ON ALGEBRAIC AND COALGEBRAIC CATEGORIES OF VARIETY-BASED TOPOLOGICAL SYSTEMS

S. A. SOLOVYOV

Abstract. Motivated by the recent study on categorical properties of lattice-valued topology, the paper considers a generalization of the notion of topological system introduced by S. Vickers, providing an algebraic and a coalgebraic category of the new structures. As a result, the nature of the category \(\text{TopSys} \) of S. Vickers gets clarified, and a metatheorem is stated, claiming that (lattice-valued) topology can be embedded into algebra.

1. Introduction

This paper studies a possible single framework in which to treat both variable-basis lattice-valued topological spaces [37] and the respective algebraic structures underlying their topologies. Originally suggested by both locale theory and many-valued set theory, the problem has a long history.

In 1959 D. Papert and S. Papert [29] presented an adjunction between the categories \(\text{Top} \) of topological spaces and \(\text{ Frm}^{\text{op}} \), the dual of the category \(\text{ Frm} \) of frames. The adjoint situation was described more succinctly by J. Isbell [20], who introduced the name \textit{locale} for the objects of \(\text{ Frm}^{\text{op}} \) and considered the category \(\text{ Loc} \) of locales as a substitute for \(\text{Top} \). In 1982 localic theory was given a coherent statement in the celebrated book of P. T. Johnstone “Stone Spaces” [22]. Using the logic of finite observations, S. Vickers [52] introduced the notion of \textit{topological system} as a single framework for treating both spaces and locales (see also [53] for algebraic treatment of topology).

On the other hand, the pioneering papers of C. L. Chang [6], J. A. Goguen [14] and R. Lowen [26] started the theory of \textit{fixed-basis} many-valued topological spaces. Using a point-free framework similar to localic theory, B. Hutton [19] proposed in 1980 the first variable-basis approach, which eventually resulted in a variable-basis category of \textit{singleton} topological spaces. In 1983 S. E. Rodabaugh [35] introduced the first variable-basis category for topology in which the underlying sets of the spaces were non-singletons. Since then it is known as the category \(\text{C-Top} \) of variable-basis lattice-valued topological spaces [37]. Almost immediately, P. Eklund [12] began the study on categorical properties of variable-basis topology.

Received: September 2010; Revised: February 2011; Accepted: March 2011

Key words and phrases: Algebra, (Co)algebraic category, (Co)reflective subcategory, Lattice-valued topology, Powerset operator, \(S \)-quantale, Topological category, Topological system, Variety.

This research was partially supported by the ESF Project of the University of Latvia No. 2009/0223/1DP/1.1.1.2.0/09/APIA/VIAA/008.

2010 Mathematics Subject Classification: 18A40, 18B30, 54A40, 03E72.
thereby initiating categorical fuzzy topology, which has been developing rapidly ever since.

Both fixed- and variable-basis approaches induced many researchers to study their properties \[8, 13, 16, 17, 21, 25, 41, 42, 43, 54\]. In particular, \[10, 15\] considered functorial relationships between lattice-valued topology and topological systems. The use of fuzzy topological spaces and crisp topological systems appeared to be not flexible enough, that resulted in the concept of lattice-valued topological system over locales \[9\], significantly simplifying some results of \[10\]. For example, one easily produced an embedding of the category \texttt{Loc-Top} of lattice-valued topological spaces into the category \texttt{Loc-TopSys} of lattice-valued topological systems. This paper aims at providing a more general approach to the topic.

Motivated by our current slogan of doing fuzzy mathematics on arbitrary algebraic structures \[44\], we introduced in \[49, 50, 51\] the notions of variety-based topological space and topological system, generalizing the respective notions of \[9, 37\]. The cornerstone of the approach lies in replacing \texttt{Loc} with the dual category \texttt{LoA} of an arbitrary variety of algebras (in the obvious sense, as sets with operations, where no partial order is required) \texttt{A}. The new concepts appeared fruitful, i.e., that of system incorporated in itself not only the respective notion of S. Vickers, but also state property systems of D. Aerts \[2\] (serving as the basic mathematical structure in the Geneva-Brussels approach to foundations of physics) as well as Chu spaces (over sets) \[30\], whereas that of space provided a common framework for both the above-mentioned lattice-valued topological spaces of S. E. Rodabaugh and closure spaces \[4\] (made variable-basis on the way). Among other results, it was shown that the category \texttt{LoA-Top} of variety-based topological spaces is isomorphic to a full (regular mono-)coreflective subcategory of the category \texttt{LoA-TopSys} of variety-based topological systems. The relevance of the result is twofold: on one hand, it generalizes the above-mentioned embedding of \texttt{Loc-Top}, on the other, it provides an analogue of spatialization procedure for variety-based topological systems, introduced by S. Vickers \[52\] for the localic ones.

Developing the topic further, we introduced in \[46\] a variety-based modification of another procedure of S. Vickers \[52\] called localization of systems, the essence of which lies in representing the category of algebraic structures underlying the topologies (e.g., locales) as a particular subcategory of the category of topological systems. It appeared, however, that the machinery requires a modified category of systems, denoted \texttt{A-TopSys}. In the new setting, one can show that the product category \texttt{A × LoA} is isomorphic to a full reflective subcategory of the category \texttt{A-TopSys}, which (in general) is neither mono- nor epi-reflective. The simplest common point of both \texttt{LoA-TopSys} and \texttt{A-TopSys} is the fixed-basis approach generalizing the respective one proposed by S. Vickers.

It is important to notice that the word “topological” in the name chosen by S. Vickers for his structures suggested topological flavor in their behavior. Notwithstanding the expectations, J. T. Denniston and S. E. Rodabaugh \[10\] showed that the category \texttt{TopSys} of S. Vickers is not topological over its ground category, posing the question on its nature. In \[51\] we proved that the category \texttt{LoA-TopSys} is topological over its ground category if and only if the respective underlying functor
is an isomorphism. The latter fact together with the result that the underlying functor of \(\text{LoA-TopSys} \) creates isomorphisms, gave rise to considering algebraic properties of the category in question. It is the aim of this paper to show that \(\text{LoA-TopSys} \) is essentially algebraic, whereas \(\text{A-TopSys} \) is coalgebraic over the respective ground category. As a consequence, we get that the motivating category \(\text{TopSys} \) is both algebraic and coalgebraic that suggests a possible change in the name of its objects, excluding the word “topological”. Moreover, the above-mentioned embedding of \(\text{LoA-Top} \) into \(\text{LoA-TopSys} \) suggests a metatheorem claiming that (lattice-valued) topology can be embedded into algebra.

The necessary categorical background can be found in [1, 27, 28]. For algebraic notions we recommend [7, 28]. Although we tried to make the paper as much self-contained as possible, some details are still omitted and left to the reader.

2. Variety-based Topological Spaces

In this section, we recall the concept of variety-based topological space, which induced the notion of variety-based topological system. The concept provides a common framework for both variable-basis lattice-valued topological spaces [37] and closure spaces [4]. The approach stems from [49, 50] generalizing the respective one of S. E. Rodabaugh [37, 39]. For convenience of the reader, we begin with some algebraic preliminaries.

An algebra is to be thought of as a set with a family of operations defined on it, which satisfy certain identities, e.g., semigroup, monoid, group and also complete lattice, frame, quantale. In case of finitary algebras, i.e., algebras based on a set of finite operations, there exists the famous theorem of G. Birkhoff [5] representing them as varieties. This paper uses a modification of the concept, suitable to include infinitary cases as well and motivated by the notion of equationally-definable class [28].

Definition 2.1. Let \(\Omega = (n_\lambda)_{\lambda \in \Lambda} \) be a (possibly proper) class of cardinal numbers. An \(\Omega \)-algebra is a pair \((A, (\omega_\lambda^A)_{\lambda \in \Lambda})\) (denoted by \(A \)) consisting of a set \(A \) and a family of maps \(A^{n_\lambda} \xrightarrow{\text{def}} A \), called \(n_\lambda \)-ary primitive operations on \(A \). An \(\Omega \)-homomorphism \((A, (\omega_\lambda^A)_{\lambda \in \Lambda}) \xrightarrow{f} (B, (\omega_\lambda^B)_{\lambda \in \Lambda})\) is a map \(f: A \rightarrow B \), making the diagram

\[
\begin{array}{ccc}
A^{n_\lambda} & \xrightarrow{f^{n_\lambda}} & B^{n_\lambda} \\
\omega_\lambda^A & \downarrow & \omega_\lambda^B \\
A & \xrightarrow{f} & B
\end{array}
\]

commute for every \(\lambda \in \Lambda \). The category of \(\Omega \)-algebras and \(\Omega \)-homomorphisms is denoted \(\text{Alg}(\Omega) \), with \(|-| \) being the underlying functor to the ground category \(\text{Set} \) of sets and maps.

Let \(\mathcal{M} \) (resp. \(\mathcal{E} \)) be the class of \(\Omega \)-homomorphisms with injective (resp. surjective) underlying maps. A variety of \(\Omega \)-algebras (also called a variety) is a full
subcategory of $\text{Alg}(\Omega)$ closed under the formation of products, \mathcal{M}-subobjects (sub-algebras) and \mathcal{E}-quotients (homomorphic images). The objects (resp. morphisms) of a variety are called algebras (resp. homomorphisms).

As an example of varieties one can mention the constructs Frm, SFrm and SQuant of frames, semi-frames and semi-quantales (popular in lattice-valued topology) [31, 32, 33, 34, 39]. For convenience of the reader, as well as to feel free in using it throughout the paper, we recall the definition of the latter variety.

Definition 2.2. A semi-quantale (s-quantale for short) is a \mathcal{W}-semilattice (partially ordered set having arbitrary \mathcal{W}) equipped with a binary operation \otimes. An s-quantale homomorphism is a map preserving \mathcal{W} and \otimes. The variety of s-quantales and their homomorphisms is denoted SQuant.

It is important to underline that s-quantales are proposed in [39] as the basic mathematical structure for doing lattice-valued topology upon, since the obtained categories are topological over their ground categories. The crucial advantage of the new concept is that it incorporates the majority of lattice-like structures currently used in many-valued topology, e.g., the above-mentioned varieties Frm and SFrm are subcategories of SQuant. On the other hand, the structure in question is not so well-known as its counterpart quantale, which has two additional properties: associativity of \otimes and its distributivity over \mathcal{W} from both sides [40].

From now on, we fix a variety A and use the following notations [10, 37, 39]. The dual of the category A (or, possibly, its subcategory) is denoted LoA (the ”Lo” comes from “localic”). Its objects (resp. morphisms) are called localic algebras (resp. homomorphisms). Given a morphism f of a variety A, the respective morphism of LoA is denoted f^{op} and vice versa. The reader should be aware that the notations for dual categories used in this paper follow the (already widely accepted) pattern of lattice-valued topology and not the category-theoretic one.

The cornerstone of our approach (just as in the classical case of [37]) are the so-called image and preimage operators (it was S. E. Rodabaugh [36, 38, 39] who fully realized their importance in topology). Given a map $X \xrightarrow{f} Y$, there exist the traditional image and preimage operators on the respective powersets $\mathcal{P}(X) \xrightarrow{f^+} \mathcal{P}(Y)$ and $\mathcal{P}(Y) \xrightarrow{f^{-}} \mathcal{P}(X)$ defined in the obvious way. Moreover, every algebra A provides the fixed-basis (Zadeh) preimage operator $A^Y \xrightarrow{f^{-}} A^X$ defined by $f^{-}(p) = p \circ f$ [55]. On the other hand, every homomorphism $A \xrightarrow{g} B$ can be lifted to a map $A^X \xrightarrow{g^{\downarrow}} B^X$ defined by $g^{\downarrow}(p) = g \circ p$ ([10, 36, 39] denote the latter map by $\langle g \rangle$). The next lemma contains an important property of the newly defined maps [50].

Lemma 2.3. For every map $X \xrightarrow{f} Y$ and every homomorphism $A \xrightarrow{g} B$, both $A^Y \xrightarrow{f^{-}} A^X$ and $A^X \xrightarrow{g^{\downarrow}} B^X$ are homomorphisms.

On the variable-basis side everything goes much the same. Suppose we are given a $\text{Set} \times \text{LoA}$-morphism (recall our notation for dual categories) $(X, A) \xrightarrow{(f, \varphi)} (Y, B)$. There exists the variable-basis (Rodabaugh) preimage operator $B^Y \xrightarrow{(f, \varphi)^{-}} A^X$ defined by $(f, \varphi)^{-}(p) = \varphi^{\text{op}} \circ p \circ f$ [36, 38, 39].
Lemma 2.4. For every $\text{Set} \times \text{LoA}$-morphism $(X, A) \xrightarrow{(f, \varphi)} (Y, B)$, the diagram

\[
\begin{array}{ccc}
B^Y & \xrightarrow{(\varphi^{\text{op}})^Y} & A^Y \\
\downarrow f_b & & \downarrow f^b \\
B^X & \xrightarrow{(\varphi^{\text{op}})^X} & A^X
\end{array}
\]

commutes and, therefore, $B^Y \xrightarrow{(f, \varphi)^-} A^X$ is a homomorphism.

It is important to notice that a more general approach to variety-based powerset theories has already been considered by the current author in [48]. Everything is on its place to introduce the category of variety-based topological spaces à la [37, 39].

Definition 2.5. Let C be a subcategory of LoA. A C-topological space (C-space for short) is a triple $E = (\text{pt } E, \Sigma E, \tau)$, where $(\text{pt } E, \Sigma E)$ is a $\text{Set} \times C$-object and τ is a subalgebra of $(\Sigma E)^{\text{pt } E}$ (called C-topology on $(\text{pt } E, \Sigma E)$). A C-continuous map $E_1 \xrightarrow{f} E_2$ is a $\text{Set} \times C$-morphism $(\text{pt } E_1, \Sigma E_1) \xrightarrow{f = (\text{pt } f, (\Sigma f)^{\text{op}})} (\text{pt } E_2, \Sigma E_2)$ such that $((\text{pt } f, (\Sigma f)^{\text{op}})^-)^- \subseteq \tau_1$. C-Top is the category of C-topological spaces and C-continuous maps, with the underlying functor $|-|$ to the ground category $\text{Set} \times C$ given by the formula $|E_1 \xrightarrow{f} E_2| = (\text{pt } E_1, \Sigma E_1) \xrightarrow{\text{pt } f, (\Sigma f)} (\text{pt } E_2, \Sigma E_2)$.

The notations used in Definition 2.5 are different from those currently accepted in lattice-valued topology. The main reason for that is the fact (Theorem 3.7) that every space can be considered as a particular instance of topological system (Definition 3.1), the notations for which are already fixed (Remark 3.2).

In the following, we will consider a fixed-basis approach to variety-based topology and, therefore, we introduce its definition.

Definition 2.6. Given a C-space E, ΣE is called the basis of the space. Given a C-object A, A-Top is the non-full subcategory of C-Top with objects all spaces with the basis A and morphisms all C-continuous maps f such that $\Sigma f = 1_A$.

The new notions can be illustrated by many examples, which clearly show their relations to the existing concepts in the literature.

Example 2.7. Loc-Top is precisely the motivating example of lattice-valued topology from [9, 10]. The category 2-Top (2 being the two-element frame $\{\bot, \top\}$) provides the classical set-theoretic approach of, e.g., [23].

Example 2.8. LoSQuant-Top provides the category for developing the topological theories of [39].

Example 2.9. Let CQML$_\lor$ be the variety of complete \lor-quasi-monoidal lattices (cf. [37]), namely, s-quantales (Q, \lor, \otimes) satisfying two additional conditions:

1. \otimes preserves finite \lor in both arguments;
2. $\top \otimes \top = \top$, where \top is the upper bound of Q;
and \(\top \)-preserving \(\ast \)-quantale homomorphisms. The category \(\text{LoCQML}_\ast \)-Top provides the classical approach to variable-basis topology of [37].

Example 2.10. Let \(\text{SLat}(\bot, \bot) \) be the variety of \(\{\bot, \bot\} \)-semilattices. The category \(\text{LoSLat}(\bot, \bot)\)-Top provides a variable-basis modification of the concept of closure space of [4]. In particular, \(2\text{-Top} \) (cf. the notations of Example 2.7) is isomorphic to the category \(\text{Cls} \) of closure spaces of [4]. Recall that a closure space \((X, \mathcal{F}) \) consists of a set \(X \) and a family of subsets \(\mathcal{F} \subseteq \mathcal{P}(X) \) satisfying the following conditions:

1. \(\emptyset \in \mathcal{F} \);
2. if \((F_i)_{i \in I} \subseteq \mathcal{F} \), then \(\bigcap_{i \in I} F_i \in \mathcal{F} \).

If \((X, \mathcal{F}) \) and \((Y, \mathcal{G}) \) are closure spaces, then a map \(X \xrightarrow{f} Y \) is called continuous provided that \(f^{\ast}(G) \in \mathcal{F} \) for every \(G \in \mathcal{G} \).

Although Definition 2.5 is provided in its general form, in this paper we restrict ourselves to the case \(C = \text{LoA} \). For the sake of shortness, we call \(\text{LoA} \)-spaces by spaces and \(\text{LoA} \)-continuity by continuity.

3. Variety-based Topological Systems

In this section we introduce the main object of our study, i.e., the category of **variety-based topological systems**. The notion provides a common framework for topological systems introduced by S. Vickers [52], state property systems of D. Aerts [2] and Chu spaces (over sets) [30]. The approach comes from [45, 46, 51] generalizing those of [9, 52].

Definition 3.1. Let \(C \) be a subcategory of \(\text{LoA} \). A **C-topological system** (\(C \)-system for short) is a tuple \(D = (\text{pt}\, D, \Sigma\, D, \Omega\, D, \models) \), where \((\text{pt}\, D, \Sigma\, D, \Omega\, D)\) is a **Set** \(\times C \times C \)-object and \(\text{pt}\, D \times \Omega\, D \xrightarrow{\models} \Sigma\, D \) is a map (called **C-satisfaction relation**) on \((\text{pt}\, D, \Sigma\, D, \Omega\, D)\) such that \(\Omega\, D \xrightarrow{\models(x, -)} \Sigma\, D \) is a homomorphism for every \(x \in \text{pt}\, D \). A **C-continuous map** \(D_1 \xrightarrow{f} D_2 \) is a **Set** \(\times C \times C \)-morphism \((\text{pt}\, D_1, \Sigma\, D_1, \Omega\, D_1) \xrightarrow{(pt\, f, (\Sigma f)^{op}, (\Omega f)^{op})} (\text{pt}\, D_2, \Sigma\, D_2, \Omega\, D_2)\) such that for every \(x \in \text{pt}\, D_1 \) and every \(b \in \Omega\, D_2 \), \(\models_{1}(x, \Omega\, f(b)) = \Sigma\, f(\models_{2}(\text{pt}\, f(x), b)) \). **C-TopSys** is the category of \(C \)-topological systems and \(C \)-continuous maps, with the underlying functor to the ground category **Set** \(\times C \times C \) given by the formula \((D_1 \xrightarrow{f} D_2) = (\text{pt}\, D_1, \Sigma\, D_1, \Omega\, D_1) \xrightarrow{(pt\, f, (\Sigma f)^{op}, (\Omega f)^{op})} (\text{pt}\, D_2, \Sigma\, D_2, \Omega\, D_2)\).

Remark 3.2. The notation \(f = (pt\, f, \ldots, (\Omega f)^{op}) \) for continuous morphisms in Definition 3.1 is due to S. Vickers [52]. Since [10] uses it as well, we decided to do the same. Definition 3.1 adds one more component to \(f \) denoted by \((\Sigma f)^{op} \) and that is entirely our own invention, which does not go in line with [9], where the authors use completely different (even to [10]) notation. We would like to underline that \(pt\, f, (\Sigma f)^{op}, (\Omega f)^{op} \) are components of \(f \) and not new maps obtained from \(f \).
In the following, we will rely heavily on a fixed-basis approach to variety-based topological systems and, therefore, we introduce its definition.

Definition 3.3. Given a C-system D, ΣD is called the basis of the system. Given a C-object A, A-TopSys is the non-full subcategory of C-TopSys with object all systems D with the basis A and morphisms all C-continuous maps f such that $\Sigma f = 1_A$.

The new notion can be illustrated by the following examples, providing its relation to the existing concepts in the literature.

Example 3.4. $\text{Loc}-\text{TopSys}$ is precisely the category of lattice-valued topological systems introduced in [9]. The category 2-TopSys (cf. Example 2.7) is isomorphic to the category TopSys of S. Vickers [52].

Example 3.5. Given a set K, the subcategory K-TopSys of LoSet-TopSys is isomorphic to the category $\text{Chu}(\text{Set},K)$ comprising Chu spaces over K [30].

Example 3.6. Let C-SP be the full subcategory of C-TopSys consisting of all systems D such that for every $b_1, b_2 \in \Omega D$, $\models (\neg, b_1) = \models (\neg, b_2)$ implies $b_1 = b_2$. The full subcategory 2-SP of $\text{Lo}(\text{SLat}(\Lambda, \bot))$-$\text{SP}$ (cf. Examples 2.7 and 2.10) is isomorphic to the category SP of state property systems of D. Aerts [2] (the notion serves as the basic mathematical structure in the Geneva-Brussels approach to foundations of physics).

Although Definition 3.1 is provided in its general form, in this paper we restrict ourselves to the case $C = \text{LoA}$. For shortness sake we call LoA-systems by systems and LoA-continuity by continuity. The crucial property of the new category is contained in the fact that it provides a proper extension of the category LoA-Top of variety-based topological spaces [51].

Theorem 3.7. The category LoA-Top is isomorphic to a full (regular mono)-coreflective subcategory of the category LoA-TopSys.

Proof. There exists a full embedding LoA-$\text{Top} \xrightarrow{G} \text{LoA}$-$\text{TopSys}$ with $GE = (\text{pt } E, \Sigma E, \tau, \models)$, $\models (x, p) = p(x)$ and $Gf = (\text{pt } f, (\Sigma f)^\text{op}, ((\text{pt } f, (\Sigma f)^\text{op})^\text{op})^{\text{op}})$. There exists a functor LoA-$\text{TopSys} \xrightarrow{\text{Spat}} \text{LoA}$-$\text{Top}$ with $\text{Spat } D = (\text{pt } D, \Sigma D, \tau)$, $\tau = \{\models (\neg, b) \mid b \in \Omega D\}$ and $\text{Spat } f = (\text{pt } f, (\Sigma f)^{\text{op}})$. Spat is a right-adjoint-left-inverse of G. □

The above-mentioned functor G generalizes the embedding of Loc-Top (lattice-valued topology) into the category of lattice-valued topological systems [9]. Moreover, Theorem 3.7 provides an analogue of the spatialization procedure for systems of S. Vickers [52, Theorem 5.3.4]. One should also notice that the equivalence between the categories of state property systems and closure spaces obtained in [3] is a direct consequence of Theorem 3.7 [47].

As was already mentioned in Introduction, to get a similar result for the underlying algebras of spaces, one has to modify the category of systems accordingly [46].
Definition 3.8. Given a subcategory C of LoA, a LoC-topological system is a tuple $D = (\text{pt} D, \Sigma D, \Omega D, \models)$, where $(\text{pt} D, \Sigma D, \Omega D)$ is a $\text{Set} \times \text{LoC} \times C$-object and \models is a C-satisfaction relation on $(\text{pt} D, \Sigma D, \Omega D)$. A LoC-continuous map $D_1 \rightarrow D_2$ is a $\text{Set} \times \text{LoC} \times C$-morphism $(\text{pt} D_1, \Sigma D_1, \Omega D_1) \xrightarrow{f=(\text{pt} f, \Sigma f, (\Omega f)^{op})} (\text{pt} D_2, \Sigma D_2, \Omega D_2)$ such that for every $x \in \text{pt} D_1$ and every $b \in \Omega D_2$, $\Sigma f(\models_1(x, \Omega f(b))) = \models_2(\text{pt} f(x), b)$. LoC-TopSys is the category of LoC-topological systems and LoC-continuous maps, with the underlying functor to the ground category $\text{Set} \times \text{LoC} \times C$ denoted by $\models -$.

One should be aware of the following important relations between the above-mentioned two approaches to topological systems, based on the fact that C and LoC differ only on morphisms.

Remark 3.9. The categories $C\text{-TopSys}$ and $\text{LoC}\text{-TopSys}$ have eventually the same objects but the morphisms (as well as ground categories) are different. Given a C-object A, $A\text{-TopSys}$ is eventually a subcategory of both $C\text{-TopSys}$ and $\text{LoC}\text{-TopSys}$. If E is the subcategory of C with the same objects and with φ in E if and only if φ is an isomorphism, then the categories $E\text{-TopSys}$ and $\text{LoE}\text{-TopSys}$ are isomorphic.

Although Definition 3.8 is provided in its general form, in this paper we restrict ourselves to the case $C = \text{LoA}$. For the sake of shortness, as well as to distinguish between the categories $\text{LoA}\text{-TopSys}$ and $A\text{-TopSys}$, we call A-systems by op-systems and A-continuity by op-continuity.

Theorem 3.10. The category $A \times \text{LoA}$ is isomorphic to a full reflective subcategory of the category $A\text{-TopSys}$ which (in general) is neither mono- nor epi-reflective.

Proof. There exists a full embedding $A \times \text{LoA} \xrightarrow{F} A\text{-TopSys}$ with $F(A, B) = (\text{A}(B, A), A, B, \models)$, $\models(p, b) = p(b)$ and $F(\varphi, \psi) = (|\psi|^{op}, \varphi^{op})$. There exists a functor $A\text{-TopSys} \xrightarrow{\text{Loc}} A \times \text{LoA}$ with $\text{Loc} D = (\Sigma D, \Omega D)$, $\text{Loc} f = (\Sigma f, (\Omega f)^{op})$. Loc is a left-adjoint-left-inverse of F. □

Theorem 3.10 provides an analogue of the localization procedure for systems of S. Vickers [52, Theorem 5.4.3]. It will be worthwhile to underline once more that in the framework of variable-basis both spatialization and localization procedures require their own category of systems. The simplest common point of both categories is the fixed-basis approach generalizing that of S. Vickers [52].

4. Algebraic Category of Topological Systems

It is a well-known fact that the construct Top of topological spaces and continuous maps is topological [1, Example 21.8(1)]. There are several extensions of the result to the lattice-valued case [18, 37], differing in the approach to fuzziness and the algebraic structures underlying the topologies. Moreover, S. E. Rodabaugh [39] has come out with a general solution claiming that if the underlying lattices are s-quantales, then all the concrete categories for topology considered or constructed in [18, 37, 39] (and these include many well-known categories) are topological over...
their ground categories with respect to the underlying forgetful functors. Meta-
mathematically restated, the conditions of s-quantales guarantee that one is doing
topology when working in these categories. Motivated by these results, we proved
in [49, Proposition 3.4] an analogous one for variety-based approach, partly cov-
ering the above-mentioned claim of [39] for s-quantales (the result of [11] claiming
that the category Cls of closure spaces (Example 2.10) is topological over Set is
also included).

Theorem 4.1. The concrete category LoA-Top is topological over the ground
category Set × LoA.

The concept of topological system and the embedding of Theorem 3.7 raised the
question on the nature of the category LoA-TopSys. In particular, since TopSys
models the “topological” behavior coming from domain theory, it could be expected
that TopSys would be topological over its ground category. Despite all hopes,
J. T. Denniston et al. [10] showed that even sources comprising only one morphism
need not have initial lifts. Moreover, the results of [51] claiming, firstly, that the
category LoA-TopSys is topological if and only if the respective underlying functor
|−| is an isomorphism and, secondly, that |−| creates isomorphisms, suggested
an algebraic flavor in the behavior of the category. It is the purpose of this section
to show that LoA-TopSys is essentially algebraic over its ground category Set ×
LoA × LoA. To verify the claim, we will use the so-called characterization theorem
for essentially algebraic categories [1, Theorem 23.8].

Theorem 4.2. A concrete category (C, U) is essentially algebraic if and only if
the following conditions are satisfied:

(1) U creates isomorphisms,
(2) U is adjoint,
(3) C is (Epi, Mono-Source)-factorizable.

We will check the required conditions in a row. The first one, probably the most
obvious, can be easily shown as follows.

Lemma 4.3. The functor LoA-TopSys |−| Set × LoA × LoA creates isomor-
phisms.

Proof. Given a Set × LoA × LoA-isomorphism (X, A, B) f ↦ |D|, the unique struc-
ture on (X, A, B), making f an isomorphism in LoA-TopSys, can be defined by
|f(x, b) = Σ f((pt f(x), (Ω f)^−1(b))).

The second condition is more sophisticated and requires a bit of computation.

Lemma 4.4. The functor LoA-TopSys |−| Set × LoA × LoA is adjoint.

Proof. For the sake of shortness, we denote the category Set × LoA × LoA by X. It
will be enough to show that every X-object (X, A, B) has a |−|-universal arrow, i.e.,
an X-morphism (X, A, B) ↦ [D] such that for every X-morphism (X, A, B) ↦ [D]
there exists a unique continuous map $\overline{D} \xrightarrow{f} D$ making the triangle

\[(X, A, B) \xrightarrow{\eta} |\overline{D}| \xrightarrow{f} |\overline{D}|\]

commute.

Define the required system \overline{D} by $\text{pt} \overline{D} = X$, $\Sigma \overline{D} = A$, $\Omega \overline{D} = A^X \times B$, putting $\text{pt} \overline{D} \times \Omega \overline{D} \xrightarrow{\pi \times \Omega f} \Sigma \overline{D} = X \times (A^X \times B) \xrightarrow{\pi \times \Omega f} X \times A^X$ ev, where $\pi_{X \times A^X}$ is the projection map and $\text{ev}(x, p) = p(x)$. To show that $\overline{f}(x, -)$ is a homomorphism for every $x \in \text{pt} \overline{D}$, notice that given $\lambda \in \Lambda$ and $(p_i, b_i) \in \Omega \overline{D}$ for $i \in n_\Lambda$,

\[\overline{f}(x, \omega^\overline{D}_\lambda((p_i, b_i))_{n_\lambda})) = \overline{f}(x, (\omega^A_X((p_i)_{n_\lambda}), \omega^B((b_i)_{n_\lambda}))) = \text{ev}(x, \omega^A_X((p_i)_{n_\lambda})) = (\omega^A_X((p_i)_{n_\lambda}))(x) = \omega^A_X((p_i(x))_{n_\lambda}) = \omega^\Sigma \lambda((\overline{f}(x, (p_i, b_i))_{n_\lambda}))\]

Define the required \mathbf{X}-morphism $(X, A, B) \xrightarrow{\eta} |\overline{D}|$ by $X \xrightarrow{\text{pt} \eta} \text{pt} \overline{D} = X \xrightarrow{\lambda \overline{f}} X$, $\Sigma \overline{D} \xrightarrow{\Sigma \eta} A = A \xrightarrow{1_A} A$ and $\Omega \overline{D} \xrightarrow{\Omega \eta} B = A^X \times B$ put, where π_B is the projection map. To show that $(X, A, B) \xrightarrow{\eta} |\overline{D}|$ is a $|\cdot|$-universal arrow for (X, A, B), choose any \mathbf{X}-morphism $(X, A, B) \xrightarrow{\lambda} |D|$ and define $\overline{D} \xrightarrow{\lambda} D$ by $\text{pt} \overline{D} \xrightarrow{\text{pt} \eta} \text{pt} D = X \xrightarrow{\lambda \overline{f}} \text{pt} D$, $\Sigma \overline{D} = \Sigma D \xrightarrow{\Sigma \lambda} A$ and $\Omega \overline{D} = \Omega D \xrightarrow{\Omega \lambda} A^X \times B$, where $\Omega \lambda$ is the unique homomorphism making the diagram

\\[
\begin{array}{ccc}
\Omega D & \xrightarrow{\Omega f} & B \\
\downarrow{\phi} & & \downarrow{\pi_B} \\
A^X \xrightarrow{\pi_A} A^X \times B
\end{array}
\]

commute, with ϕ in its turn given by the commutativity for every $x \in X$ of the diagram

\[(\Omega D) \xrightarrow{\lambda (\text{pt } f(x), -)} \Sigma D \xrightarrow{\Sigma f} A \xrightarrow{\pi_A = \text{ev}(x, -)} A\]

To show continuity of λ notice that given $x \in \text{pt} \overline{D}$ and $b \in \Omega D$, $\Sigma \overline{f}(\lambda (\text{pt } f(x), b)) = \Sigma f(\lambda (\text{pt } f(x), b)) = \text{ev}(x, \phi(b)) = (\phi(b))(x) = \overline{f}(x, (\phi(b), \Omega f(b))) = \overline{f}(x, \lambda (\text{pt } f(x), b))$.

On the other hand, the equality $\overline{f} \circ \eta = (\text{pt } f, (\Sigma f)^{op}, (\Omega f)^{op}) \circ (1_X, 1_A, (\pi_B)^{op}) = (\text{pt } f, (\Sigma f)^{op}, (\Omega f)^{op}) = f$ gives commutativity of the above-mentioned triangle.

For uniqueness of λ notice that given any other $\overline{D} \xrightarrow{g} D$ such that $|g| \circ \eta = f$, it follows that $f = (\text{pt } g, (\Sigma g)^{op}, (\pi_B \circ \Omega g)^{op})$ and, therefore, $\text{pt } f = \text{pt } g$, $\Sigma f = \Sigma g$ and $\Omega f = \pi_B \circ \Omega g$. Moreover, since g is continuous, $\Sigma f \circ |(\text{pt } f(x), -)| =
The category LoA-TopSys is $(\text{Epi}, \text{Mono-Source})$-factorizable.

Proof. Let $S = (D \xrightarrow{f_i} D_i)_{i \in I}$ be a source in LoA-TopSys. Define a system \overline{D} by $\text{pt} \overline{D} = \text{pt} D / \sim$, where \sim is the equivalence relation on $\text{pt} D$ given by $x \sim y$ if and only if $\text{pt} f_i(x) = \text{pt} f_i(y)$ for every $i \in I$, $\Sigma \overline{D} = \bigcup_{i \in I} (\Sigma D_i) \ (\langle S \rangle$ denotes the subalgebra generated by $S)$, $\Omega \overline{D} = \bigcup_{i \in I} (\Omega D_i)$ and $\overline{x} = \langle [x] \rangle$, $b = \overline{x}(b)$, where $[x] \sim$ is the equivalence class of x, i.e., the set $\{ y \mid y \in \text{pt} D \text{ and } x \sim y \}$.

Define a continuous map $D \xrightarrow{e} \overline{D}$ as follows: $\text{pt} D \xrightarrow{\text{pt} e} \text{pt} \overline{D}$, $\text{pt} e(x) = [x] \sim$, and $\Sigma \overline{D} \xrightarrow{\Sigma e} \Sigma D$, $\Omega \overline{D} \xrightarrow{\Omega e} \Omega D$ are the inclusion maps. Given $i \in I$, define a continuous map $\overline{D} \xrightarrow{m_i} D_i$ by $\text{pt} \overline{D} \xrightarrow{\text{pt} m_i} \text{pt} D_i$ with $\text{pt} m_i([x] \sim) = \text{pt} f_i(x)$, $\Sigma D_i \xrightarrow{\Sigma m_i} \Sigma \overline{D}$ with $\Sigma m_i(a) = \Sigma f_i(a)$ and $\Omega D_i \xrightarrow{\Omega m_i} \Omega \overline{D}$ with $\Omega m_i(b) = \Omega f_i(b)$, thus getting a source $\mathcal{M} = (\overline{D} \xrightarrow{m_i} D_i)_{i \in I}$ in LoA-TopSys. Easy computations show that $S = \mathcal{M} \circ e$ is the required $(\text{Epi}, \text{Mono-Source})$-factorization.

Lemmas 4.3, 4.4 and 4.5 together imply the main result of this section on the nature of the category of variety-based topological systems.

Theorem 4.6. The concrete category LoA-TopSys is essentially algebraic over the ground category $\text{Set} \times \text{LoA} \times \text{LoA}$.

Theorem 4.6 and [1, Example 23.6(4)] provide the result of [51] on highly non-topological nature of the category in question.

Corollary 4.7. The concrete category LoA-TopSys is topological over the ground category $\text{Set} \times \text{LoA} \times \text{LoA}$ if and only if the underlying functor is an isomorphism.

Another result is not so obvious and requires some (straightforward and thus, omitted) computations.

Corollary 4.8. Given a localic algebra A, the category A-TopSys is essentially algebraic over its ground category $\text{Set} \times \text{LoA}$. In particular, the category TopSys of S. Vickers is essentially algebraic over $\text{Set} \times \text{Loc}$.

We end the section with some remarks on a possible generalization of the obtained result. Recall from [1, Definition 23.19] the notion of algebraic category.

Definition 4.9. A concrete category (C, U) is called algebraic provided that it is essentially algebraic and U preserves extremal epimorphisms.

A natural question arises, whether one can show that the category LoA-TopSys is algebraic. Up to now, we have been able neither to prove nor disprove the claim. The only positive result in this direction is contained in the following lemma.
Lemma 4.10. If $D_1 \xrightarrow{e} D_2$ is an extremal LoA-TopSys-epimorphism, then the pair $(pt e, \Sigma e)$ is an extremal epimorphism in $\textbf{Set} \times \textbf{LoA}$ and Ωe is injective. If A-epimorphisms are surjective, then the category LoA-TopSys is algebraic.

Proof. One part of the proof follows from our construction in Lemma 4.5, namely, if $D_1 \xrightarrow{e} D_2 = D_1 \xrightarrow{e} D \xrightarrow{m} D_2$ is an (Epi, Mono)-factorization of e, then m is an isomorphism and, therefore, $pt D_1 \xrightarrow{pt e} pt D_2$ is surjective and both $\Sigma D_2 \xrightarrow{\Sigma e} \Sigma D_1$, $\Omega D_2 \xrightarrow{\Omega e} \Omega D_1$ are injective. It follows that $pt e$ is an extremal epimorphism in \textbf{Set}. To show that Σe is an extremal monomorphism in A we proceed as follows.

Notice that injectivity of Σe implies the property of being a monomorphism. The only thing left to verify is the extremal condition. Suppose we are given a factorization $\Sigma D_2 \xrightarrow{\Sigma e} \Sigma D_1 = \Sigma D_2 \xrightarrow{\varphi} A \xrightarrow{\psi} \Sigma D_1$ with φ being an epimorphism. The factorization can be lifted to the category of systems as follows.

Define a system D by $pt D = pt D_2$, $\Sigma D = A$, $\Omega D = \Omega D_2$, putting $pt D \times \Omega D \xrightarrow{\Omega e}$ $\Sigma D = pt D_2 \times \Omega D_2 \xrightarrow{\Sigma e}$ φ, A. Moreover, define $D_1 \xrightarrow{\varphi} D$ by $pt D_1 \xrightarrow{pt e} pt D_2$, $\Sigma D_1 = A \xrightarrow{\psi} \Sigma D_1$ and $\Omega D \xrightarrow{\Omega e} \Omega D_1$. To show that g is continuous notice that given $x \in pt D_1$ and $b \in \Omega D$, $\Sigma g(\models (pt g(x), b)) = \psi \circ \varphi(\models (pt e(x), b)) = \Sigma e(\models (pt e(x), b)) = \models (x, \Omega e(b)) = \models (x, \Omega g(b))$. Further, define $D \xrightarrow{f} D_2$ by $pt D \xrightarrow{pt f} pt D_2 = pt D_2 \xrightarrow{1_{pt D_2} \Omega e}$ $\Sigma D_2 \xrightarrow{\Sigma f} \Sigma D = \Sigma D_2 \xrightarrow{\varphi} A$ and $\Omega D_2 \xrightarrow{\Omega f} \Omega D = \Omega D_2 \xrightarrow{1_{\Omega D_2}} \Omega D_2$. For continuity of f notice that given $x \in pt D$ and $b \in \Omega D_2$, it follows that $\Sigma f(\models (pt f(x), b)) = \varphi(\models (x, b)) = \models (x, \Omega f(b))$. Since $D_1 \xrightarrow{\varphi} D_2 = D_1 \xrightarrow{\varphi} D \xrightarrow{f} D_2$ and f is a monomorphism in LoA-TopSys, f is an isomorphism and, therefore, φ must be as well.

The last statement of the lemma follows immediately from injectivity of Ωe. □

Notice that epimorphisms are surjective neither in the category Frm of frames nor in the category Quant of quantales [22, 24]. It follows that the last statement of Lemma 4.10 is not applicable in the most important cases of lattice-valued topology.

5. Coalgebraic Category of Topological Systems

In the previous section, we showed that the category LoA-TopSys is essentially algebraic. In Section 3 we introduced a modified version of the category denoted A-TopSys (Definition 3.8). It is the purpose of this section to show that the new category is coalgebraic. The reader should notice the difference from the case of the category LoA-TopSys, where we were able to show essential algebraicity only.

To obtain the result, we will use the duals of Theorem 4.2 and Definition 4.9. The following three lemmas provide the counterparts of the respective ones from the previous section.

Lemma 5.1. The functor A-TopSys $\xrightarrow{\text{forget}} \textbf{Set} \times A \times \textbf{LoA}$ creates isomorphisms.
Proof. Given a \(\text{Set} \times A \times \text{LoA} \)-isomorphism \((X, A, B) \xrightarrow{f} |D|\), the unique structure on \((X, A, B)\), making \(f\) an isomorphism in \(\text{A-TopSys}\), can be defined by \(\overline{f}(x, b) = (\Sigma f)^{-1}((pt \ f(x), \Omega f^{-1}(b)))\). \(\square\)

Lemma 5.2. The functor \(\text{A-TopSys} \xrightarrow{\text{ev}} \text{Set} \times A \times \text{LoA}\) is co-adjoint.

Proof. For the sake of shortness, denote the category \(\text{Set} \times A \times \text{LoA}\) by \(X\). It will be enough to show that every \(X\)-object \((X, A, B)\) has a \(-\)-co-universal arrow, i.e., an \(X\)-morphism \(|D| \xrightarrow{\varphi} (X, A, B)\) such that for every \(X\)-morphism \(|D| \xrightarrow{f} (X, A, B)\) there exists a unique op-continuous map \(D \xrightarrow{g} \mathcal{T}\) making the triangle

\[
\begin{array}{ccc}
|D| & \xrightarrow{f} & (X, A, B) \\
\downarrow & & \downarrow \\
\mathcal{T} & \xrightarrow{g} & \mathcal{T}
\end{array}
\]

commute.

Define the required op-system \(\mathcal{T}\) by \(\mathcal{T} = X \times A(B, A), \Sigma \mathcal{T} = A, \Omega \mathcal{T} = B\), putting \(pt \mathcal{T} = (X \times A(B, A)) \times B \xrightarrow{\pi_A \times \text{id}_B} A \times B \xrightarrow{\text{ev}} A\), where \(\pi_A \times \text{id}_B\) is the projection map and \(\text{ev}(p, b) = p(b)\) (cf. Lemma 4.4). To show that \(\overline{f}((x, p), -)\) is a homomorphism for every \((x, p) \in \mathcal{D}\), notice that given \(\lambda \in \Lambda\) and \(b_i \in \Omega \mathcal{T}\) for \(i \in n_\lambda\), \(\overline{f}((x, p), \omega^\Omega \mathcal{T}((b_i)_{n_\lambda})) = p(\omega_B((b_i)_{n_\lambda})) = \omega^B((\rho(b_i))_{n_\lambda})\).

Define the required \(X\)-morphism \(|D| \xrightarrow{\varphi} (X, A, B)\) by \(pt \mathcal{T} \xrightarrow{\text{pt} \ f} X \times A(B, A) \xrightarrow{\pi_x \times \text{id}_A} X\) with \(\pi_x\) the projection map, \(B \xrightarrow{\pi_A} \Omega \mathcal{T} = B \xrightarrow{\text{ev}} B\) and \(\Sigma \mathcal{T} \xrightarrow{\Sigma f} A = A \xrightarrow{\text{ev}} A\). To show that \(|D| \xrightarrow{\varphi} (X, A, B)\) is a \(-\)-co-universal arrow for \((X, A, B)\), take any \(X\)-morphism \(|D| \xrightarrow{f} (X, A, B)\) and define \(D \xrightarrow{g} \mathcal{T}\) by \(pt \mathcal{T} \xrightarrow{\text{pt} \ f} \mathcal{T}\) with \(pt \mathcal{T}(y) = (pt \ f(y), \Sigma f \circ (=)(y, -) \circ \Omega f), \ Omega \mathcal{T} \xrightarrow{\text{ev}} \Omega D = B \xrightarrow{\text{ev}} \Omega D\) and \(\Sigma D \xrightarrow{\Sigma f} \Sigma \mathcal{T} = \Sigma D \xrightarrow{\Sigma f} A\). Continuity of \(f\) follows from the fact that given \(y \in pt D\) and \(b \in \Omega \mathcal{T}\), \(\Sigma f((y, \Omega f(b))) = \Sigma f \circ (=)(y, -) \circ \Omega f(b) = \overline{f}((pt \ f(y), \Sigma f \circ (=)(y, -) \circ \Omega f(b)))\).

For commutativity of the above-mentioned triangle, it will be enough to notice that given \(y \in pt D\), \(\text{pt} \ v \circ pt \mathcal{T}(y) = \text{pt} \ v \circ pt \ f(y), \Sigma f \circ (=)(y, -) \circ \Omega f = pt \ f(y)\).

For uniqueness of \(\overline{f}\), use the fact that given another \(D \xrightarrow{h} \mathcal{T}\) such that \(v \circ |g| = h\), it follows that \(f = \text{pt} \ v \circ \text{pt} \ g, \Sigma g, (\Sigma g)^{op}\) and, therefore, \(pt \ f = pt \ v \circ \text{pt} \ g, \Sigma f = \Sigma g\) and \(\Omega f = \Omega g\). Moreover, given \(y \in pt D\), \(\text{pt} \ g(y) = (pt \ f(y), p)\), where \(\Sigma f \circ (=)(y, -) \circ \Omega f = \Sigma g \circ (=)(y, \Omega g(-)) = \overline{f}(pt \ g(y), -) = \overline{f}(pt \ f(y), p, -) = p\).

The desired equality \(\text{pt} \ f = pt \ g\) now follows. \(\square\)

Lemma 5.3. The category \(\text{A-TopSys}\) is \((\text{Epi-Sink, Mono})\)-factorizable.

Proof. Let \(\mathcal{S} = (D_i \xrightarrow{f_i} D)_{i \in I}\) be a sink in \(\text{A-TopSys}\). Define an op-system \(\mathcal{T}\) by \(pt \mathcal{T} = \bigcup_{i \in I} (pt \ f_i)^\ast (pt D_i), \Sigma \mathcal{T} = \bigcup_{i \in I} (\Sigma f_i)^\ast (\Sigma D_i)\) (recall that \(\langle \mathcal{S} \rangle\) denotes the
algebra generated by S), $\Omega D = \Omega D/\sim$, where \sim is the congruence relation on ΩD defined by $b_1 \sim b_2$ if an only if $\Omega f_i(b_1) = \Omega f_i(b_2)$ for every $i \in I$, and $[x, [b]_\sim] = \models (x, b)$, where $[b]_\sim$ is the equivalence class of b, i.e., the set $\{c \in \Omega D \mid b \sim c\}$.

Suppose we are given a factorization $\Sigma \to pt$. By the extremal property of m with the extremal condition. The procedure is similar to that of Lemma 4.10 and, therefore, notice that injectivity of the first and surjectivity of the second map imply Σm being a monomorphism and Ωm being an epimorphism in the respective category. The only thing left to check is the extremal condition. The procedure is similar to that of Lemma 4.10 and, therefore, some details are left to the reader.

Suppose we are given a factorization $\Sigma D_1 \to \Sigma D_2 = \Sigma D_1 \overset{\varphi}{\to} A \overset{\psi}{\to} \Sigma D_2$ with φ being an epimorphism. Define an op-system $D = (pt D_1, A, \Omega D_1, \models)$ with $pt D \times \Omega D \overset{\models}{\to} \Sigma D = pt D_1 \times \Omega D_1 \overset{\models}{\to} \Sigma D_1 \overset{\varphi}{\to} A$ and get an (Epi, -) factorization $D_1 \overset{m}{\to} D_2 = D_1 \overset{g = (1_{pt D_1}, \varphi, 1_{\Omega D_1})}{\to} D \overset{f = (pt m, \psi, (\Omega m)_\varphi)}{\to} D_2$. By the extremal property of m, g is an isomorphism and, therefore, φ must be as well.

Given a factorization $\Omega D_2 \overset{\Omega m}{\to} \Omega D_1 = \Omega D_2 \overset{\models}{\to} B \overset{\psi}{\to} \Omega D_1$ with ψ being a monomorphism, define an op-system $D = (pt D_1, \Sigma D_1, B, \models)$ with $pt D \times \Omega D \overset{\models}{\to} \Sigma D = pt D_1 \times B \overset{1_{pt D_1} \times \psi}{\to} pt D_1 \times \Omega D_1 \overset{\models}{\to} \Sigma D_1$ and get an (Epi, -) factorization $D_1 \overset{m}{\to} D_2 = D_1 \overset{g = (1_{pt D_1}, \Sigma D_1, \psi, \varphi)}{\to} D \overset{f = (pt m, \Sigma m, \varphi, \psi)}{\to} D_2$. By the extremal property of m, g is an isomorphism and, therefore, φ must be as well.

Theorem 5.4 and Lemma 5.5 together imply the main result of this section on the nature of the category $\mathbf{A\mbox{-TopSys}}$.

Theorem 5.4. The concrete category $\mathbf{A\mbox{-TopSys}}$ is essentially coalgebraic over the ground category $\mathbf{Set} \times A \times \mathbf{LoA}$.

It appears that in the current setting the result can be strengthened as shows the following lemma.

Lemma 5.5. The functor $\mathbf{A\mbox{-TopSys}} \overset{\dashv}{\to} \mathbf{Set} \times A \times \mathbf{LoA}$ preserves extremal monomorphisms.

Proof. Suppose $D_1 \overset{m}{\to} D_2$ is an extremal monomorphism in $\mathbf{A\mbox{-TopSys}}$. Lemma 5.3 provides the (Epi, Mono)-factorization $D_1 \overset{m}{\to} D_2 = D_1 \overset{\varphi}{\to} \Omega D_1 \overset{\models}{\to} D_2$ that together with the extremal property of m implies φ being an isomorphism. Thus, $pt m, \Sigma m$ are injective and Ωm is surjective. It follows that $pt m$ is an extremal monomorphism in \mathbf{Set}. To show the analogues for Σm and Ωm, notice that injectivity of the first and surjectivity of the second map imply Σm being a monomorphism and Ωm being an epimorphism in the respective category. The only thing left to check is the extremal condition. The procedure is similar to that of Lemma 4.10 and, therefore, some details are left to the reader.
Theorem 5.6. The concrete category A-TopSys is coalgebraic over the ground category $\text{Set} \times \text{A} \times \text{LoA}$.

Easy calculations and Remark 3.9 imply the following result.

Corollary 5.7. Given a localic algebra A, the category A-TopSys is coalgebraic over its ground category $\text{Set} \times \text{LoA}$. In particular, the category TopSys of S. Vickers is coalgebraic over $\text{Set} \times \text{Loc}$.

Corollaries 4.8 and 5.7 together imply that the category TopSys of S. Vickers [52] is both essentially algebraic and coalgebraic over its ground category.

6. Conclusion: Embedding Topology Into Algebra

In the paper, we presented a variety-based approach to both topological spaces and topological systems. It appears that the framework of varieties is quite fruitful, incorporating in itself the majority of the existing approaches to both fuzzy topology and fuzzy topological systems. Moreover, the embedding of Theorem 3.7 as well as Theorems 4.1, 4.6 together suggest an interesting and rather striking result.

Metatheorem 6.1. (Lattice-valued) topology can be embedded into algebra.

The embedding is not concrete since the categories LoA-Top and LoA-TopSys have different ground categories. More explicitly, the diagram

\[
\begin{array}{ccc}
\text{LoA-Top} & \xrightarrow{G} & \text{LoA-TopSys} \\
\downarrow & & \downarrow \\
\text{Set} \times \text{LoA} & \xleftarrow{\Pi} & \text{Set} \times \text{LoA} \times \text{LoA}
\end{array}
\]

commutes, where $\Pi((X, A, B) \xrightarrow{(f, \varphi)} (Y, C, D)) = (X, A) \xrightarrow{(f, \varphi)} (Y, C)$. An experienced reader will find out the embedding $\text{Set} \times \text{LoA} \xrightarrow{H} \text{Set} \times \text{LoA} \times \text{LoA}$, $H((X, A) \xrightarrow{(f, \varphi)} (Y, B)) = (X, A, A^X) \xrightarrow{(f, \varphi, (f, \varphi)^{op})} (Y, B, B^Y)$. Straightforward computations show that replacing Π with H in (6) provides a non-commutative diagram, since given a space E, $|G E| = (\text{pt} E, \Sigma E, \tau) \neq (\text{pt} E, \Sigma E, (\Sigma E)^{(\text{pt} E)}) = H[E]$. The result is highly related to the problem of obtaining initial lifts of certain sources in the category Loc-TopSys raised in [9, Example 72]. A possible solution was based on the (unfortunately, wrong) assumption of commutativity of (6) with H instead of Π. Our discussion shows that the problem is still open.

The reader should also be aware of several other open problems suggested by the approach. Below we list the most important (by our opinion) ones.

Problem 6.2. By Theorem 4.6 the category LoA-TopSys is essentially algebraic over its ground category. Is it true that the category in question is algebraic?

Problem 6.3. Example 3.6 introduced the category LoA-SP, providing a generalization of the notion of state property system of D. Aerts [2]. What is the nature
of the category in question (algebraic, coalgebraic)? What is its relation to the supercategory LoA-TopSys (reflective, coreflective subcategory)?

To continue, we recall the following result from [1, Proposition 23.12].

Problem 6.4. If a concrete category (C, U) is essentially algebraic over the category X, then the following hold:

1. If X is (strongly) complete, then C is (strongly) complete.
2. If X has coproducts, then C is cocomplete.

Since every variety is complete and, moreover, has coequalizers, the following result holds.

Theorem 6.5. The category LoA-TopSys is cocomplete. It is complete provided that A has coproducts. The category A-TopSys is both complete and cocomplete provided that A has coproducts.

As an example, notice that the variety CLat of complete lattices does not have coproducts [1, Exercise 10S] and, therefore, the condition of Theorem 6.5 is essential in application of the theorem to different cases. On the other hand, the variety Frm of frames is cocomplete and, therefore, both Loc-TopSys and Frm-TopSys are complete and cocomplete.

In [52] S. Vickers constructed explicitly binary products and coproducts of topological systems. Moreover, in [3] D. Aerts et al. provided a construction of binary products of state property systems. The latter case, however, is simpler (from the categorical viewpoint) since the category SP of the structures in question is equivalent to the already mentioned (Example 2.10) category Cls of closure spaces [4], which is topological [11] over its ground category Set and, therefore, is both complete and cocomplete. In view of the above-mentioned remarks one can postulate the following problem.

Problem 6.6. What is the explicit limit and colimit structure of both LoA-TopSys and A-TopSys?

The problems raised in this section will be addressed to in our subsequent manuscripts.

Acknowledgements. The author is grateful to both Prof. S. E. Rodabaugh (Youngstown State University, USA) and Prof. C. Guido (University of Salento, Italy) for their help during the preparation of the manuscript.

References

On Algebraic and Coalgebraic Categories of Variety-based Topological Systems

30

S. A. Solovyov

Sergey A. Solovyov, Department of Mathematics, University of Latvia, Zellu iela 8, LV-1002 Riga, Latvia and Institute of Mathematics and Computer Science, University of Latvia, Raina bulvāris 29, LV-1459 Riga, Latvia
E-mail address: sergejs.solovjovs@lu.lv, sergejs.solovjovs@lumii.lv