SOFT TOPOLOGY AND SOFT PROXIMITY AS FUZZY PREDICATES BY FORMULAE OF LUKASIEWICZ LOGIC

Document Type: Research Paper

Authors

1 Department of Mathematics, Faculty of Science, Assiut University, Assiut, Egypt

2 Department of Mathematics, Shahid Beheshti University, Tehran, Iran

Abstract

In this paper, based in the \L ukasiewicz logic, the definition of
fuzzifying soft neighborhood structure and fuzzifying soft continuity are
introduced. Also, the fuzzifying soft proximity spaces which are a
generalizations of the classical soft proximity spaces are given. Several
theorems on classical soft proximities are special cases of the theorems we
prove in this paper.

Keywords


[1] B. Ahmad and A. Kharal, On fuzzy soft sets, Adv. Fuzzy Syst., doi:10.1155/2009/586507,
(2009).
[2] H. Aktas and N. Cagman, Soft sets and soft groups, Inform. Sci., 177(13) (2007), 2726-2735.
[3] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
[4] K. Atanassov, Operators over interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems,
64 (1994), 159-174.
[5] F. Feng, Y. B. Jun and X. Z. Zhao, Soft semirings, Comput. Math. Appl., 56(10) (2008),
2621-2628.
[6] W. L. Gau and D. J. Buehrer, Vague sets, IEEE Trans. System Man Cybernet, 23 (2) (1993),
610{614.
[7] M. B. Gorzalzany, A method of inference in approximate reasoning based on interval valued
fuzzy sets, Fuzzy Sets and Systems, 21 (1987), 1{17.
[8] P. K. Maji, R. Biswas and A. R. Roy, Fuzzy soft set, J. Fuzzy Math., 9(3) (2001), 589-602.
[9] P. K. Maji, A. R. Roy and R. Biswas, An application of soft sets in a decision making
problem, Comput. Math. Appl., 44(8-9) (2002), 1077-1083.
[10] P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Comput. Math. Appl., 45(4-5) (2003),
555-562.
[11] D. Molodtsov, Soft set theory - First results, Comput. Math. Appl., 37(4-5) (1999), 19-31.
[12] Z. Pawlak, Rough sets, Int. J. Inf. Comp. Sci., 11 (1982), 341-356.
[13] D. Pei and D. Miao, From soft sets to information systems,In Proceedings of the IEEE
International Conference on Granular Computing, 2 (2005), 617{621.
[14] J. B. Rosser and A. R. Turquette, Many-valued logics, North-Holland, Amsterdam, 1952.
[15] M. Shabir and M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786-
1799.
[16] B. Tanay and M. B. Kandemir, Topological structure of fuzzy soft sets, Comput. Math. Appl.,
61(10) (2011), 2952-2957.
[17] B. P. Varol and H. Aygun, On fuzzy soft topology, Hacet. J. Math. Stat., 41(3) (2012),
407{419.
[18] B. P. Varol, A. Shostak and H. Aygun, A new approach to soft topology, Hacet. J. Math.
Stat., 41(5) (2012), 731{741.
[19] B. P. Varol, A. Shostak and H. Aygun, Categories related to topology viewed as soft set.
doi:10.2991/eus
at. (2011). 52 883-890.
[20] X. B. Yang, T. Y. Lin, J. Y. Yang, Y. Li and D. J. Yu, Combination of interval-valued fuzzy
set and soft set, Comput. Math. Appl., 58(3) (2009) 521-527.
[21] M. S. Ying, A new approach for fuzzy topology (I), Fuzzy Sets and Systems, 39 (1991),
303-321.
[22] H. Zhao and S. G. Li, L-fuzzifying soft topological spaces and L-fuzzifying soft interior oper-
ators, Annales of Fuzzy Mathematics and Informatics, 5(3) (2013), 493-503.
[23] L. A. Zadeh, Fuzzy sets, Inform. Control., 8 (1965), 338-353.
[24] I. Zorlutuna, M. Akdag, W. K. Min and S. Atmaca, Remarks on soft topological spaces, Ann.
Fuzzy Math. Inform., 3(2) (2012), 171-185.