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ON ALGEBRAIC AND COALGEBRAIC CATEGORIES OF

VARIETY-BASED TOPOLOGICAL SYSTEMS

S. A. SOLOVYOV

Abstract. Motivated by the recent study on categorical properties of lattice-

valued topology, the paper considers a generalization of the notion of topolog-

ical system introduced by S. Vickers, providing an algebraic and a coalgebraic
category of the new structures. As a result, the nature of the category TopSys

of S. Vickers gets clarified, and a metatheorem is stated, claiming that (lattice-

valued) topology can be embedded into algebra.

1. Introduction

This paper studies a possible single framework in which to treat both variable-
basis lattice-valued topological spaces [37] and the respective algebraic structures
underlying their topologies. Originally suggested by both locale theory and many-
valued set theory, the problem has a long history.

In 1959 D. Papert and S. Papert [29] presented an adjunction between the cat-
egories Top of topological spaces and Frmop, the dual of the category Frm of
frames. The adjoint situation was described more succinctly by J. Isbell [20], who
introduced the name locale for the objects of Frmop and considered the category
Loc of locales as a substitute for Top. In 1982 localic theory was given a coherent
statement in the celebrated book of P. T. Johnstone “Stone Spaces” [22]. Using
the logic of finite observations, S. Vickers [52] introduced the notion of topological
system as a single framework for treating both spaces and locales (see also [53] for
algebraic treatment of topology).

On the other hand, the pioneering papers of C. L. Chang [6], J. A. Goguen
[14] and R. Lowen [26] started the theory of fixed-basis many-valued topological
spaces. Using a point-free framework similar to localic theory, B. Hutton [19]
proposed in 1980 the first variable-basis approach, which eventually resulted in a
variable-basis category of singleton topological spaces. In 1983 S. E. Rodabaugh
[35] introduced the first variable-basis category for topology in which the underlying
sets of the spaces were non-singletons. Since then it is known as the category
C-Top of variable-basis lattice-valued topological spaces [37]. Almost immediately,
P. Eklund [12] began the study on categorical properties of variable-basis topology,
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thereby initiating categorical fuzzy topology, which has been developing rapidly
ever since.

Both fixed- and variable-basis approaches induced many researchers to study
their properties [8, 13, 16, 17, 21, 25, 41, 42, 43, 54]. In particular, [10, 15] considered
functorial relationships between lattice-valued topology and topological systems.
The use of fuzzy topological spaces and crisp topological systems appeared to be
not flexible enough, that resulted in the concept of lattice-valued topological system
over locales [9], significantly simplifying some results of [10]. For example, one
easily produced an embedding of the category Loc-Top of lattice-valued topological
spaces into the category Loc-TopSys of lattice-valued topological systems. This
paper aims at providing a more general approach to the topic.

Motivated by our current slogan of doing fuzzy mathematics on arbitrary alge-
braic structures [44], we introduced in [49, 50, 51] the notions of variety-based topo-
logical space and topological system, generalizing the respective notions of [9, 37].
The cornerstone of the approach lies in replacing Loc with the dual category LoA
of an arbitrary variety of algebras (in the obvious sense, as sets with operations,
where no partial order is required) A. The new concepts appeared fruitful, i.e., that
of system incorporated in itself not only the respective notion of S. Vickers, but also
state property systems of D. Aerts [2] (serving as the basic mathematical structure
in the Geneva-Brussels approach to foundations of physics) as well as Chu spaces
(over sets) [30], whereas that of space provided a common framework for both the
above-mentioned lattice-valued topological spaces of S. E. Rodabaugh and closure
spaces [4] (made variable-basis on the way). Among other results, it was shown that
the category LoA-Top of variety-based topological spaces is isomorphic to a full
(regular mono)-coreflective subcategory of the category LoA-TopSys of variety-
based topological systems. The relevance of the result is twofold: on one hand,
it generalizes the above-mentioned embedding of Loc-Top, on the other, it pro-
vides an analogue of spatialization procedure for variety-based topological systems,
introduced by S. Vickers [52] for the localic ones.

Developing the topic further, we introduced in [46] a variety-based modification
of another procedure of S. Vickers [52] called localification of systems, the essence
of which lies in representing the category of algebraic structures underlying the
topologies (e.g., locales) as a particular subcategory of the category of topological
systems. It appeared, however, that the machinery requires a modified category of
systems, denoted A-TopSys. In the new setting, one can show that the product
category A × LoA is isomorphic to a full reflective subcategory of the category
A-TopSys, which (in general) is neither mono- nor epi-reflective. The simplest
common point of both LoA-TopSys and A-TopSys is the fixed-basis approach
generalizing the respective one proposed by S. Vickers.

It is important to notice that the word “topological” in the name chosen by
S. Vickers for his structures suggested topological flavor in their behavior. Notwith-
standing the expectations, J. T. Denniston and S. E. Rodabaugh [10] showed that
the category TopSys of S. Vickers is not topological over its ground category, pos-
ing the question on its nature. In [51] we proved that the category LoA-TopSys is
topological over its ground category if and only if the respective underlying functor
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is an isomorphism. The latter fact together with the result that the underlying
functor of LoA-TopSys creates isomorphisms, gave rise to considering algebraic
properties of the category in question. It is the aim of this paper to show that
LoA-TopSys is essentially algebraic, whereas A-TopSys is coalgebraic over the
respective ground category. As a consequence, we get that the motivating cate-
gory TopSys is both algebraic and coalgebraic that suggests a possible change in
the name of its objects, excluding the word “topological”. Moreover, the above-
mentioned embedding of LoA-Top into LoA-TopSys suggests a metatheorem
claiming that (lattice-valued) topology can be embedded into algebra.

The necessary categorical background can be found in [1, 27, 28]. For algebraic
notions we recommend [7, 28]. Although we tried to make the paper as much
self-contained as possible, some details are still omitted and left to the reader.

2. Variety-based Topological Spaces

In this section, we recall the concept of variety-based topological space, which
induced the notion of variety-based topological system. The concept provides a
common framework for both variable-basis lattice-valued topological spaces [37]
and closure spaces [4]. The approach stems from [49, 50] generalizing the respective
one of S. E. Rodabaugh [37, 39]. For convenience of the reader, we begin with some
algebraic preliminaries.

An algebra is to be thought of as a set with a family of operations defined on it,
which satisfy certain identities, e.g., semigroup, monoid, group and also complete
lattice, frame, quantale. In case of finitary algebras, i.e., algebras based on a set
of finite operations, there exists the famous theorem of G. Birkhoff [5] representing
them as varieties. This paper uses a modification of the concept, suitable to in-
clude infinitary cases as well and motivated by the notion of equationally-definable
class [28].

Definition 2.1. Let Ω = (n�)�∈Λ be a (possibly proper) class of cardinal num-
bers. An Ω-algebra is a pair (A, (!A� )�∈Λ) (denoted by A) consisting of a set A

and a family of maps An�
!A�−−→ A, called n�-ary primitive operations on A. An

Ω-homomorphism (A, (!A� )�∈Λ)
f−→ (B, (!B� )�∈Λ) is a map A

f−→ B, making the
diagram

An�

!A�
��

fn� // Bn�

!B�
��

A
f

// B

commute for every � ∈ Λ. The category of Ω-algebras and Ω-homomorphisms is
denoted Alg(Ω), with ∣ − ∣ being the underlying functor to the ground category
Set of sets and maps.

Let ℳ (resp. ℰ) be the class of Ω-homomorphisms with injective (resp. sur-
jective) underlying maps. A variety of Ω-algebras (also called a variety) is a full
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subcategory of Alg(Ω) closed under the formation of products,ℳ-subobjects (sub-
algebras) and ℰ-quotients (homomorphic images). The objects (resp. morphisms)
of a variety are called algebras (resp. homomorphisms).

As an example of varieties one can mention the constructs Frm, SFrm and
SQuant of frames, semi-frames and semi-quantales (popular in lattice-valued topol-
ogy) [31, 32, 33, 34, 39]. For convenience of the reader, as well as to feel free in
using it throughout the paper, we recall the definition of the latter variety.

Definition 2.2. A semi-quantale (s-quantale for short) is a
⋁

-semilattice (partially
ordered set having arbitrary

⋁
) equipped with a binary operation ⊗. An s-quantale

homomorphism is a map preserving
⋁

and ⊗. The variety of s-quantales and their
homomorphisms is denoted SQuant.

It is important to underline that s-quantales are proposed in [39] as the basic
mathematical structure for doing lattice-valued topology upon, since the obtained
categories are topological over their ground categories. The crucial advantage of the
new concept is that it incorporates the majority of lattice-like structures currently
used in many-valued topology, e.g., the above-mentioned varieties Frm and SFrm
are subcategories of SQuant. On the other hand, the structure in question is
not so well-known as its counterpart quantale, which has two additional properties:
associativity of ⊗ and its distributivity over

⋁
from both sides [40].

From now on, we fix a variety A and use the following notations [10, 37, 39]. The
dual of the category A (or, possibly, its subcategory) is denoted LoA (the “Lo”
comes from “localic”). Its objects (resp. morphisms) are called localic algebras
(resp. homomorphisms). Given a morphism ' of a variety A, the respective mor-
phism of LoA is denoted 'op and vice versa. The reader should be aware that the
notations for dual categories used in this paper follow the (already widely accepted)
pattern of lattice-valued topology and not the category-theoretic one.

The cornerstone of our approach (just as in the classical case of [37]) are the
so-called image and preimage operators (it was S. E. Rodabaugh [36, 38, 39] who

fully realized their importance in topology). Given a map X
f−→ Y , there exist the

traditional image and preimage operators on the respective powersets P(X)
f→−−→

P(Y ) and P(Y )
f←−−→ P(X) defined in the obvious way. Moreover, every algebra A

provides the fixed-basis (Zadeh) preimage operator AY
f←A−−→ AX defined by f←A (p) =

p ∘ f [55]. On the other hand, every homomorphism A
g−→ B can be lifted to a map

AX
gX→−−→ BX defined by gX→(p) = g ∘ p ([10, 36, 39] denote the latter map by ⟨g⟩).

The next lemma contains an important property of the newly defined maps [50].

Lemma 2.3. For every map X
f−→ Y and every homomorphism A

g−→ B, both

AY
f←A−−→ AX and AX

gX→−−→ BX are homomorphisms.

On the variable-basis side everything goes much the same. Suppose we are given

a Set×LoA-morphism (recall our notation for dual categories) (X,A)
(f,')−−−→ (Y,B).

There exists the variable-basis (Rodabaugh) preimage operator BY
(f,')←−−−−→ AX

defined by (f, ')←(p) = 'op ∘ p ∘ f [36, 38, 39].
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Lemma 2.4. For every Set× LoA-morphism (X,A)
(f,')−−−→ (Y,B), the diagram

BY

f←B
��

('op)Y→ //

(f,')←

''

AY

f←A
��

BX
('op)X→

// AX

commutes and, therefore, BY
(f,')←−−−−→ AX is a homomorphism.

It is important to notice that a more general approach to variety-based powerset
theories has already been considered by the current author in [48]. Everything is on
its place to introduce the category of variety-based topological spaces à la [37, 39].

Definition 2.5. Let C be a subcategory of LoA. A C-topological space (C-space
for short) is a triple E = (ptE,ΣE, �), where (ptE,ΣE) is a Set×C-object and �
is a subalgebra of (ΣE)ptE (called C-topology on (ptE,ΣE)). A C-continuous map

E1
f−→ E2 is a Set × C-morphism (ptE1,ΣE1)

f=(pt f,(Σ f)op)−−−−−−−−−−→ (ptE2,ΣE2) such
that ((pt f, (Σ f)

op
)←)→(�2) ⊆ �1. C-Top is the category of C-topological spaces

and C-continuous maps, with the underlying functor ∣ − ∣ to the ground category

Set×C given by the formula ∣E1
f−→ E2∣ = (ptE1,ΣE1)

(pt f,Σ f)−−−−−−→ (ptE2,ΣE2).

The notations used in Definition 2.5 are different from those currently accepted
in lattice-valued topology. The main reason for that is the fact (Theorem 3.7)
that every space can be considered as a particular instance of topological system
(Definition 3.1), the notations for which are already fixed (Remark 3.2).

In the following, we will consider a fixed-basis approach to variety-based topology
and, therefore, we introduce its definition.

Definition 2.6. Given a C-space E, ΣE is called the basis of the space. Given
a C-object A, A-Top is the non-full subcategory of C-Top with objects all spaces
with the basis A and morphisms all C-continuous maps f such that Σ f = 1A.

The new notions can be illustrated by many examples, which clearly show their
relations to the existing concepts in the literature.

Example 2.7. Loc-Top is precisely the motivating example of lattice-valued topol-
ogy from [9, 10]. The category 2-Top (2 being the two-element frame {⊥,⊤})
provides the classical set-theoretic approach of, e.g., [23].

Example 2.8. LoSQuant-Top provides the category for developing the topolog-
ical theories of [39].

Example 2.9. Let CQML∨ be the variety of complete ∨-quasi-monoidal lattices
(cf. [37]), namely, s-quantales (Q,

⋁
,⊗) satisfying two additional conditions:

(1) ⊗ preserves finite
⋁

in both arguments;
(2) ⊤⊗⊤ = ⊤, where ⊤ is the upper bound of Q;
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and ⊤-preserving s-quantale homomorphisms. The category LoCQML∨-Top pro-
vides the classical approach to variable-basis topology of [37].

Example 2.10. Let SLat(
⋀
,⊥) be the variety of {

⋀
,⊥}-semilattices. The cat-

egory LoSLat(
⋀
,⊥)-Top provides a variable-basis modification of the concept of

closure space of [4]. In particular, 2-Top (cf. the notations of Example 2.7) is
isomorphic to the category Cls of closure spaces of [4]. Recall that a closure space
(X,ℱ) consists of a set X and a family of subsets ℱ ⊆ P(X) satisfying the following
conditions:

(1) ∅ ∈ ℱ ;
(2) if (Fi)i∈I ⊆ ℱ , then

∩
i∈I

Fi ∈ ℱ .

If (X,ℱ) and (Y,G) are closure spaces, then a map X
f−→ Y is called continuous

provided that f←(G) ∈ ℱ for every G ∈ G.

Although Definition 2.5 is provided in its general form, in this paper we restrict
ourselves to the case C = LoA. For the sake of shortness, we call LoA-spaces by
spaces and LoA-continuity by continuity.

3. Variety-based Topological Systems

In this section we introduce the main object of our study, i.e., the category
of variety-based topological systems. The notion provides a common framework
for topological systems introduced by S. Vickers [52], state property systems of
D. Aerts [2] and Chu spaces (over sets) [30]. The approach comes from [45, 46, 51]
generalizing those of [9, 52].

Definition 3.1. Let C be a subcategory of LoA. A C-topological system (C-
system for short) is a tuple D = (ptD,ΣD,ΩD, ∣=), where (ptD,ΣD,ΩD) is

a Set × C × C-object and ptD × ΩD
∣=−→ ΣD is a map (called C-satisfaction

relation on (ptD,ΣD,ΩD)) such that ΩD
∣=(x,−)−−−−−→ ΣD is a homomorphism for

every x ∈ ptD. A C-continuous map D1
f−→ D2 is a Set × C × C-morphism

(ptD1,ΣD1,ΩD1)
f=(pt f,(Σ f)op,(Ω f)op)−−−−−−−−−−−−−−−→ (ptD2,ΣD2,ΩD2) such that for every

x ∈ ptD1 and every b ∈ ΩD2, ∣=1(x,Ω f(b)) = Σ f(∣=2(pt f(x), b)). C-TopSys is
the category of C-topological systems and C-continuous maps, with the underlying

functor to the ground category Set × C × C given by the formula ∣D1
f−→ D2∣ =

(ptD1,ΣD1,ΩD1)
(pt f,(Σ f)op,(Ω f)op)−−−−−−−−−−−−−→ (ptD2,ΣD2,ΩD2).

Remark 3.2. The notation f = (pt f, . . . , (Ωf)
op

) for continuous morphisms in
Definition 3.1 is due to S. Vickers [52]. Since [10] uses it as well, we decided to do
the same. Definition 3.1 adds one more component to f denoted by (Σf)

op
and

that is entirely our own invention, which does not go in line with [9], where the
authors use completely different (even to [10]) notation. We would like to underline
that pt f , (Σf)

op
, (Ωf)

op
are components of f and not new maps obtained from f .



On Algebraic and Coalgebraic Categories of Variety-based Topological Systems 19

In the following, we will rely heavily on a fixed-basis approach to variety-based
topological systems and, therefore, we introduce its definition.

Definition 3.3. Given a C-system D, ΣD is called the basis of the system. Given
a C-object A, A-TopSys is the non-full subcategory of C-TopSys with object all
systems D with the basis A and morphisms all C-continuous maps f such that
Σ f = 1A.

The new notion can be illustrated by the following examples, providing its rela-
tion to the existing concepts in the literature.

Example 3.4. Loc-TopSys is precisely the category of lattice-valued topological
systems introduced in [9]. The category 2-TopSys (cf. Example 2.7) is isomorphic
to the category TopSys of S. Vickers [52].

Example 3.5. Given a set K, the subcategory K-TopSys of LoSet-TopSys is
isomorphic to the category Chu(Set,K) comprising Chu spaces over K [30].

Example 3.6. Let C-SP be the full subcategory of C-TopSys consisting of all
systems D such that for every b1, b2 ∈ ΩD, ∣=(−, b1) = ∣=(−, b2) implies b1 = b2.
The full subcategory 2-SP of Lo(SLat(

⋀
,⊥))-SP (cf. Examples 2.7 and 2.10)

is isomorphic to the category SP of state property systems of D. Aerts [2] (the
notion serves as the basic mathematical structure in the Geneva-Brussels approach
to foundations of physics).

Although Definition 3.1 is provided in its general form, in this paper we restrict
ourselves to the case C = LoA. For shortness sake we call LoA-systems by systems
and LoA-continuity by continuity. The crucial property of the new category is
contained in the fact that it provides a proper extension of the category LoA-Top
of variety-based topological spaces [51].

Theorem 3.7. The category LoA-Top is isomorphic to a full (regular mono)-
coreflective subcategory of the category LoA-TopSys.

Proof. There exists a full embedding LoA-Top
� � G //LoA-TopSys with GE =

(ptE,ΣE, �, ∣=), ∣=(x, p) = p(x) and G f = (pt f, (Σ f)
op
, ((pt f, (Σ f)

op
)←)

op
).

There exists a functor LoA-TopSys
Spat−−−→ LoA-Top with SpatD = (ptD,ΣD, �),

� = {∣=(−, b) ∣ b ∈ ΩD} and Spat f = (pt f, (Σ f)
op

). Spat is a right-adjoint-left-
inverse of G. □

The above-mentioned functor G generalizes the embedding of Loc-Top (lattice-
valued topology) into the category of lattice-valued topological systems [9]. More-
over, Theorem 3.7 provides an analogue of the spatialization procedure for systems
of S. Vickers [52, Theorem 5.3.4]. One should also notice that the equivalence be-
tween the categories of state property systems and closure spaces obtained in [3] is
a direct consequence of Theorem 3.7 [47].

As was already mentioned in Introduction, to get a similar result for the under-
lying algebras of spaces, one has to modify the category of systems accordingly [46].
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Definition 3.8. Given a subcategory C of LoA, a LoC-topological system is a
tuple D = (ptD,ΣD,ΩD, ∣=), where (ptD,ΣD,ΩD) is a Set× LoC×C-object
and ∣= is a C-satisfaction relation on (ptD,ΣD,ΩD). A LoC-continuous map

D1
f−→ D2 is a Set × LoC × C-morphism (ptD1,ΣD1,ΩD1)

f=(pt f,Σf,(Ωf)op)−−−−−−−−−−−−→
(ptD2,ΣD2,ΩD2) such that for every x∈ptD1 and every b∈ΩD2, Σf(∣=1(x,Ωf(b)))=

∣=2(pt f(x), b). LoC-TopSys is the category of LoC-topological systems and LoC-
continuous maps, with the underlying functor to the ground category Set×LoC×C
denoted by ∣ − ∣.

One should be aware of the following important relations between the above-
mentioned two approaches to topological systems, based on the fact that C and
LoC differ only on morphisms.

Remark 3.9. The categories C-TopSys and LoC-TopSys have eventually the
same objects but the morphisms (as well as ground categories) are different. Given
a C-object A, A-TopSys is eventually a subcategory of both C-TopSys and
LoC-TopSys. If E is the subcategory of C with the same objects and with ' in E
if and only if ' is an isomorphism, then the categories E-TopSys and LoE-TopSys
are isomorphic.

Although Definition 3.8 is provided in its general form, in this paper we restrict
ourselves to the case C = LoA. For the sake of shortness, as well as to distinguish
between the categories LoA-TopSys and A-TopSys, we call A-systems by op-
systems and A-continuity by op-continuity.

Theorem 3.10. The category A×LoA is isomorphic to a full reflective subcategory
of the category A-TopSys which (in general) is neither mono- nor epi-reflective.

Proof. There exists a full embedding A× LoA � � F //A-TopSys with F(A,B) =
(A(B,A), A,B, ∣=), ∣=(p, b) = p(b) and F(', ) = ((∣ op∣, 'op)←, ',  ). There

exists a functor A-TopSys
Loc−−→ A × LoA with LocD = (ΣD,ΩD), Loc f =

(Σ f, (Ω f)
op

). Loc is a left-adjoint-left-inverse of F. □

Theorem 3.10 provides an analogue of the localification procedure for systems of
S. Vickers [52, Theorem 5.4.3]. It will be worthwhile to underline once more that in
the framework of variable-basis both spatialization and localification procedures re-
quire their own category of systems. The simplest common point of both categories
is the fixed-basis approach generalizing that of S. Vickers [52].

4. Algebraic Category of Topological Systems

It is a well-known fact that the construct Top of topological spaces and contin-
uous maps is topological [1, Example 21.8(1)]. There are several extensions of the
result to the lattice-valued case [18, 37], differing in the approach to fuzziness and
the algebraic structures underlying the topologies. Moreover, S. E. Rodabaugh [39]
has come out with a general solution claiming that if the underlying lattices are
s-quantales, then all the concrete categories for topology considered or constructed
in [18, 37, 39] (and these include many well-known categories) are topological over
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their ground categories with respect to the underlying forgetful functors. Meta-
mathematically restated, the conditions of s-quantales guarantee that one is doing
topology when working in these categories. Motivated by these results, we proved
in [49, Proposition 3.4] an analogous one for variety-based approach, partly cov-
ering the above-mentioned claim of [39] for s-quantales (the result of [11] claiming
that the category Cls of closure spaces (Example 2.10) is topological over Set is
also included).

Theorem 4.1. The concrete category LoA-Top is topological over the ground
category Set× LoA.

The concept of topological system and the embedding of Theorem 3.7 raised the
question on the nature of the category LoA-TopSys. In particular, since TopSys
models the “topological” behavior coming from domain theory, it could be expected
that TopSys would be topological over its ground category. Despite all hopes,
J. T. Denniston et al. [10] showed that even sources comprising only one morphism
need not have initial lifts. Moreover, the results of [51] claiming, firstly, that the
category LoA-TopSys is topological if and only if the respective underlying functor
∣ − ∣ is an isomorphism and, secondly, that ∣ − ∣ creates isomorphisms, suggested
an algebraic flavor in the behavior of the category. It is the purpose of this section
to show that LoA-TopSys is essentially algebraic over its ground category Set×
LoA×LoA. To verify the claim, we will use the so-called characterization theorem
for essentially algebraic categories [1, Theorem 23.8].

Theorem 4.2. A concrete category (C, U) is essentially algebraic if and only if
the following conditions are satisfied:

(1) U creates isomorphisms,
(2) U is adjoint,
(3) C is (Epi, Mono-Source)-factorizable.

We will check the required conditions in a row. The first one, probably the most
obvious, can be easily shown as follows.

Lemma 4.3. The functor LoA-TopSys
∣−∣−−→ Set × LoA × LoA creates isomor-

phisms.

Proof. Given a Set×LoA×LoA-isomorphism (X,A,B)
f−→ ∣D∣, the unique struc-

ture on (X,A,B), making f an isomorphism in LoA-TopSys, can be defined by

∣=(x, b) = Σ f(∣=(pt f(x), (Ω f)−1(b))). □

The second condition is more sophisticated and requires a bit of computation.

Lemma 4.4. The functor LoA-TopSys
∣−∣−−→ Set× LoA× LoA is adjoint.

Proof. For the sake of shortness, we denote the category Set×LoA×LoA by X. It
will be enough to show that every X-object (X,A,B) has a ∣−∣-universal arrow, i.e.,

an X-morphism (X,A,B)
�−→ ∣D∣ such that for every X-morphism (X,A,B)

f−→ ∣D∣
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there exists a unique continuous map D
f−→ D making the triangle

(X,A,B)
� //

f $$IIIIIIIII ∣D∣

∣f ∣
��
∣D∣

commute.
Define the required system D by ptD = X, ΣD = A, ΩD = AX × B, putting

ptD×ΩD
∣=−→ ΣD = X × (AX ×B)

�X×AX−−−−−→ X ×AX ev−→ A, where �X×AX is the

projection map and ev(x, p) = p(x). To show that ∣=(x,−) is a homomorphism for
every x ∈ ptD, notice that given � ∈ Λ and (pi, bi) ∈ ΩD for i ∈ n�,

∣=(x, !ΩD
� (⟨(pi, bi)⟩n�)) = ∣=(x, (!A

X

� (⟨pi⟩n�), !B� (⟨bi⟩n�))) = ev(x, !A
X

� (⟨pi⟩n�)) =

(!A
X

� (⟨pi⟩n�))(x) = !A� (⟨pi(x)⟩n�) = !ΣD
� (⟨∣=(x, (pi, bi))⟩n�).

Define the required X-morphism (X,A,B)
�−→ ∣D∣ by X

pt �−−→ ptD = X
1X−−→ X,

ΣD
Σ �−−→ A = A

1A−−→ A and ΩD
Ω �−−→ B = AX×B �B−−→ B, where �B is the projection

map. To show that (X,A,B)
�−→ ∣D∣ is a ∣ − ∣-universal arrow for (X,A,B), choose

any X-morphism (X,A,B)
f−→ ∣D∣ and define D

f−→ D by ptD
pt f−−→ ptD = X

pt f−−→

ptD, ΣD
Σ f−−→ ΣD = ΣD

Σ f−−→ A and ΩD
Ω f−−→ ΩD = ΩD

Ω f−−→ AX × B, where
Ω f is the unique homomorphism making the diagram

ΩD
�

zzvvvvvvvvv
Ω f

��

Ω f

##GGGGGGGGG

AX AX ×B�AX
oo

�B
//B

commute, with � in its turn given by the commutativity for every x ∈ X of the
diagram

ΩD

�

��

∣=(pt f(x),−) // ΣD

Σ f

��
AX

�x=ev(x,−)
//A.

To show continuity of f notice that given x ∈ ptD and b ∈ ΩD, Σ f(∣=(pt f(x), b))=

Σ f(∣=(pt f(x), b)) = ev(x, �(b)) = (�(b))(x) = ∣=(x, (�(b),Ω f(b))) = ∣=(x,Ω f(b)).

On the other hand, the equality ∣f ∣∘� = (pt f, (Σ f)
op
, (Ω f)

op
)∘(1X , 1A, (�B)

op
) =

(pt f, (Σ f)
op
, (Ω f)

op
) = f gives commutativity of the above-mentioned triangle.

For uniqueness of f notice that given any other D
g−→ D such that ∣g∣ ∘ � = f ,

it follows that f = (pt g, (Σ g)
op
, (�B ∘ Ω g)

op
) and, therefore, pt f = pt g, Σ f =

Σ g and Ω f = �B ∘ Ω g. Moreover, since g is continuous, Σ f ∘ ∣=(pt f(x),−) =
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Σ g(∣=(pt g(x),−)) = ∣=(x,Ω g(−)) = (�AX ∘Ω g(−))(x) = ev(x,−) ∘ �AX ∘Ω g and
thus � = �AX ∘ Ω g. The desired equality Ω f = Ω g now follows. □

The last condition of Theorem 4.2 uses the standard technique of universal al-
gebra [7] applied to our slightly modified case.

Lemma 4.5. The category LoA-TopSys is (Epi, Mono-Source)-factorizable.

Proof. Let S = (D
fi−→ Di)i∈I be a source in LoA-TopSys. Define a system D by

ptD = ptD/ ∼, where ∼ is the equivalence relation on ptD given by x ∼ y if and
only if pt fi(x) = pt fi(y) for every i ∈ I, ΣD = ⟨

∪
i∈I

(Σ fi)
→(ΣDi)⟩ (⟨S⟩ denotes the

subalgebra generated by S), ΩD = ⟨
∪
i∈I

(Ω fi)
→(ΩDi)⟩ and ∣=([x]∼, b) = ∣=(x, b),

where [x]∼ is the equivalence class of x, i.e., the set {y ∣ y ∈ ptD and x ∼ y}.
Define a continuous map D

e−→ D as follows: ptD
pt e−−→ ptD, pt e(x) = [x]∼,

and ΣD
� � Σ e // ΣD , ΩD

� � Ω e // ΩD are the inclusion maps. Given i ∈ I, define

a continuous map D
mi−−→ Di by ptD

ptmi−−−→ ptDi with ptmi([x]∼) = pt fi(x),

ΣDi
Σmi−−−→ ΣD with Σmi(a) = Σ fi(a) and ΩDi

Ωmi−−−→ ΩD with Ωmi(b) = Ω fi(b),

thus getting a source ℳ = (D
mi−−→ Di)i∈I in LoA-TopSys. Easy computations

show that S =ℳ∘ e is the required (Epi, Mono-Source)-factorization. □

Lemmas 4.3, 4.4 and 4.5 together imply the main result of this section on the
nature of the category of variety-based topological systems.

Theorem 4.6. The concrete category LoA-TopSys is essentially algebraic over
the ground category Set× LoA× LoA.

Theorem 4.6 and [1, Example 23.6(4)] provide the result of [51] on highly non-
topological nature of the category in question.

Corollary 4.7. The concrete category LoA-TopSys is topological over the ground
category Set×LoA×LoA if and only if the underlying functor is an isomorphism.

Another result is not so obvious and requires some (straightforward and thus,
omitted) computations.

Corollary 4.8. Given a localic algebra A, the category A-TopSys is essentially
algebraic over its ground category Set×LoA. In particular, the category TopSys
of S. Vickers is essentially algebraic over Set× Loc.

We end the section with some remarks on a possible generalization of the ob-
tained result. Recall from [1, Definition 23.19] the notion of algebraic category.

Definition 4.9. A concrete category (C, U) is called algebraic provided that it is
essentially algebraic and U preserves extremal epimorphisms.

A natural question arises, whether one can show that the category LoA-TopSys
is algebraic. Up to now, we have been able neither to prove nor disprove the claim.
The only positive result in this direction is contained in the following lemma.



24 S. A. Solovyov

Lemma 4.10. If D1
e−→ D2 is an extremal LoA-TopSys-epimorphism, then the

pair (pt e,Σ e) is an extremal epimorphism in Set × LoA and Ω e is injective. If
A-epimorphisms are surjective, then the category LoA-TopSys is algebraic.

Proof. One part of the proof follows from our construction in Lemma 4.5, namely,

if D1
e−→ D2 = D1

e′−→ D
m−→ D2 is an (Epi, Mono)-factorization of e, then m is an

isomorphism and, therefore, ptD1
pt e−−→ ptD2 is surjective and both ΣD2

Σ e−−→ ΣD1,

ΩD2
Ω e−−→ ΩD1 are injective. It follows that pt e is an extremal epimorphism in

Set. To show that Σ e is an extremal monomorphism in A we proceed as follows.
Notice that injectivity of Σ e implies the property of being a monomorphism.

The only thing left to verify is the extremal condition. Suppose we are given a

factorization ΣD2
Σ e−−→ ΣD1 = ΣD2

'−→ A
 −→ ΣD1 with ' being an epimorphism.

The factorization can be lifted to the category of systems as follows.
Define a system D by ptD = ptD2, ΣD = A, ΩD = ΩD2, putting ptD ×

ΩD
∣=−→ ΣD = ptD2 × ΩD2

∣=2−−→ ΣD2
'−→ A. Moreover, define D1

g−→ D by

ptD1
pt g−−→ ptD = ptD1

pt e−−→ ptD2, ΣD
Σ g−−→ ΣD1 = A

 −→ ΣD1 and ΩD
Ω g−−→

ΩD1 = ΩD2
Ω e−−→ ΩD1. To show that g is continuous notice that given x ∈ ptD1

and b ∈ ΩD, Σ g(∣=(pt g(x), b)) =  ∘ '(∣=2(pt e(x), b)) = Σ e(∣=2(pt e(x), b)) =

∣=1(x,Ω e(b)) = ∣=1(x,Ω g(b)). Further, define D
f−→ D2 by ptD

pt f−−→ ptD2 =

ptD2

1ptD2−−−−→ ptD2, ΣD2
Σ f−−→ ΣD = ΣD2

'−→ A and ΩD2
Ω f−−→ ΩD = ΩD2

1ΩD2−−−→
ΩD2. For continuity of f notice that given x ∈ ptD and b ∈ ΩD2, it follows that

Σ f(∣=2(pt f(x), b)) = '(∣=2(x, b)) = ∣=(x, b) = ∣=(x,Ω f(b)). Since D1
e−→ D2 =

D1
g−→ D

f−→ D2 and f is a monomorphism in LoA-TopSys, f is an isomorphism
and, therefore, ' must be as well.

The last statement of the lemma follows immediately from injectivity of Ω e. □

Notice that epimorphisms are surjective neither in the category Frm of frames
nor in the category Quant of quantales [22, 24]. It follows that the last statement of
Lemma 4.10 is not applicable in the most important cases of lattice-valued topology.

5. Coalgebraic Category of Topological Systems

In the previous section, we showed that the category LoA-TopSys is essentially
algebraic. In Section 3 we introduced a modified version of the category denoted
A-TopSys (Definition 3.8). It is the purpose of this section to show that the new
category is coalgebraic. The reader should notice the difference from the case of
the category LoA-TopSys, where we were able to show essential algebraicity only.

To obtain the result, we will use the duals of Theorem 4.2 and Definition 4.9.
The following three lemmas provide the counterparts of the respective ones from
the previous section.

Lemma 5.1. The functor A-TopSys
∣−∣−−→ Set×A× LoA creates isomorphisms.
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Proof. Given a Set×A×LoA-isomorphism (X,A,B)
f−→ ∣D∣, the unique structure

on (X,A,B), making f an isomorphism in A-TopSys, can be defined by ∣=(x, b) =
(Σ f)−1(∣=(pt f(x), (Ω f)−1(b))). □

Lemma 5.2. The functor A-TopSys
∣−∣−−→ Set×A× LoA is co-adjoint.

Proof. For the sake of shortness, denote the category Set×A×LoA by X. It will
be enough to show that every X-object (X,A,B) has a ∣−∣-co-universal arrow, i.e.,

an X-morphism ∣D∣ "−→ (X,A,B) such that for every X-morphism ∣D∣ f−→ (X,A,B)

there exists a unique op-continuous map D
f−→ D making the triangle

∣D∣

∣f ∣
��

f

$$IIIIIIIII

∣D∣ "
//(X,A,B)

commute.
Define the required op-system D by ptD = X ×A(B,A), ΣD = A, ΩD = B,

putting ptD × ΩD
∣=−→ ΣD = (X ×A(B,A))×B

�A(B,A)×B−−−−−−−→ A(B,A)×B ev−→ A,
where �A(B,A)×B is the projection map and ev(p, b) = p(b) (cf. Lemma 4.4). To

show that ∣=((x, p),−) is a homomorphism for every (x, p) ∈ ptD, notice that

given � ∈ Λ and bi ∈ ΩD for i ∈ n�, ∣=((x, p), !ΩD
� (⟨bi⟩n�)) = p(!B� (⟨bi⟩n�)) =

!A� (⟨p(bi)⟩n�) = !ΣD
� (⟨∣=((x, p), bi)⟩n�).

Define the required X-morphism ∣D∣ "−→ (X,A,B) by ptD
pt "−−→ X = X ×

A(B,A)
�X−−→ X with �X the projection map, B

Ω "−−→ ΩD = B
1B−−→ B and

ΣD
Σ "−−→ A = A

1A−−→ A. To show that ∣D∣ "−→ (X,A,B) is a ∣ − ∣-co-universal

arrow for (X,A,B), take any X-morphism ∣D∣ f−→ (X,A,B) and define D
f−→ D

by ptD
pt f−−→ ptD with pt f(y) = (pt f(y),Σ f ∘ ∣=(y,−) ∘ Ω f), ΩD

Ω f−−→ ΩD =

B
Ω f−−→ ΩD and ΣD

Σ f−−→ ΣD = ΣD
Σ f−−→ A. Continuity of f follows from the

fact that given y ∈ ptD and b ∈ ΩD, Σ f(∣=(y,Ω f(b))) = Σ f ∘ ∣=(y,−) ∘Ω f(b) =

∣=((pt f(y),Σ f ∘ ∣=(y,−) ∘ Ω f), b) = ∣=(pt f(y), b).
For commutativity of the above-mentioned triangle, it will be enough to notice

that given y ∈ ptD, pt " ∘ pt f(y) = pt "(pt f(y),Σ f ∘ ∣=(y,−) ∘ Ω f) = pt f(y).

For uniqueness of f , use the fact that given another D
g−→ D such that " ∘ ∣g∣ =

f , it follows that f = (pt " ∘ pt g,Σ g, (Ω g)
op

) and, therefore, pt f = pt " ∘ pt g,
Σ f = Σ g and Ω f = Ω g. Moreover, given y ∈ ptD, pt g(y) = (pt f(y), p), where

Σ f ∘ ∣=(y,−) ∘ Ω f = Σ g(∣=(y,Ω g(−))) = ∣=(pt g(y),−) = ∣=((pt f(y), p),−) = p.
The desired equality pt f = pt g now follows. □

Lemma 5.3. The category A-TopSys is (Epi-Sink, Mono)-factorizable.

Proof. Let S = (Di
fi−→ D)i∈I be a sink in A-TopSys. Define an op-system D

by ptD=
∪
i∈I

(pt fi)
→(ptDi), ΣD = ⟨

∪
i∈I

(Σfi)
→(ΣDi)⟩ (recall that ⟨S⟩ denotes the
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algebra generated by S), ΩD = ΩD/ ∼, where ∼ is the congruence relation on ΩD

defined by b1 ∼ b2 if an only if Ωfi(b1) = Ωfi(b2) for every i ∈ I, and ∣=(x, [b]∼) =
∣=(x, b), where [b]∼ is the equivalence class of b, i.e., the set {c ∣ c ∈ ΩD and b ∼ c}.

Define an op-continuous map D
m−→ D by ptD

� � ptm // ptD , ΣD
� � Σm // ΣD being

the inclusions and ΩD
Ωm−−→ ΩD being the quotient map, i.e., Ωm(b) = [b]∼.

Given i ∈ I, define an op-continuous map Di
ei−→ D by ptDi

pt ei−−−→ ptD with

pt ei(x) = pt fi(x), ΣDi
Σ ei−−→ ΣD with Σei(a) = Σfi(a) and ΩD

Ω ei−−→ ΩDi

with Ωei([b]∼) = Ωfi(b), thus getting a sink ℰ = (Di
ei−→ D)i∈I in A-TopSys.

Straightforward computations show that S = m ∘ ℰ is the required (Epi-Sink,
Mono)-factorization. □

The above-mentioned Lemmas 5.1, 5.2 and 5.3 together imply the next result.

Theorem 5.4. The concrete category A-TopSys is essentially coalgebraic over the
ground category Set×A× LoA.

It appears that in the current setting the result can be strengthened as shows
the following lemma.

Lemma 5.5. The functor A-TopSys
∣−∣−−→ Set × A × LoA preserves extremal

monomorphisms.

Proof. SupposeD1
m−→ D2 is an extremal monomorphism in A-TopSys. Lemma 5.3

provides the (Epi, Mono)-factorization D1
m−→ D2 = D1

e−→ D
m′−−→ D2 that together

with the extremal property of m implies e being an isomorphism. Thus, ptm, Σm
are injective and Ωm is surjective. It follows that ptm is an extremal monomor-
phism in Set. To show the analogues for Σm and Ωm, notice that injectivity of
the first and surjectivity of the second map imply Σm being a monomorphism and
Ωm being an epimorphism in the respective category. The only thing left to check
is the extremal condition. The procedure is similar to that of Lemma 4.10 and,
therefore, some details are left to the reader.

Suppose we are given a factorization ΣD1
Σm−−→ ΣD2 = ΣD1

'−→ A
 −→ ΣD2

with ' being an epimorphism. Define an op-system D = (ptD1, A,ΩD1, ∣=) with

ptD×ΩD
∣=−→ ΣD = ptD1×ΩD1

∣=1−−→ ΣD1
'−→ A and get an (Epi, –)-factorization

D1
m−→ D2 = D1

g=(1ptD1
,',1ΩD1

)
−−−−−−−−−−−−→ D

f=(ptm, ,(Ωm)op)−−−−−−−−−−−−→ D2. By the extremal
property of m, g is an isomorphism and, therefore, ' must be as well.

Given a factorization ΩD2
Ωm−−→ ΩD1 = ΩD2

'−→ B
 −→ ΩD1 with  being a

monomorphism, define an op-system D = (ptD1,ΣD1, B, ∣=) with ptD × ΩD
∣=−→

ΣD = ptD1×B
1ptD1

× 
−−−−−−→ ptD1×ΩD1

∣=1−−→ ΣD1 and get an (Epi, –)-factorization

D1
m−→ D2 = D1

g=(1ptD1
,1ΣD1

, op)
−−−−−−−−−−−−−→ D

f=(ptm,Σm,'op)−−−−−−−−−−−→ D2. By the extremal
property of m, g is an isomorphism and, therefore,  must be as well. □

Theorem 5.4 and Lemma 5.5 together imply the main result of this section on
the nature of the category A-TopSys.
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Theorem 5.6. The concrete category A-TopSys is coalgebraic over the ground
category Set×A× LoA.

Easy calculations and Remark 3.9 imply the following result.

Corollary 5.7. Given a localic algebra A, the category A-TopSys is coalgebraic
over its ground category Set×LoA. In particular, the category TopSys of S. Vick-
ers is coalgebraic over Set× Loc.

Corollaries 4.8 and 5.7 together imply that the category TopSys of S. Vickers
[52] is both essentially algebraic and coalgebraic over its ground category.

6. Conclusion: Embedding Topology Into Algebra

In the paper, we presented a variety-based approach to both topological spaces
and topological systems. It appears that the framework of varieties is quite fruitful,
incorporating in itself the majority of the existing approaches to both fuzzy topology
and fuzzy topological systems. Moreover, the embedding of Theorem 3.7 as well as
Theorems 4.1, 4.6 together suggest an interesting and rather striking result.

Metatheorem 6.1. (Lattice-valued) topology can be embedded into algebra.

The embedding is not concrete since the categories LoA-Top and LoA-TopSys
have different ground categories. More explicitly, the diagram

LoA-Top

∣−∣
��

� � G // LoA-TopSys

∣−∣
��

Set× LoA Set× LoA× LoA
Π

oo
(1)

commutes, where Π((X,A,B)
(f,', )−−−−−→ (Y,C,D)) = (X,A)

(f,')−−−→ (Y,C). An expe-

rienced reader will find out the embedding Set× LoA � � H //Set× LoA× LoA ,

H((X,A)
(f,')−−−→ (Y,B)) = (X,A,AX)

(f,',((f,')←)op)−−−−−−−−−−−→ (Y,B,BY ). Straightforward
computations show that replacing Π with H in (6) provides a non-commutative
diagram, since given a space E, ∣GE∣ = (ptE,ΣE, �) ∕= (ptE,ΣE, (ΣE)(ptE)) =
H ∣E∣. The result is highly related to the problem of obtaining initial lifts of certain
sources in the category Loc-TopSys raised in [9, Example 72]. A possible solution
was based on the (unfortunately, wrong) assumption of commutativity of (6) with
H instead of Π. Our discussion shows that the problem is still open.

The reader should also be aware of several other open problems suggested by the
approach. Below we list the most important (by our opinion) ones.

Problem 6.2. By Theorem 4.6 the category LoA-TopSys is essentially algebraic
over its ground category. Is it true that the category in question is algebraic?

Problem 6.3. Example 3.6 introduced the category LoA-SP, providing a gener-
alization of the notion of state property system of D. Aerts [2]. What is the nature
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of the category in question (algebraic, coalgebraic)? What is its relation to the
supercategory LoA-TopSys (reflective, coreflective subcategory)?

To continue, we recall the following result from [1, Proposition 23.12].

Problem 6.4. If a concrete category (C, U) is essentially algebraic over the cate-
gory X, then the following hold:

(1) If X is (strongly) complete, then C is (strongly) complete.
(2) If X has coproducts, then C is cocomplete.

Since every variety is complete and, moreover, has coequalizers, the following
result holds.

Theorem 6.5. The category LoA-TopSys is cocomplete. It is complete provided
that A has coproducts. The category A-TopSys is both complete and cocomplete
provided that A has coproducts.

As an example, notice that the variety CLat of complete lattices does not have
coproducts [1, Exercise 10S] and, therefore, the condition of Theorem 6.5 is essential
in application of the theorem to different cases. On the other hand, the variety Frm
of frames is cocomplete and, therefore, both Loc-TopSys and Frm-TopSys are
complete and cocomplete.

In [52] S. Vickers constructed explicitly binary products and coproducts of topo-
logical systems. Moreover, in [3] D. Aerts et al. provided a construction of binary
products of state property systems. The latter case, however, is simpler (from the
categorical viewpoint) since the category SP of the structures in question is equiv-
alent to the already mentioned (Example 2.10) category Cls of closure spaces [4],
which is topological [11] over its ground category Set and, therefore, is both com-
plete and cocomplete. In view of the above-mentioned remarks one can postulate
the following problem.

Problem 6.6. What is the explicit limit and colimit structure of both LoA-TopSys
and A-TopSys?

The problems raised in this section will be addressed to in our subsequent
manuscripts.
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[1] J. Adámek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories: the joy of

cats, Dover Publications, New York, 2009.
[2] D. Aerts, Foundations of quantum physics: a general realistic and operational approach, Int.

J. Theor. Phys., 38(1) (1999), 289-358.
[3] D. Aerts, E. Colebunders, A. van der Voorde and B. van Steirteghem, State property systems

and closure spaces: a study of categorical equivalence, Int. J. Theor. Phys., 38(1) (1999),

359-385.



On Algebraic and Coalgebraic Categories of Variety-based Topological Systems 29

[4] D. Aerts, E. Colebunders, A. van der Voorde and B. van Steirteghem, On the amnestic
modification of the category of state property systems, Appl. Categ. Struct., 10(5) (2002),

469-480.

[5] G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Phil. Soc., 31 (1935),
433-454.

[6] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.

[7] P. M. Cohn, Universal algebra, D. Reidel Publ. Comp., 1981.
[8] M. Demirci, Pointed semi-quantales and lattice-valued topological spaces, Fuzzy Sets and

Systems, 161(9) (2010), 1224-1241.
[9] J. T. Denniston, A. Melton and S. E. Rodabaugh, Lattice-valued topological systems, In:

U. Bodenhofer, B. De Baets, E. P. Klement, S. Saminger-Platz, eds., Abstracts of the 30th

Linz Seminar on Fuzzy Set Theory, Johannes Kepler Universität, Linz, (2009), 24-31.
[10] J. T. Denniston and S. E. Rodabaugh, Functorial relationships between lattice-valued topology

and topological systems, Quaest. Math., 32(2) (2009), 139-186.

[11] D. Dikranjan, E. Giuli and A. Toi, Topological categories and closure operators, Quaest.
Math., 11(3) (1988), 323-337.

[12] P. Eklund, Categorical fuzzy topology, Ph.D. Thesis, Åbo Akademi, 1986.
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