qo], [¢1], [¢2], [¢4]}- Then by Example 3.3, we get that
the number of states of F* is equal to the number of the member of 8.

Theorem 3.5. Let L be a recognizable («, 8)-language. Then Fﬁ = (Qg, X, La,
{b},05,@r, F1, Fy, F3, Fy) is a minimal («, B)-accessible, (o, B)-complete, determin-
istic maz-min IGLFA, which L(F}) = L.
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b. (1,0)

FI1GURE 3. The Max-Min IGLFA of Example 3.4

Proof. Tt is clear by the proof of Theorem 3.2. O

Theore{n 3.6. For every recognizable («, B)—language L, the minimal maz-min
IGLFA F} defined in Definition 3.1, is (v, 5)-reduced.

Proof. Let F* be an (a, B)-accessible, (a, B)-complete, deterministic max-min IGLFA.
Suppose that ¢, = Ly, ¢2 = L,,. Now, let g1 p%?go. Then

A={w € X|651((Lu, 1 (Lu), V" (Lu)),w,q) Adea (g, n" 7 (@), v (g)),0) >1 @,
022 (L 1 (L), V" (L)), w, @) V @2 ((g, 1 (), "1 ()),0) <1 B,
for some b,b' € Z,q € Qc} =

B ={w € X" |51 ((Lo, 1 (L0), V"7 (L)), w, q) A Gea((q, w1 (q), 51"V (q)),b) > 1 a,
022((Los p9 (L), 01 (L)), w, ) V @22 ((q, w7 (q), 154101 (g)), b)) <1 B,
for some b,b’' € Z,q € Qr}.

So, w € A if and only if w € B, for every w € X*. This implies that

wl(ﬁuwab) >L Oé,bdg(ﬁuw,b) <r B <= wl(ﬁvwab) > aaw2(£vw7b) <t B,
for every w € X*. Therefore, uw € L if and only if vw € L, for every w € X*. So,
L, = L,. Hence, F} is (o, §)-reduced. O

Theorem 3.7. Let L be a recognizable («, 8)-language. Suppose that Fz be the
maz-min IGLFA defined in Definition 3.1, and F* be an (a, B)-complete, (a, 3)-
accessible, deterministic (o, 8)-reduced maz-min IGLFA. Then FZ and F* are iso-
morphism with threshold (a, ).
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Proof. Let F} = (Qc, X, {£a}, {b},05,0r, F1, Fo, F3, Fy) and F* = (Q, X, {q}, Z,
6,0, Fy, Fy, F3, Fy). Define € : Q — Qr by £(q) = L., where

57 ((q0, 1" (g0), v**(90)), u, @) >1 o and 65 ((go, 1" (q0), " (q0)), u, @) <1 B-
By (a, B)-accessibility property of F*, /,Lg (g0) > @ and 1/5) (qo0) <1, B also, we have

prOE(EA) >, a and l/g)t(ﬁ/\) <r B.
Let q1,q2 € Q and q; = ga. Then q1p*Pqa. So, L, = Ly, ie., &(q1) = &(go).
Hence, ¢ is well defined.
Let £, € Qr. By the («, 8)-complete property of F*, there exists ¢ € Q such
that
07 (g0, 1" (90), v"(a0)), u, @) > o and 05 ((qo, 1" (q0), v**(a0)), u. @) <z B-

Then &(q) = L,,. Therefore, £ is surjective. )
Now, let d1(q,a,q¢') >1 a and d2(q,a,q") <p B. Since F* is («, B)-accessible,
then there exists u € X™* such that
57 ((q0, 1™ (q0), ™ (q0)), ;@) >1 o and 63 ((go, 1™ (go0), ™ (q0)), 1. q) <1 B-
Therefore,

8% (g0, 1 (90), " (q0)), ua, ¢') >1 a and 63 ((qo, 1" (q0), " (q0)), ua, q') <r, B-

Hence, 021(£(q),a,£(¢")) >1 « and d.2(£(q),a,&(q")) < B, where {(q) = L, and
€(q') = Lua- Let 0£1(£(q), a, £(¢')) >1 o and 622(£(q),a,€(q")) <r B, where {(q) =
L, and f( "y = L,. Then ﬁua = L,. We have w € L,, if and only if uaw € L if
and only if aw € L, for every w € X*. So,

01 ((q, 1" (9),v" (@), aw, p) A ((p, u" 1 (p), ' 1%l (p)), b) > 1 a,
55 ((q, 1" (q), " (@), aw, p) V @a((p, "1 (), " 1 (p)), ') < B, (11)
if and only if
01 (g, n " (q), v (), w, p) A @i ((p, n' I (p), v (), b) > 1 a,
55((q', 1+ (q), V' (q)), w, p) V G (o, w11 (), i P (), 0y < B, (12)

)
)

where |u| = i and b,V € Z. By (o, 8)-complete and deterministic properties of F*
and (3.7) and (3.7) we have that d1(q,a,q") >1 « and d2(q,a,q") <r 8.

Let ¢ € Q and wi(q,b) > « and wa(q,b’) <p B, for some b,b’ € Z. By the
(e, B)-accessibility property of F*

87 ((qoy 17 (q0), " (q0)), u, @) >1 @ and 83 ((qo, 1 (o), ™ (90)), u, @) <1 5.

Thus u € L. Therefore, wey(Ly,b) > « and wea(Ly,b') <z B, for some b,b' € Z.
Hence, w1 (€(q),b) >1 a and wea(£(q), ') <r B, for some b, b € Z.

So, FZ and F* are homomorphism with threshold (ar, B). Now, let q1,¢2 € Q
and £(g1) = &(g2). Then there exist z,y € X* such that £, = {(q1) = £(¢2) = L.
Therefore, q;p%?qe. By the (a, 3)-reduced property of F*. ¢, = g¢o. Thus, & is
one-one.
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Now, let wr1(€(q),b) > a and wra(€(q),b) <p B for some b,/ € Z, where
&(q) = Ly, ie., wer(Ly,b) >1 a and wea(Ly, V) <p B, for some b, b € Z. This
implies that u € L. So,
ST((qu /u’to(qO)v Vto (QO))vua ql) A wl((qlvﬂt0+‘u|(ql)a VtOJr‘ul(q/))»b) >L «Q,
5;((Q0;/J/to(qo)ayto (qo))auaq/) v@2((q/auto+‘U|(q/)aVtO—Hul(q/)))b/) <L ﬂ7

for some b,b’ € Z. Also, we have

5;((Q07/~Lt0(q0)7 Vto(qo))7u7q) >« and S;((q07uto (qo)ayto (qo))7u7q) <r /6

Since F* is deterministic, then ¢ = ¢'. Therefore, wi(g,b) >, @ and wa(g, V") < B,
for some b,b" € Z. Hence, F and F* are isomorphic with threshold (a, 3). O

Theorem 3.8. Let L be a recognizable («, 5)-language. Suppose that 13‘2 be the
maz-min IGLFA defined in Definition 3.1, and let F:l be the («, B)-complete, de-
terministic maz-min IGLFA defined in Theorem 4.23, in [22]. Then Fj and EY,
are isomorphism with threshold («, ).

Proof. The proof follows from Theorem 3.7, and Theorem 4.26 in [22]. O

4. Statewise (a, 8)-Minimal Max-Min Intuitionistic General
L-Fuzzy Automata

The minimization of IGLFA is a consequence of the theory of equivalence of
IGLFA. In this section, we give a statewise («, 3)-minimal max-min IGLFA. Finally,
we comparison minimal intuitionistic general L-fuzzy automaton and statewise (,)-
minimal intuitionistic general L-fuzzy automaton together.

Definition 4.1. We say that max-min IGLFA F* is strong deterministic if for any
q € Q,a € X there exists at most one p € @ such that d2(q,a,p) < 1.

Theorem 4.2. Let F* “be a maz-min IGLFA. Then there exists a strong determin-
istic maz-min IGLFA F?,; recognizing L%P(F*).

Proof. The proof follows from the proof of Theorem 4.11, in [22]. O

_ The following algorithm determines (a, §)-equivalence classes of max-min IGLFA
F*.

2. (o, f)-equivalence Algorithm
Step 1: input: max-min IGLFA F* = (Q, X, R, Z,6* &, Fy, Fy, F5, F}) and
a,B€L,a<y N(p),
Step 2: R'*% = {(q, 1 (q),v"(q))|"* (9) >1 a,v™(q) <p, B}, R = Domain
(RP),i=0,
Step 3: pg"ﬂ ={R,Q — R}, as the equivalent classes
Step 4: i =i+ 1,



142 M. Shamsizadeh and M. M. Zahedi

Step 5: qlpf’BqQ if and only if ¢1p;"" g2 and if there exists p; € @ such that
0 (p1,a,q1) >1 «@,02(p1,a,q1) <p B, then there exists po € @ such that

81(p2,a,q2) > ,02(p2,a,q2) <r B and p1p;”'pe and vice versa,
Step 6: if p?fi = pf’ﬁ go to next step, else go to Step 4,
Step 7: p*f = ,0?’5,
Step 8: output: p®~.

Steps 4 to 6 of («, 8)-equivalence Algorithm, are a loop. The loop must repeat at
most |Q| + 1 times. Also, the time complexity to calculate Step 5, is O(|X||Q[*).
Then the order of time complexity is at most O(|X||Q|?).

Theorem 4.3. For every i > 0, p?”B is an equivalence relation on Q.

Proof. We prove by induction on 3. Clearly, pg’ﬁ is an equivalence relation on Q.
Let i =1 and g1, q2,q3 € Q. It is obvious that qlp'f”gql and qlp‘f"ﬁqg if and only if
0207 q1. Now, let q1p7" g5 and g2p7""gs. Then

Ip1 € Q st di(pr,a,q1) >p o, 02(p1,a,q1) <p B <=
dp2 € Q s.t 61(p2,a,q2) > @, 02(p2,a,q2) <p B, & p1p8“’ﬁp2 =
Ips € Q 5.t 61(p3,a,q3) >1 a,02(p3,a,q3) <r B, & pap’ps.

Therefore, there exists p1 € @ such that 61 (p1,a,q1) > «,02(p1,a,q1) <p B if
and only if there exists p3 € @ such that d1(ps3,a,q3) >1 «,d2(p3,a,q3) <r B and
1Py 3. Then p<” is an equivalence relation. Now, let the claim holds, for every
1 < n. Suppose that i = n.

Ip1 € Q 5.t 61(p1,a,q1) >L o, 02(p1,a,q1) <p B =
s € Q 5.t 81(paya,q2) >1 @, 09(p2,a,q2) <p B & p1p2ipy =
Ip3 € Q 5.t 81(p3,a,q3) >1 @, 09(p3,a,q3) <1 B & p2p® P ips.

Then there exists p; € Q such that 61(p1,a,q1) > @,d2(p1,a,q1) < B if and only
if there exists ps € @ such that d1(ps,a,q3) >1 @, d2(ps,a,q3) <r B and plpzﬂpg.
Then p%# is an equivalence relation. Hence, p®* is an equivalence relation. O

We show ¢ =P gy if and only if g, p®Pqs, for every q1, ¢z € Q.
The following algorithm process the (a, 8)-equivalence of two max-min IGLFAs
Fy and FY.

3. (a, B)-equivalence Algorithm of Two Max-Min IGLFAs
Step 1: input: max-min IGLFAs F¥ = (Q1, X, Ry, Z1,6*,&, F\, Fy, F3, F)),
F2 :~ l(QQvX,RZa
Z276* a‘:}/7F17F2aF3aF4)a aaﬁ S L,Ot SL N(ﬁ) and ¢ = 07 let q1 S Q15q2 S
QQa
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Step 2: 177"’y if and only if us, (@) >p vl (@) <o B < ne,(g2) >L
«, VEQOZ (Q2)<L65

Step 3: i =i+ 1,

Step 4: ¢17,""q if and only if g7, g2 and there exists p;€Qq such that
01(p1,a,q1)>pa and d2(p1,a,q1) <r, B, then there exists ps € Q2 such that
81 (p2,a,q2) >1 o and 85(p2,a,q2) <r B and p17;- p2 and vice versa,

Step 5: if Tf‘_f = Tia’ﬁ go to next step, else go to Step 3,
Step 6: 7F =77
Step 7: output: 77,

Notation 2. Steps 3 to 5 of (a, §)-equivalence Algorithm of Two Max-Min IGLFAs,
are a loop and this loop must be repeated at most max{|Q1],|Qz2|} + 1 times. The
time complexity to calculate Step 4 is O(| X ||Q1]|Qz2|(max{|Q1],|Q2]})). Then the
total time complexity is at most O(|X||Q1]|Q2|(max{|Q1], |Q2|})?).

We show q; =*7 ¢ if and only if ¢, 7P ¢y, for every ¢1 € Q1,q2 € Q5. It is clear
that =*7 is equivalence relations.

Lemma 4.4. Let ﬁ'l* be a maz-min IGLFA and q;,p; € Q;, where i =1,2,3.

(1) Let g1 = qo and gz = q3. Then q1 =7 ¢3.
(2) Letpy P q1 and q1 =*h q2. Then py =op qs.
(3) Let q1 =xh g2 and pp =»h q2. Then q1 B D1.

Proof. 1. Let ¢17*?q, and ¢o7*Pg3 and 7*° = Tia’ﬁ. We prove the claim by
induction on i. Let ¢ = 0. Then ”81 (1) >1 a,yé;l (1) <1 B if and only if
”82 (q2) >1L 04,1/82 (q2) < B if and only if “83 (g3) >1, Ct7l/5)3 (g3) < B. Therefore,
QT B q3- Suppose that the claim holds, for any positive integer ¢ — 1. If there exists
p1 € Q such that 6} (p1,a,q1) >1 a,03(p1,a,q1) <r B, then there exists py € Qo
such that 6%(pa,a,q2) >1 a,d3(p2,a,q2) <r B and pﬂfﬁfpg and also, there exists
p3 € Q3 such that &5 (ps, a,q3) >1 @,83(ps,a,q3) <r B and pa7"[ps. In a similar
manner if there exists p3 € Q3 such that 63 (ps,a,q3) >1 , 83 (p3,a,q3) <z, 3, then
there exists p; € Q; such that &} (p1,a,q1) > @, 0 (p1,a,q1) <z B and ps7™Pp.
Hence, qle;fqg,.

2. Let p1p®Pq and q;7%P ¢y, where p®P = p?’B,TO"B = Tja’ﬁ. We prove the claim
by induction on n = max{i,j}. Let n = 0. Then :“81 (p1) > a,ug’l (p1) < B if
and only if uté;l (1) > 04,1/81 (¢1) <r, B if and only if u& (q2) >1, a,yg’2 (g2) <1 B.
Let the claim holds, for any positive integer n — 1. Now, Suppose that there exists
Py € Qq such that 6}(p},a,p1) >r « and 63(p},a,p1) <r B. Then there exists
¢, € Q1 such that 61(¢},a,q1) >1 a,8%(q,,a,q1) < B and p, p>* ¢} and also, there
exists ph € Q2 such that 62(ph, a,q2) >1 «,02(ph,a,q2) <z B and q’ngflp’Q. In the
similar way if there exists py € Qo such that 67(ph,a,q2) >1, a, 03 (ph,a,q2) <1, 3,
then there exists p} € Q such that 61 (p},a,p1) >r «,d0s(p},a,p1) <r B, where
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i Aiph. Hence, py = g.
3. Can be proved in a similar manner. ([

Definition 4.5. Let ¥ and Fj be two max-min IGLFAs. Then we say that F}
and Fy are statewise (a, 3)-equivalent, written Fy =%# Fy, if for any q; € Q
there exists go € Q2 such that ¢; =*? ¢, and vice versa.

Definition 4.6. Let F* be a strong deterministic max-min IGLFA. Then we say
that F™* is statewise («, 8)-minimal if F™* is not statewise (¢, )-equivalent to any
max-min IGLFA with a fewer number of states that preserve («, 5)-language.

Theorem 4.7. For every strong deterministic maz-min IGLFA F* there exists a
statewise («, B)-minimal maz-min IGLFA F},.

Proof. Let F* = (Q,X,R,Z,6*,&, F\, Fy, F3,F;). Consider Q,, = q]’q € Q},
where [¢] = {p € Q|q =** p}, Ry = {lq It 6 R, u 9(q) >1L oz,ug’(q) <L B} Z
{e}, ,ugm([q}) = \/{ug(s |s =8 ¢} and v m([ ]) /\{VS(S)‘S ~*8 ¢}. Now,
define 6,, : Q@ X X X Qp, — L X L, where

if 61(s,a,t) >1 a,d2(s,a,t) <1 B, where s =7 ¢, t ~*P p

Sm1([g), a, [p]) = {“

0 otherwise (13)
S (lal, s []) = m if 01(s,a,t) >L a,02(s,a,t) <p B, where s =% ¢, t =x*F8 p
2 Py = 1 otherwise (714)

v1,m € L and v1 <p, N(m). Also, define w,, : Q. X Z,, — L X L, where

(. e) Yo if wi(s,b) >L a,wa(s,b) <z B, where s =8 ¢, b b € Z,
Wm €)= ’
e 0 otherwise (15)

(dl.e) ne  if wi(s,b) >r a,wa(s,b') <p B, where s =*% ¢, bt € Z,
Wm = )
2\ 1 otherwise (16)

Yo, M2 € L and 72 <, N(12).

Now, we show that ¢,, is well defined. Let [q1] = [g2], [p1] = [p2] and 0.1 ([q1], @,
[P1]) = 71, Om2([q1], @, [p1]) = m1. Then there exist r1, s1 € Q such that 61(r1,a,s1) >1
« and 52(7“1,(1,.91) <r B, where ri =P gy =B ¢y, 51 =P p; =P py. Therefore,
dm1([q2]; @, [p2]) = Y1, Om2([g2], @, [p2]) = m. Clearly, w,, is well defined.

Now, we show that F* =7 l*:’;; We prove for any ¢ € Q, qrf’ﬂ[q]. Ifi=0,
then the claim holds. So, for ¢ = 0, the theorem holds. Now, we continue
the proof by induction on i. Let ¢ = 1. If there exists p; € @ such that
61(p1,a,q1) >1 @, 02(p1,a,q1) <p B, then dmi([p1],a,[a1]) >L @, dma([p1], a, [@]) <z B
and pi75°P[p1].  Also, if there exists [p;] € Q, such that 6,,1([pi],a,[q1]) >z
a,0ma([p1], a, [q1]) <r B, then there exist s,t € @ such that s ~*8 py,t ~*F ¢; and
01(s,a,t) > a,02(s,a,t) < B. Since t =% q; and d1(s,a,t) >, «,02(s,a,t) <p, S,
then there exists po € @ such that d1(pe2,a,q1) > «,d2(p2,a,q1) <p B and
p2 =P s =B p;. Then py ~*F pi75 ’B[pl]. So, 171y ’ﬂ[ql]. Suppose that the
claim holds for any i < [, where [ is a positive integer. Also, we show that it holds,
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for i = [. If there exists p1 € @ such that §,(p1,a,q1) > a d2(p1,a,q1) <1 B,
then d,,1([p1], @, [q1]) >1 @, 0m2([p1],a, [q1]) <¢ B and pi7 ’1 [p1]. If there exists
[p1] € Q. such that 0,,1([p1], @, [q1]) > @, 0ma([p1],a [ql]) <r B3, then there is
t ~*# py such that 61 (¢, a,q1) >1 @, 82(t,a,q1) <p, B, where t =8 p; 7 ’B[pl]. So
o’ Plq]. Therefore, ¢ = [q]. Hence, F* =8 F* .

Now, we show that for any max-min IGLFA Fy = (Q1, X, R1, Z1,0%,&1, F1, Fa, F,
Fy) such that Ff =*# F*we have |F%| < |F¥|. Since F =*# F*, then F =*F
Fl* Therefore, for any ¢,p € @1, where ¢ # p there exist ¢1,p1 € @ such that
(1], [p1] € Qun and [¢1] =7 ¢, [p1] =P p. Now, let [q1], [p1] € Qn, where [q1] #
[p1] and q1,p1 € Q. Then there exist p,q € Q; such that [¢1] = ¢, [p1] =*° p,
but p # ¢. Since if p = ¢, then [¢1] ~*# [p1] and [¢1] = q1, [p1] =** p1. So,
a1 =7 [q1] =* [p1] =*7 p1. These imply that g ~** py, then [q1] = [p1] which
is a contradiction. Then |E}| < |Fy|.

Now, we prove L%F(F*) = L¥P(F%). Let ujug...upy; = ¢ € LP(F*). Then
there exist ¢ € R,p € @ and b,V € Z such that

Sik((qvl’cto (q)7 Vto(q))’x’p> A ‘:}1((17) Mt0+\x\(p)’ VtO—Hxl( )7 ) >LQ,

35 ((q, 1" (q), V" (q)), 2, p) V @2((p, o1l (p), vio 1l (p)), ¥') <1, B.

Therefore, there exist p1, p2, ..., Pk, P1; Dhs - Pj 6 Q such that u' (q) Ad1(q,u1,p1) A
01(p1,u2,p2) A oo A1 (pr, uk+1,p) >1 o and v (q) V 02(q, u1, p1) V d2(p1, u2, p2) V
.V 8a(pr, uk+1,p) <r B. Since F* is strong deterministic, then p; = pj,ps =
PPk = Pl- Then 6mi(lg], ur, [p1]) A dma([pa], 2, [p2]) A oo A dma([pr], urta, [p]) >1
o, Om2([q], w1, [p1]) V Oma([pa], uz, [p2]) V .o V Sma([pr], w1, [p]) <r B and wmi([p],e) >1
a,wmz2([p],e) <r B. Also, we have uto([ 1) > pto(q), v ([q]) < v'o(q). Hence, z €
LP(F*). Now, let z € C""ﬁ(F*) Then there exist [q] € R, [p] € Qm and e € Z
such that

Orur (], ' ([a), v (la]), 2, [P]) A @t (], 11 ([p]), v ([p])) €) > o
]

Sz (([a)s ' ([a)), v'° ([a)), 2, [p]) V @z ([p], 1 ([p]), v =1 ([p])), €) <1 8.
These imply that wn1([p],e) >1 a,wm2([p],e) <r B. Therefore, there exists t €
Q and bt € Z such that t =~*7 p and wi(t,b) > a,ws(t,b') <z B. Let 2 =
uy..up. Then there exist [p1], [p2], ..., [Pk—1] € Qm such that §,1([g], u1, [p1]) A
Om1([p1], w2, [p2]) A oo A Sma([Pk—1], uk, [p]) >1 . By (4.7) and (4.7), we have
dma(ldl, ut, [P1]) Vdma(p1], uz, [p2]) V...V éma([Pr—1], uk, [p]) <r B. Since dpma([pr-1],
ug, [p]) >1 a, Omal([pr_1],ur, [p]) <r B, then there exist 7/,t' € Q, where 1/ ~*
pe_1, t' =8 pand 6, (r',up, t') >1 a,82(r', ug, t') <p B. We have t/ ~*F p ~8 ¢
so, there exists ry_; € @ such that 0y (rr—1,ur,t) >5 a,d2(rr—1,uk,t) < B.
Therefore, 741 ~*8 ¢/ ~%F pp 1 =28 [pp_1]. Also, Smi1([pr—2), ur—1, [Pr—1]) >1
@, 6ma([pr—a], ur—1, [pr—1]) <z Band rx_; =7 [pr_1]. Then there exists r;_o € Q,
where rg_o ~8 pp_o and 01 (rg_o, uk—1,7%—1) > @ 02(Tr_2,up—1,7K-1) <r B
So, if we continue this process, then by some manipulation we get that riy_o,...,r1,7 €
Q such that 749 =8 [pp_a],...,r1 = [p1],r =8 [q] and 6, (rr_3,Up_2,Tk_2) A
VAN (51(7‘1711,2,7“2) AN (51(7‘,U1,T1) > «Q, 52(r;€_3,uk_2,rk_2) V..V (52(7‘1,’&2,7“2) V
da(ryur,m) < B. Clearly, r ~*P ¢. Therefore, this implies that p!(r) >p

— o~

(
(
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a, v (r) <;, B. So, x € LYP(F*). Hence, LP(F*) = L*P(F?). Then the claim
holds. (]

Theorem 4.8. Let F* be an («, B)-complete, (cv, B)-accessible, deterministic maz-
min IGLFA recognizing (a, 3)- language L and FL be the mazx-min IGLFA deﬁned
in Definition 3.1. Suppose that F* be statewise (a, §)-minimal to F*. Then F*
and F% are homomorphism with threshold (c, B).

Proof. Let F} = (Qz, X, {La}, {b}, 05,0z, F1, Fo, F3, Fy) and F, = (Qu, X, Ron,
Zmy 8y @Om, F1, Fo, F3, Fy). Define £ : Q.,,, = Qr by &£([q]) = L, where

31 ((90, 1" (90), " (a0)), 1, 9) >1 e and 65 ((q0, 1 (90), " (90)), u, @) <1 6.
Since F* is (o, B)-accessible, then ,ug’ (go) >r « and Vg’ (qo) <r B also, we have
ug’L(EA) > o and VSL([,A) <r B.

Let [q1],[¢2] € Qm and [q1] = [g2]. Then q; ~*# ¢y. Therefore, there exist
U = ujus...ug+1 € X* such that

61 ((qo, 1" (q0), " (q0))s u, 1) >1 a and 83 ((go, 1 (q0), v™(90)), u, q1) <1 B-

So, there exist p1,pa, ..., px € Q such that p(qo) Ad1(qo, w1, p1) Ad1(p1, Uz, P2)A... A
01(Pr> Ukt1,q1) > o and v*(qo) V 62(qo, w1, p1) V d2(p1, u2, p2) V... V02 (prs Uk 41, q1)
<r B. Since ¢1 ~*# ¢ and §1(pr, urs1,q1) >1 @, 02(pr, uks1,q1) <z 3, then
there exists pj, € @ such that 61 (p}, ur+1,q2) >r @, 02(p), Ukt1,q2) <r B and
Pl ~%B pr. Also, 61(pr_1,ur,Pr) >1 @, 02(Pr_1, Uk, pr) <r 3. Then there exists
Ph_, € Q such that 61(p)_,,uk,p}) >1 ,02(ps 1 ur,p}) <z B and pj,_, ~*F
pr—1. By continuing this process we obtain pj,_,, ..., p}, gy € Q such that p} _, ~*#
Ph—2, -, ) = p1,qf =P o and

07 (b, 14" (a0), v" (a0)), u, 42) >1 o and 65 ((ap, 1™ (45), ™ (45)) s u, 42) <1 B.
Therefore, £([q1]) = &([gz])- So, & is well defined.

Now, let 0p1([q], @, [p]) > o and dm2([q], @, [p]) <z B. Then there exist ¢1,p1 €
Q such that g1 =7 ¢,p1 ~*% p and 81(q1,a,p1) > @, d2(q1,a,p1) <r B. By
(o, B)-accessibility property there exists gy € R such that

ST((QOu MtD(CIO)7 Vto (CIO)>7 u, Ch) > o and g;((qoa Mto ((JO)» Vto (QO))» Uu, (Z1) <L B

Therefore,

01 ((q0, 1 (q0), v (q0)), ua, p2) >1  and 63 ((qo, 1™ (o), " (q0)), ua, p2) <1 B.

Since ¢ ~*# ¢ and py ~*F p, then &([q]) = L, and &([p]) = Lua. Therefore,

d21(£(lg)), @, £([p])) > o and d.2(£([a]), a, €([p])) <L B
Suppose that d21(£([g]), a,€([p])) >1 « and 22(£([g]), @, €([p])) <r B, where
¢([q]) = Ly and &([p]) = Ly. Then L, = L,. So, there exists gy € R such that

61 (a0, 1" (90), v (40)), u, @) >1 @, & 63 (a0, 1" (40), V" (@0)), u,0) <z B, (17)
and

87 (g0, 1" (a0), v (90)), ua, p) >L a, & 35((g0, 1" (40),v"* (q0)), ua,p) <L B. (18)
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Then there exists p’ € @ such that
61 (g0, 1" (0), V" (40)), u,p') >1 & 85 (a0, 1" (90), v (@0)), w 1) <r B (19)

by considering (4.8) and (4.8) and the deterministic property of F*, we have 8, (¢, q,
p)>pa and d2(q, a,p)<pB. Therefore, d,,1([q], a, [p])>ra and §,,2([q], a, [p])<wB.

Now, let [q] € @ and w,1([g], 1) >1 @, wma([g],b2) <r B, where by, by € Z,,.
Then there exists p € Q such that p ~*? ¢ and w;(p,b) > a, wa(p, V') <r B, for
some b, b’ € Z. Since F* is (a, B)-accessible, then there exist ¢ € Q,u € X* such
that

7 ((qos 127 (q0), " (q0))s s p) >1 a, & 83((q0s 1 (90), " (90)), us ) <1, B.

These imply that u € £. Therefore, we1(Ly,b1) > « and wea(Ly, b2) <r, B, where
bi,b2 € Zp, ie., wei(€(g),b1) > o and wea(€(q), b2) <1 B.

Let £, € Qr. By the («, 8)-complete property of F*, there exists ¢ € Q such
that

ST((QO, /U‘to (qo)7 Vto (qo))7 u, q) >LQ, and S;((qoa 'ut() (q0)7 Vto (qo))7 U, Q) <L /6

Then &(q) = L,,. Therefore, & is surjective. Hence, F 7 and F:l are homomorphism
with threshold (a, B). d

Now, we give some examples for comparison two minimal IGLFA and statewise
(o, B)-minimal IGLFA.

Example 4.9. Consider the bounded lattice L = (L, <, T, 5,0,1) in Example 3.3,
a = a, = b and max-min IGLFA as in Figure 4.

£5(g,) =1 @ u. (c, d)

v7(g,) =0
Oy e D (.
Vo (@e) = d N bk > :
u, v.{(c, d)

FI1GURE 4. The Max-Min IGLFA of Example 4.9

By (a, 8)-equivalence classes Algorithm, we have

07 = (a0 a5} {01, a2 91,051},

(1) p

(2) P(f’ﬂ = {90, 93}, {1, 94} {@2: a5} }»
(3) 5" = {{a0.as} {1, aa}, {ae}, {as}
@) p3" = {{a0, a3} {1, au} {@e} {05} -
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FIGURE 5. The Statewise (a, 3)-minimal F* of Example 4.9

Then by the proof of Theorem 4.7, Q,, = {[qo], [q1], [¢2], [¢5]}- Therefore, we have
statewise (a,b)-minimal F* as in Figure 5. Also, we have £%*(F*) = uv{u,v}* U
u?{u,v}*. Then by Definition 3.1, we obtain £ = £, £,, = v{u,v}*Uu{u,v}*, L, =
@ = £vu = £v27£uv = {U,U}* = Luz = Luvu = ‘CU’U2' SO; Qﬁ = {LA7‘Cu7‘CU7£u’U}'
Hence, Fz is as in Figure 10. In this example, the number of states F:n is equal to

u, v. (c, d)
FIGURE 6. The Minimal F} of Example 4.9

the number of states F‘E

Example 4.10. Let the bounded lattice L = (L, <,T,5,0,1) in Example 3.3,
a = a, 3 = b and max-min IGLFA as in Figure 7. By considering («, #)-equivalence
Algorithm, we have

(1) ,08"/3 = {{q,9}, {01, 92,94} },
@) p% = {ao, a3}, {ar, aa}, {ao}}},
3) p5? = {{q0, 43}, {q1, qa}, {@2}}}-
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u(g) =1 g )l d @ v (1,0)

V() =0

b-\\"m

/H,,@ g 7.
Ve (gy)=d

FIGURE 7. The Max-Min IGLFA of Example 4.10

Then by the proof of Theorem 4.7, Q., = {[qo], [¢1],[g2]}- Therefore, we have
statewise (a,b)-minimal F¥, as in Figure 8.

mig) =g, )
ve(gy)=d

FIGURE 8. The Statewise (a,b)-minimal F¥ of Example 4.10

Also, we have L**(F*) = wv{u,v}* Uu. Then by Definition 3.1, we obtain F}
as in Figure 9.

u, v. (c, d)

FiGURE 9. The Minimal FZ of Example 4.10
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In this example, the number of states F:;L is less than the number of states FZ.

Example 4.11. Consider the bounded lattice L = (L, <, T,S,0,1) in Example
3.3, a = a, 8 = b and max-min IGLFA as in Figure 10.

2o (g =1 v(1,0)

V(gp)=0

Vi(g,)=d

FIGURE 10. The Max-Min IGLFA of Example 4.11

By considering (o, 8)-equivalence Algorithm, we have

1) p5" = {{a0. as}: {a1, 420 3. 45},

(2) 0" = {{ao} {as} {ar, a5} {} {5},

(3) 5 = {{ao} {aa}. {ar} {as} {2} {45},

(4) Pg’ﬁ ={{ao} {aa} {ar}, {as}, {a2}, {as}}-
Then by the proof of Theorem 4.7, Qm = {[qo], [¢1], [a2], [g3], [¢4]. [g5]}. Therefore,
we have statewise (a,b)-minimal F};, as in Figure 11.

w0 =10g,]
v(gy)=0

wis 5 m v.{c.d)
@

b‘\\‘lo\
oS0 @ u. (c, d) @
do) = C

Ve(g,)=d

FIGURE 11. The Statewise (a,b)-minimal F* of Example 4.11

Also, we have £L%*(F*) = uv{u,v}* Uu. Then by Definition 3.1, we obtain F}
as in Figure 9. In this example, the number of states F5 is more than the number
of states F7.



Minimal and Statewise Minimal Intuitionistic General L-Fuzzy Automata 151

5. Conclusion

In this note, by considering the notion of intuitionistic general L-fuzzy automa-
ton and (o, 8)-language, we have proved that for any («,/)-language L, there
exists a minimal max-min IGLFA recognizing £. Also, we have shown that the
minimal max-min IGLFA is isomorphic with threshold («, 8) to any («, 8)-reduced
(a, B)-complete, (o, B)-accessible, deterministic max-min IGLFA. After that, for
any strong deterministic max-min IGLFA, we have obtained the statewise («, 3)-
minimal max-min IGLFA. Also, we have proved that if F* is an (a, B)-complete,
(o, B)-accessible, deterministic max-min IGLFA and it is recognizing (¢, 8)-language
L, then the minimal F% is homomorphism with threshold (a, ) to statewise (a, 3)-
minimal F;’;L, where F:n is statewise (v, §)-equivalent to F™*.

In future research, we plan to find some algorithms which can calculate minimal
automaton and statewise minimal automaton with less complexity than presented
algorithms?

REFERENCES

[1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.

[2] K. Atanassov and S. Stoeva, Intuitionistic L-fuzzy sets. In: R. Trappl (ed.) Cybernetics and
Systems Research 2. Elsevier, North-Holland, (1984), 539-540

[3] N. C. Basak and A. Gupta, On quotient machines of a fuzzy automata and the minimal
machine, Fuzzy Sets and Systems, 125 (2002), 223-229.

[4] W. Cheng and Z. W. Mo, Minimization algorithm of fuzzy finite automata, Fuzzy Sets and
Systems, 141 (2004), 439-448.

[5] M. Doostfatemeh and S. C. Kremer, New directions in fuzzy automata, International Journal
of Approximate Reasoning, 38 (2005), 175-214.

[6] C. L. Giles, C. W. Omlin and K. K. Thornber, Fquivalence in knowledge representation:
automata, recurrent neural networks, and dynamical fuzzy systems, Proceedings of IEEE, 87
(1999), 1623-1640.

[7] J. A. Goguen, L-Fuzzy sets, Journal of Mathematical Analysis and Applications, 18 (1967),
145-173.

[8] M. M. Gupta, G. N. Saridis and B. R. Gaines, Fuzzy Automata and Decision Processes,
North Holland, New York, (1977), 111-175.

[9] Y. B. Jun, Intuitionistic fuzzy finite state machines, Journal of Applied Mathematics and
Computing, 17 (2005), 109-120.

[10] Y. B. Jun, Quotient structures of intuitionistic fuzzy finite state machines, Information Sci-
ences, 177 (2007), 4977-4986.

[11] D. S. Malik and JN. Mordeson, Fuzzy Automata and Languages: Theory and Applications,
Chapman Hall, CRC Boca Raton, London, New York, Washington DC, 2002.

[12] A. Mateescu, A. Salomaa, K. Salomaa and S. Yu, Lezical Analysis with a Simple Finite Fuzzy
Automaton Model, Journal of Universal Computer Science, 1 (1995), 292-311.

[13] C. W. Omlin, K. K. Thornber and C. L. Giles, Fuzzy finite-state automata can be deter-
manistically encoded in recurrent neural networks, IEEE Transactions on Fuzzy Systems, 5
(1998), 76-89.

[14] W. Pedrycz and A. Gacek, Learning of fuzzy automata, International Journal of Computa-
tional Intelligence and Applications, 1 (2001), 19-33.

[15] K. Peeva and Behavior, reduction and minimization of finite L-automata, Fuzzy Sets and
Systems, 28 (1988), 171-181.

[16] K. Peeva, Fquivalence, reduction and minimization of finite automata over semirings, The-
oretical Computer Science, 88 (1991), 269-285.



152

(17)
(18]

(19]
20]

(21]

(22]

M. Shamsizadeh and M. M. Zahedi

D. Qiu, Supervisory control of fuzzy discrete event systems: a formal approach, IEEE Trans-
actions on Systems, Man and CyberneticsPart B, 35 (2005), 72-88.

A. K. Ray, B. Chatterjee and A. K. Majumdar, A formal power series approach to the
construction of minimal fuzzy automata, Information Sciences, 55 (1991), 189-207.

E. S. Santos, Mazmin automata, Information Control, 13 (1968), 363-377.

M. Shamsizadeh and M. M. Zahedi, A note on ”Quotient structures of intuitionistic fuzzy
finite state machines”, Journal of Applied Mathematics and Computing, 51 (2016), 413-423.
M. Shamsizadeh and M. M. Zahedi, Intuitionistic General Fuzzy Automata, Soft Computing,
20 (2015), 1-15.

M. Shamsizadeh and M. M. Zahedi, Minimal Intuitionistic General L-Fuzzy Automata, Ital-
ian Journal of Pure and Applied Mathematics, 35 (2015), 155-186.

[23] V. Topencharov, K. Peeva, Equivalence, reduction and minimization of finite fuzzy automata,

Journal of Mathematical Analysis and Applications, 84 (1981), 270-281.

[24] W. G. Wee, On generalization of adaptive algorithm and application of the fuzzy sets concept

to pattern classification, Ph.D. Thesis, Purdue University, Lafayette, IN,1967.

[25] W. G. Wee and K. S. Fu, A formulation of fuzzy automata and its application as a model of

learning systems, IEEE Transactions on Systems, Man and Cybernetics, 5 (1969), 215-223.

[26] L. Yang and Z. W. Mo, Cascade and Wreath Products of Lattice- Valued Intuitionistic Fuzzy

Finite State Machines and Coverings, Fuzzy Information & Engineering and Operations
Research & Management Advances in Intelligent Systems and Computing, 211 (2014), 97-
106.

[27] X. W. Zhang and Y. M. Li, Intuitionistic fuzzy recognizers and intuitionistic fuzzy finite

automata, Soft Computing, 13 (2009), 611-616.

M. SHAMSIZADEH*, DEPARTMENT OF MATHEMATICS, GRADUATE UNIVERSITY OF ADVANCED

TECHNOLOGY, KERMAN, IRAN

E-mail address: shamsizadeh.m@ gmail.com

M. M. ZAHEDI, DEPARTMENT OF MATHEMATICS, GRADUATE UNIVERSITY OF ADVANCED TECH-

NOLOGY, KERMAN, IRAN

E-mail address: zahedi_mm @ kgut.ac.ir

*CORRESPONDING AUTHOR



