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ALGEBRAIC GENERATIONS OF SOME FUZZY POWERSET

OPERATORS

Q. Y. ZHANG

Abstract. In this paper, let 𝐿 be a complete residuated lattice, and let Set
denote the category of sets and mappings, 𝐿𝐹 -Pos denote the category of
𝐿𝐹 -posets and 𝐿𝐹 -monotone mappings, and 𝐿𝐹 -CSLat(⊔), 𝐿𝐹 -CSLat(⊓)
denote the category of 𝐿𝐹 -complete lattices and 𝐿𝐹 -join-preserving mappings
and the category of 𝐿𝐹 -complete lattices and 𝐿𝐹 -meet-preserving mappings,
respectively. It is proved that there are adjunctions between Set and 𝐿𝐹 -

CSLat(⊔), between 𝐿𝐹 -Pos and 𝐿𝐹 -CSLat(⊔), and between 𝐿𝐹 -Pos and
𝐿𝐹 -CSLat(⊓), that is, Set⊣ 𝐿𝐹 -CSLat(⊔), 𝐿𝐹 -Pos⊣ 𝐿𝐹 -CSLat(⊔), and
𝐿𝐹 -Pos⊣ 𝐿𝐹 -CSLat(⊓). And a usual mapping 𝑓 generates the traditional
Zadeh forward powerset operator 𝑓→𝐿 and the fuzzy forward powerset operators

𝑓→, 𝑓→∗ , 𝑓∗→ defined by the author et al via these adjunctions. Moreover, it
is also shown that all the fuzzy powerset operators mentioned above can be
generated by the underlying algebraic theories.

1. Introduction

Given a usual mapping 𝑓 : 𝑋 −→ 𝑌 , the traditional powerset operators 𝑓→ :
𝒫(𝑋) −→ 𝒫(𝑌 ) and 𝑓← : 𝒫(𝑌 ) −→ 𝒫(𝑋) given by

𝑓→(𝐴) = {𝑓(𝑥) ∣ 𝑥 ∈ 𝐴}, 𝑓←(𝐵) = {𝑥 ∣ 𝑓(𝑥) ∈ 𝐵}
play a critical role in ordinary mathematics. While it took more than a century of
mathematics to ”empirically” confirm that these powerset operators are the ”cor-
rect” liftings of 𝑓 to the powersets of 𝑋 and 𝑌 , it is first verified mathematically
and directly by E. G. Manes [9]. The differently formatted, but equivalent proof
of S. E. Rodabaugh [11] creates 𝑓→ by proving the adjunction between Set (the
category of sets and mappings) and CSLat(

⋁
) (the category of complete join-

semi-lattices and arbitrary-join-preserving maps), and then creates 𝑓← from 𝑓→

by the Adjoint Function Theorem (AFT) for order-preserving mappings between
posets. In fact, the powerset operator foundations of traditional mathematics may
be viewed as entirely a consequence of the AFT. The fundamental importance of
powerset operators for fuzzy sets is recognized from the beginning in L. A. Zadeh’s
pioneering paper [17] introducing fuzzy sets. That Zadeh puzzles over the defini-
tion of 𝑓→ (whether to use

⋁
or

⋀
) indicates it was not clear to Zadeh whether
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his powerset operators were the correct ones. But Manes [9] gives the first proof,
using a monadic approach for a certain restricted class of lattices 𝐿, that the Zadeh
operators were the right ones. Then in [10], S. E. Rodabaugh points out by the
AFT that the traditional Zadeh forward powerset operator 𝑓→𝐿 is a left adjoint of
Zadeh backward powerset operator 𝑓←𝐿 and the ”Zadeh Extension Principle” is cor-
rect. After that he gives two different proofs for all complete lattices 𝐿 vindicating
Zadeh’s definitions in [11], and extends these results to lattices taken from CQMIL
(the category of complete quasi-monoidal integral lattices and the mappings of pre-
serving ⊗, arbitrary ⋁

, and the top element ⊤) in [12]. Theorem 6.13 of [11] and
Theorem 2.11 of [12] directly generate the traditional Zadeh forward powerset op-
erator 𝑓→𝐿 from 𝑓 via a universal construction. Such a universal construction is
tantamount to having an adjunction between Set and some category. Thus [11]
and [12] directly generate 𝑓→𝐿 from 𝑓 via an adjunction in which the right-hand
category is not named. However, his new paper [13] generates 𝑓→𝐿 from 𝑓 by means
of an algebraic theory built using 𝐿 a unital quantale.

The first goal of this paper is to directly generate 𝑓→𝐿 from 𝑓 via an adjunc-
tion between Set and a concrete category 𝐿𝐹 -CSLat(⊔) (the category of 𝐿-fuzzy
complete lattices and 𝐿-fuzzy join-preserving mappings) when 𝐿 is a complete resid-
uated lattice, then create the right 1-adjoint 𝑓←𝐿 by the AFT for 𝐿-fuzzy posets.
It easily sees that the category 𝐿𝐹 -CSLat(⊔) is exactly the category CSLat(

⋁
)

when 𝐿 is the binary lattice 2, and that the Zadeh powerset operators 𝑓→𝐿 , 𝑓←𝐿 are
respectively identical to the traditional powerset operators 𝑓→, 𝑓←, and that the
1-adjoint pair is the traditional adjoint pair, so this paper generalizes the corre-
sponding work of [10-12] providing 𝐿 is a complete residuated lattice. In addition,

some fuzzy powerset operators 𝑓→, 𝑓→∗ , 𝑓
∗→ and 𝑓←, 𝑓←∗ , 𝑓

∗← are suggested in [19,
20], they are not only generalizations of the traditional powerset operators but also

of the Zadeh powerset operators. This paper also directly generates 𝑓→, 𝑓→∗ from
𝑓 via adjunctions between 𝐿𝐹 -Pos (the category of 𝐿-fuzzy posets and 𝐿-fuzzy

monotone mappings) and 𝐿𝐹 -CSLat(⊔), and directly generates 𝑓∗→ from 𝑓 via
an adjunction between 𝐿𝐹 -Pos and 𝐿𝐹 -CSLat(⊓) (the category of 𝐿-fuzzy com-
plete lattices and 𝐿-fuzzy meet-preserving mappings). They create respectively

𝑓←, 𝑓←∗ , 𝑓
∗← by the AFT for 𝐿-fuzzy posets.

On the other hand, similar to the idea in [13], we give the general fuzzy pow-
erset theories in setting of fuzzy posets; through the aforesaid adjunctions we also
build the underlying algebraic theories, and prove that all the above fuzzy powerset
operators can be generated by these algebraic theories.

The content of the paper is as follows: Section 1 recalls some notions and results
in [1-3, 18-20]. Section 2 directly generates 𝑓→𝐿 from 𝑓 via an adjunction between

Set and 𝐿𝐹 -CSLat(⊔), generates 𝑓→, 𝑓→∗ from 𝑓 via adjunctions between 𝐿𝐹 -

Pos and 𝐿𝐹 -CSLat(⊔), and generates 𝑓∗→ from 𝑓 via an adjunction between
𝐿𝐹 -Pos and 𝐿𝐹 -CSLat(⊓). And by the AFT, they respectively determine the

unique right 1-adjoints 𝑓←𝐿 , 𝑓←, 𝑓←∗ , 𝑓
∗←. Section 3 generates all the above fuzzy

powerset operators by means of algebraic theories.
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2. 𝐿-fuzzy Posets and 𝐿-fuzzy Complete Lattices

For a complete lattice 𝐿, let 0 denote the bottom element, 1 the top element,
and for an 𝐴 ⊆ 𝐿, let ⋁𝐴 denote the least upper bound of 𝐴 and

⋀
𝐴 the greatest

lower bound of 𝐴.
A semi-quantale (𝐿,≤,⊗) is a complete lattice (𝐿,≤) equipped with a binary

operation ⊗ : 𝐿 × 𝐿 −→ 𝐿, with no additional assumptions, called a tensor prod-
uct. The category SQuant comprises all semi-quantales together with mappings
preserving ⊗ and

⋁
. A quantale (𝐿,≤,⊗) is semi-quantale with ⊗ associative

and distributive over arbitrary
⋁

from both sides. A quantale is called commu-
tative whenever its tensor is, and it is called unital if the tensor has a unit 𝑒, i.e.
𝑝 ⊗ 𝑒 = 𝑝 = 𝑒 ⊗ 𝑝 for all 𝑝 ∈ 𝐿. A strictly two-sided quantale, abbreviated an
st-quantale, is a unital quantale with 𝑒 = 1.

A complete residuated lattice is an algebra ⟨𝐿,∧,∨, ∗,→, 0, 1⟩ such that (R1)
⟨𝐿,∧,∨, 0, 1⟩ is a complete lattice with the least element 0 and the greatest element
1; (R2) ⟨𝐿, ∗, 1⟩ is a commutative monoid; (R3) ∗,→ form an adjoint pair, i.e.
𝑥 ∗ 𝑦 ≤ 𝑧 iff 𝑥 ≤ 𝑦 → 𝑧 holds for all 𝑥, 𝑦, 𝑧 ∈ 𝐿. The operations ∗ and → are called
multiplication and residuum, respectively.

From the above definitions, it easily follows that a complete residuated lattice is
exactly a commutative st-quantale with ⊗ = ∗, and a frame (or complete Heyting
algebra) 𝐿 can be viewed as a complete residuated lattice with ∗ = ∧ and that→ is
the implication in the frame 𝐿. Multiplication is monotone, residuum is monotone
in the first and antitone in the second argument (w.r.t. lattice order ≤).

Let 𝐿 denote a complete residuated lattice. For 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐿, 𝐵 ⊆ 𝐿. The
following results are often used in the proof.

𝑎→ 𝑏 =
⋁
{𝑐 ∈ 𝐿 ∣ 𝑎 ∗ 𝑐 ≤ 𝑏};

𝑎 ≤ 𝑏⇔ 𝑎→ 𝑏 = 1, 𝑎 ∗ 𝑏 = 1⇒ 𝑎 = 1, 𝑏 = 1.

𝑎 = 1→ 𝑎, 𝑎 ∗ 𝑏 ≤ 𝑎 ∧ 𝑏
𝑏 ≤ 𝑐 =⇒ 𝑎→ 𝑏 ≤ 𝑎→ 𝑐, 𝑐→ 𝑎 ≤ 𝑏→ 𝑎;

𝑎 ∗ (𝑎→ 𝑏) ≤ 𝑏, 𝑎 ≤ (𝑎→ 𝑏)→ 𝑏, (𝑎→ 𝑏) ∗ (𝑏→ 𝑐) ≤ 𝑎→ 𝑐;

𝑎→ (𝑏→ 𝑐) = (𝑎 ∗ 𝑏)→ 𝑐, (𝑎→ 𝑏) ∗ (𝑐→ 𝑑) ≤ 𝑎→ (𝑐→ (𝑏 ∗ 𝑑));

𝑎→ (
⋀
𝐵) =

⋀
{𝑎→ 𝑏 ∣ 𝑏 ∈ 𝐵}, 𝑎→ (

⋁
𝐵) ≥

⋁
{𝑎→ 𝑏 ∣ 𝑏 ∈ 𝐵};

(
⋁
𝐵)→ 𝑎 =

⋀
{𝑏→ 𝑎 ∣ 𝑏 ∈ 𝐵}, (

⋀
𝐵)→ 𝑎 ≥

⋁
{𝑏→ 𝑎 ∣ 𝑏 ∈ 𝐵}.

The following definitions and results can be found in [1-3, 18-20] when 𝐿 is a
frame. Here we give the corresponding ones for 𝐿 a complete residuated lattice.
And we have the following denotations. If no other conditions are imposed, in the
sequel 𝐿 always denotes a complete residuated lattice, 𝑋 denotes a non-empty set
and 𝐿𝑋 is the set of all 𝐿-fuzzy subsets of 𝑋, that is, the set of all mappings from
𝑋 to 𝐿. Usually we write ”𝐿𝐹 -” instead of ”𝐿-fuzzy”.
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Definition 2.1. Let 𝑋 be a non-empty set and 𝑒 : 𝑋×𝑋 −→ 𝐿 a mapping (called
a degree function). Consider the following conditions:

(E1) ∀𝑥 ∈ 𝑋, 𝑒(𝑥, 𝑥) = 1; (reflexivity)
(E2) ∀𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑒(𝑥, 𝑦) = 𝑒(𝑦, 𝑥); (symmetry)
(E3) ∀𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑒(𝑥, 𝑦) ∗ 𝑒(𝑦, 𝑧) ≤ 𝑒(𝑥, 𝑧); (transitivity)
(E4) ∀𝑥, 𝑦 ∈ 𝑋, 𝑒(𝑥, 𝑦) = 1 = 𝑒(𝑦, 𝑥)⇒ 𝑥 = 𝑦. (antisymmetry)

(i) 𝑒 is called an 𝐿-fuzzy preorder if it satisfies (E1) and (E3), and the pair (𝑋, 𝑒)
is called an 𝐿-fuzzy preordered set.

(ii) 𝑒 is called an 𝐿-fuzzy partial order if it satisfies (E1), (E3) and (E4), and
the pair (𝑋, 𝑒) is called an 𝐿-fuzzy partially ordered set (or simply, 𝐿-fuzzy poset,
or fuzzy poset).

(iii) 𝑒 is called an 𝐿-fuzzy equality if it satisfies (E1), (E2), (E3) and (E4).

If (𝑋, 𝑒) is an 𝐿𝐹 -poset, then the dual of (𝑋, 𝑒) is the pair (𝑋, 𝑒𝑜𝑝), where for all
𝑥, 𝑦 ∈ 𝑋, 𝑒𝑜𝑝(𝑥, 𝑦) = 𝑒(𝑦, 𝑥) and the symmetrization of (𝑋, 𝑒) is the pair ((𝑋, 𝑒𝑠),
where for all 𝑥, 𝑦 ∈ 𝑋, 𝑒𝑠(𝑥, 𝑦) = 𝑒(𝑥, 𝑦)∗ 𝑒(𝑦, 𝑥). It easily follows that (𝑋, 𝑒𝑜𝑝) and
(𝑋, 𝑒𝑠) are 𝐿𝐹 -posets, and 𝑒𝑠 is indeed an 𝐿-fuzzy equality on 𝑋.

Remark 2.2. An 𝐿-fuzzy preordered set can be viewed as an enriched category in
[14] over a complete residuated lattice 𝐿.

Every complete residuated lattice 𝐿 can be seen as an 𝐿𝐹 -poset by taking
𝑒𝐿(𝑎, 𝑏) = 𝑎→ 𝑏. In what follows, the degree function in 𝐿 will be always taken to
be this map 𝑒𝐿.

Definition 2.3. Let (𝑋, 𝑒𝑋), (𝑌, 𝑒𝑌 ) be 𝐿𝐹 -posets. Then a mapping 𝑓 : 𝑋 −→ 𝑌
is called 𝐿-fuzzy monotone if 𝑒𝑋(𝑥, 𝑦) ≤ 𝑒𝑌 (𝑓(𝑥), 𝑓(𝑦)) for all 𝑥, 𝑦 ∈ 𝑋.

Remark 2.4. Let (𝑋, 𝑒𝑋), (𝑌, 𝑒𝑌 ) be 𝐿𝐹 -posets. An 𝐿-fuzzy monotone mapping
is exactly an Ω-morphism [14] between the two Ω-categories (𝑋, 𝑒𝑋), (𝑌, 𝑒𝑌 ), where
Ω denotes a unital commutative quantale.

Definition 2.5. For 𝑎, 𝑏, 𝜂 ∈ 𝐿, put that 𝑎 ★ 𝑏 = (𝑎 → 𝑏) ∗ (𝑏 → 𝑎) and postulate
that

𝑎 ≈𝜂 𝑏⇐⇒ 𝜂 ≤ 𝑎 ★ 𝑏.
Definition 2.6. Let (𝑋, 𝑒𝑋) and (𝑌, 𝑒𝑌 ) be 𝐿𝐹 -posets and 𝑓 : 𝑋 −→ 𝑌 , 𝑔 : 𝑌 −→
𝑋 𝐿𝐹 -monotone mappings and 𝜂 ∈ 𝐿. The pair (𝑓, 𝑔) is called an 𝜂-adjunction,
denoted by 𝑓 ⊣𝜂 𝑔 if for all 𝑥 ∈ 𝑋 and for all 𝑦 ∈ 𝑌 , 𝑒𝑌 (𝑓(𝑥), 𝑦) ≈𝜂 𝑒𝑋(𝑥, 𝑔(𝑦)). In
this case we call 𝑓 a left 𝜂-adjoint of 𝑔 and 𝑔 a right 𝜂-adjoint of 𝑓 .

Remark 2.7. It easily follows that 𝑓 ⊣1 𝑔 ⇐⇒ 𝑒𝑌 (𝑓(𝑥), 𝑦) = 𝑒𝑋(𝑥, 𝑔(𝑦)) for all
𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , so the 1-adjunction here is exactly an Ω-adjunction in [7, 14]
and a fuzzy Galois connection in [15, 16], where Ω denotes a unital commutative
quantale.

Definition 2.8. Let (𝑋, 𝑒) be an 𝐿𝐹 -poset, 𝜙 ∈ 𝐿𝑋 . An 𝑥0 ∈ 𝑋 is called a join
(or a supremum) of 𝜙 (w.r.t. the 𝐿-fuzzy partial order 𝑒), and denoted by ⊔𝜙, if

(1) ∀𝑥 ∈ 𝑋, 𝜙(𝑥) ≤ 𝑒(𝑥, 𝑥0);
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(2) ∀𝑦 ∈ 𝑋,
⋀
𝑥∈𝑋(𝜙(𝑥)→ 𝑒(𝑥, 𝑦)) ≤ 𝑒(𝑥0, 𝑦).

And an 𝑥1 ∈ 𝑋 is called a meet (or an infimum) of 𝜙 (w.r.t. the 𝐿-fuzzy partial
order 𝑒), and denoted by ⊓𝜙, if

(1) ∀𝑥 ∈ 𝑋, 𝜙(𝑥) ≤ 𝑒(𝑥1, 𝑥);
(2) ∀𝑦 ∈ 𝑋,

⋀
𝑥∈𝑋(𝜙(𝑥)→ 𝑒(𝑦, 𝑥)) ≤ 𝑒(𝑦, 𝑥1).

Theorem 2.9. Let (𝑋, 𝑒) be an 𝐿𝐹 -poset, 𝑥0, 𝑥1 ∈ 𝑋, 𝜙 ∈ 𝐿𝑋 .

(1) 𝑥0 is a join of 𝜙⇐⇒ ∀𝑦 ∈ 𝑋, 𝑒(𝑥0, 𝑦) =
⋀
𝑥∈𝑋(𝜙(𝑥)→ 𝑒(𝑥, 𝑦)).

(2) 𝑥1 is a meet of 𝜙⇐⇒ ∀𝑦 ∈ 𝑋, 𝑒(𝑦, 𝑥1) =
⋀
𝑥∈𝑋(𝜙(𝑥)→ 𝑒(𝑦, 𝑥)).

Definition 2.10. Let (𝑋, 𝑒) be an 𝐿𝐹 -poset, 𝑥 ∈ 𝑋. Define the mappings
𝜄𝑥, 𝜇𝑥, 𝑠𝑥 : 𝑋 −→ 𝐿 as follows: ∀𝑦 ∈ 𝑋,

𝜄𝑥(𝑦) = 𝑒(𝑦, 𝑥), 𝜇𝑥(𝑦) = 𝑒(𝑥, 𝑦), 𝑠𝑥(𝑦) = 𝑒(𝑥, 𝑦) ∗ 𝑒(𝑦, 𝑥).

Remark 2.11. In [7] the 𝜄𝑥, 𝜇𝑥 are denoted by y(𝑥), y′(𝑥), respectively. And in
[15, 16] they are denoted by ↓ 𝑥, ↑ 𝑥, respectively.

Theorem 2.12. Let (𝑋, 𝑒) be an 𝐿𝐹 -poset. Then for all 𝑥 ∈ 𝑋, ⊔𝜄𝑥 = ⊔𝑠𝑥 = 𝑥,
⊓𝜇𝑥 = ⊓𝑠𝑥 = 𝑥.

Definition 2.13. An 𝐿𝐹 -poset (𝑋, 𝑒) is called an 𝐿-fuzzy complete lattice if ⊔𝜙
and ⊓𝜙 exist for every 𝐿-fuzzy subset 𝜙 of 𝑋.

Theorem 2.14. Let (𝑋, 𝑒) be an 𝐿𝐹 -poset. Then

(1) (𝑋, 𝑒) is an 𝐿𝐹 -complete lattice if and only if ⊔𝜙 exists for all 𝜙 ∈ 𝐿𝑋 .
(2) (𝑋, 𝑒) is an 𝐿𝐹 -complete lattice if and only if ⊓𝜙 exists for all 𝜙 ∈ 𝐿𝑋 .

Let 𝑋 be a non-empty set. For all 𝜙, 𝜓 ∈ 𝐿𝑋 , define

𝑒(𝜙, 𝜓) =
⋀
𝑥∈𝑋

𝑒𝐿(𝜙(𝑥), 𝜓(𝑥)) =
⋀
𝑥∈𝑋

(𝜙(𝑥)→ 𝜓(𝑥)).

Theorem 2.15. Let 𝑋 be a non-empty set. Then (𝐿𝑋 , 𝑒) is an 𝐿𝐹 -complete lattice,

and for all Φ ∈ 𝐿𝐿𝑋

, ⊔Φ and ⊓Φ are given by (⊔Φ)(𝑥) = ⋁
𝜙∈𝐿𝑋 (Φ(𝜙) ∗ 𝜙(𝑥)) and

(⊓Φ)(𝑥) = ⋀
𝜙∈𝐿𝑋 (Φ(𝜙)→ 𝜙(𝑥)) for every 𝑥 ∈ 𝑋.

Definition 2.16. Let (𝑋, 𝑒) be an 𝐿𝐹 -poset. An 𝐿-fuzzy subset 𝜙 of 𝑋 is called
an 𝐿-fuzzy lower set (𝐿-fuzzy upper set, 𝐿-fuzzy sound set) on 𝑋 if 𝜙(𝑥) ∗ 𝑒(𝑦, 𝑥) ≤
𝜙(𝑦) (𝜙(𝑥) ∗ 𝑒(𝑥, 𝑦) ≤ 𝜙(𝑦), 𝜙(𝑥) ∗ 𝑒(𝑥, 𝑦) ∗ 𝑒(𝑦, 𝑥) ≤ 𝜙(𝑦)) for all 𝑥, 𝑦 ∈ 𝑋. Let
ℒ𝐿(𝑋),𝒰𝐿(𝑋),𝒮𝐿(𝑋) denote respectively the collection of all 𝐿-fuzzy lower sets
on 𝑋 and the collection of all 𝐿-fuzzy upper sets and the collection of all 𝐿-fuzzy
sound sets on 𝑋.

Theorem 2.17. Let (𝑋, 𝑒) be an 𝐿𝐹 -poset. Then (ℒ𝐿(𝑋), 𝑒), (𝒰𝐿(𝑋), 𝑒), (𝒮𝐿(𝑋), 𝑒)
are all 𝐿𝐹 -complete lattices. (Here the 𝑒s are respectively the restrictions of 𝑒 to
ℒ𝐿(𝑋)×ℒ𝐿(𝑋) and 𝒰𝐿(𝑋)×𝒰𝐿(𝑋) and 𝒮𝐿(𝑋)×𝒮𝐿(𝑋)). And for every 𝐿-fuzzy
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subset Φ of (ℒ𝐿(𝑋), 𝑒) or (𝒰𝐿(𝑋), 𝑒) or (𝒮𝐿(𝑋), 𝑒), ⊔Φ and ⊓Φ are respectively
given by

(⊔Φ)(𝑥) =
⋁

𝜙∈ℒ𝐿(𝑋)

(Φ(𝜙)∗𝜙(𝑥)), (⊓Φ)(𝑥) =
⋀

𝜙∈ℒ𝐿(𝑋)

(Φ(𝜙)→ 𝜙(𝑥)), ( in (ℒ𝐿(𝑋), 𝑒))

(⊔Φ)(𝑥) =
⋁

𝜙∈𝒰𝐿(𝑋)

(Φ(𝜙)∗𝜙(𝑥)), (⊓Φ)(𝑥) =
⋀

𝜙∈𝒰𝐿(𝑋)

(Φ(𝜙)→ 𝜙(𝑥)), ( in (𝒰𝐿(𝑋), 𝑒))

(⊔Φ)(𝑥) =
⋁

𝜙∈𝒮𝐿(𝑋)

(Φ(𝜙)∗𝜙(𝑥)), (⊓Φ)(𝑥) =
⋀

𝜙∈𝒮𝐿(𝑋)

(Φ(𝜙)→ 𝜙(𝑥)), ( in (𝒮𝐿(𝑋), 𝑒))

for all 𝑥 ∈ 𝑋.

Definition 2.18. Let 𝑓 : 𝑋 −→ 𝑌 be a mapping from a non-empty set 𝑋
and an 𝐿𝐹 -poset (𝑌, 𝑒𝑌 ). Then we define the fuzzy forward powerset operators

𝑓→, 𝑓→∗ , 𝑓
∗→ : 𝐿𝑋 −→ 𝐿𝑌 as follows: ∀𝜙 ∈ 𝐿𝑋 , ∀𝑦 ∈ 𝑌 ,

𝑓→(𝜙)(𝑦) =
⋁
𝑥∈𝑋

(𝜙(𝑥) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥)) ∗ 𝑒𝑌 (𝑓(𝑥), 𝑦)),

𝑓→∗ (𝜙)(𝑦) =
⋁
𝑥∈𝑋

(𝜙(𝑥) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥))), 𝑓∗→(𝜙)(𝑦) =
⋁
𝑥∈𝑋

(𝜙(𝑥) ∗ 𝑒𝑌 (𝑓(𝑥), 𝑦)).

And let 𝑔 : 𝑋 −→ 𝑌 be a mapping from an 𝐿𝐹 -poset (𝑋, 𝑒𝑋) to a non-empty set
𝑌 . Then we define the fuzzy backward powerset operators 𝑔←, 𝑔←∗ , 𝑔

∗← : 𝐿𝑌 −→
𝐿𝑋 as follows: ∀𝜓 ∈ 𝐿𝑌 , ∀𝑥 ∈ 𝑋,

𝑔←(𝜓)(𝑥) =
⋁
𝑥′∈𝑋

(𝜓(𝑔(𝑥′)) ∗ 𝑒𝑋(𝑥, 𝑥′) ∗ 𝑒𝑋(𝑥′, 𝑥)),

𝑔←∗ (𝜓)(𝑥) =
⋁
𝑥′∈𝑋

(𝜓(𝑔(𝑥′)) ∗ 𝑒𝑋(𝑥, 𝑥′)), 𝑔∗←(𝜓)(𝑥) =
⋁
𝑥′∈𝑋

(𝜓(𝑔(𝑥′)) ∗ 𝑒𝑋(𝑥′, 𝑥)).

Proposition 2.19. Let (𝑋, 𝑒𝑋), (𝑌, 𝑒𝑌 ) be 𝐿𝐹 -posets, 𝑓 : 𝑋 −→ 𝑌 an 𝐿𝐹 -
monotone mapping. Then

𝑓→, 𝑓→∗ , 𝑓
∗→ : (𝐿𝑋 , 𝑒) −→ (𝐿𝑌 , 𝑒), 𝑓←, 𝑓←∗ , 𝑓

∗← : (𝐿𝑌 , 𝑒) −→ (𝐿𝑋 , 𝑒)

are all 𝐿𝐹 -monotone.

Theorem 2.20. Let (𝑋, 𝑒𝑋), (𝑌, 𝑒𝑌 ) be 𝐿𝐹 -posets, 𝑓 : 𝑋 −→ 𝑌 a mapping, 𝜙 ∈
𝐿𝑋 .

(1) If ⊔𝑓→∗ (𝜙) exists, then ⊔𝑓→(𝜙) exists and ⊔𝑓→(𝜙) = ⊔𝑓→∗ (𝜙); conversely if

⊔𝑓→(𝜙) exists, then ⊔𝑓→∗ (𝜙) exists and ⊔𝑓→∗ (𝜙) = ⊔𝑓→(𝜙).

(2) If ⊓𝑓∗→(𝜙) exists, then ⊓𝑓→(𝜙) exists and ⊓𝑓→(𝜙) = ⊓𝑓∗→(𝜙); conversely

if ⊓𝑓→(𝜙) exists, then ⊓𝑓∗→(𝜙) exists and ⊓𝑓∗→(𝜙) = ⊓𝑓→(𝜙).

Remark 2.21. Let (𝑋, 𝑒𝑋), (𝑌, 𝑒𝑌 ) be 𝐿𝐹 -posets, 𝑓 : 𝑋 −→ 𝑌 a mapping. By
Theorem 2.20 it easily follows that for a 𝜙 ∈ 𝐿𝑋 ,

(1) if ⊔𝜙,⊔𝑓→(𝜙),⊔𝑓→∗ (𝜙) exist, then 𝑓(⊔𝜙) = ⊔𝑓→(𝜙)⇐⇒ 𝑓(⊔𝜙) = ⊔𝑓→∗ (𝜙);

(2) if ⊓𝜙,⊓𝑓→(𝜙),⊓𝑓∗→(𝜙) exist, then 𝑓(⊓𝜙) = ⊓𝑓→(𝜙)⇐⇒ 𝑓(⊓𝜙) = ⊓𝑓∗→(𝜙).

Thus we have the following definition.
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Definition 2.22. Let (𝑋, 𝑒𝑋), (𝑌, 𝑒𝑌 ) be 𝐿𝐹 -posets. A mapping 𝑓 : 𝑋 −→ 𝑌 is

called 𝐿𝐹 -join-preserving if it satisfies 𝑓(⊔𝜙) = ⊔𝑓→∗ (𝜙) for all 𝜙 ∈ 𝐿𝑋 , and called

𝐿𝐹 -meet-preserving if it satisfies 𝑓(⊓𝜙) = ⊓𝑓∗→(𝜙) for all 𝜙 ∈ 𝐿𝑋 .

Proposition 2.23. Let (𝑋, 𝑒𝑋), (𝑌, 𝑒𝑌 ) be 𝐿𝐹 -posets and 𝑓 : 𝑋 −→ 𝑌 a mapping.
If 𝑓 is 𝐿𝐹 -join-preserving, or 𝐿𝐹 -meet-preserving, then 𝑓 is 𝐿𝐹 -monotone.

3. Generate the Powerset Operators 𝑓→𝐿 , 𝑓→, 𝑓→∗ , 𝑓
∗→, 𝑓←𝐿 , 𝑓←, 𝑓←∗ , 𝑓

∗←

Directly Via Adjunctions and AFT

This section is to generate the powerset operators 𝑓→𝐿 , 𝑓→, 𝑓→∗ , 𝑓∗→, 𝑓←𝐿 , 𝑓←, 𝑓←∗ , 𝑓∗←

directly via adjunctions when 𝐿 is a complete residuated lattice. The results and
proofs of this section can be found in [21] when 𝐿 is a frame. For a complete
residuated lattice, the proofs are similar. However we also give most proofs for
readability.

Let 𝑋,𝑌 be non-empty sets and 𝑓 : 𝑋 −→ 𝑌 a map. Then the traditional Zadeh
forward powerset operator 𝑓→𝐿 : 𝐿𝑋 −→ 𝐿𝑌 and the Zadeh backward powerset
operator 𝑓←𝐿 : 𝐿𝑌 −→ 𝐿𝑋 are defined respectively by

𝑓→𝐿 (𝜙)(𝑦) =
⋁

𝑥∈𝑓←({𝑦})
𝜙(𝑥), ∀𝜙 ∈ 𝐿𝑋 ,∀𝑦 ∈ 𝑌,

𝑓←𝐿 (𝜓)(𝑥) = (𝜓 ∘ 𝑓)(𝑥), ∀𝜓 ∈ 𝐿𝑌 , ∀𝑥 ∈ 𝑋.

By the definitions of the above fuzzy powerset operators we easily get the following
fact:

𝑓→𝐿 (𝜒{𝑥}) = 𝜒𝑓(𝑥) 𝑓→∗ (𝜄𝑥) = 𝜄𝑓(𝑥), 𝑓→(𝑠𝑥) = 𝑠𝑓(𝑥), 𝑓∗→(𝜇𝑥) = 𝜇𝑓(𝑥).

Proposition 3.1. Let 𝑋 be a non-empty set and (𝑌, 𝑒𝑌 ) an 𝐿𝐹 -poset, 𝑓 : 𝑋 −→ 𝑌
a mapping.

(1) If ⊔𝑓→𝐿 (𝜙) and ⊔𝑓→∗ (𝜙) exist, then ⊔𝑓→𝐿 (𝜙) = ⊔𝑓→∗ (𝜙).

(2) If ⊓𝑓→𝐿 (𝜙) and ⊓𝑓∗→(𝜙) exist, then ⊓𝑓→𝐿 (𝜙) = ⊓𝑓∗→(𝜙).

Proof. (1) Let 𝑦0 = ⊔𝑓→∗ (𝜙). We will prove that 𝑦0 = ⊔𝑓→𝐿 (𝜙). At first, for all
𝑦 ∈ 𝑌 ,

𝑓→𝐿 (𝜙)(𝑦) =
⋁

𝑥∈𝑓←({𝑦})
𝜙(𝑥) ≤

⋁
𝑥∈𝑋

(𝜙(𝑥) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥))) = 𝑓→∗ (𝜙)(𝑦) ≤ 𝑒𝑌 (𝑦, 𝑦0).

Secondly, for all 𝑧 ∈ 𝑌 ,⋀
𝑦∈𝑌 (𝑓→𝐿 (𝜙)(𝑦) → 𝑒𝑌 (𝑦, 𝑧))

≤ ⋀
𝑦∈𝑓(𝑋)(𝑓

→
𝐿 (𝜙)(𝑦) → 𝑒𝑌 (𝑦, 𝑧))

=
⋀
𝑦∈𝑓(𝑋)(

⋁
𝑥′∈𝑓←({𝑦}) 𝜙(𝑥

′) → 𝑒𝑌 (𝑦, 𝑧))

=
⋀
𝑓(𝑥)∈𝑓(𝑋)(

⋁
𝑥′∈𝑓←({𝑓(𝑥)}) 𝜙(𝑥

′) → 𝑒𝑌 (𝑓(𝑥), 𝑧))

≤ ⋀
𝑥∈𝑋(𝜙(𝑥) → 𝑒(𝑓(𝑥), 𝑧))

=
⋀
𝑥∈𝑋(𝜙(𝑥) → ⋀

𝑦∈𝑌 (𝑒𝑌 (𝑦, 𝑓(𝑥)) → 𝑒𝑌 (𝑦, 𝑧)))

=
⋀
𝑥∈𝑋

⋀
𝑦∈𝑌 (𝜙(𝑥) → (𝑒𝑌 (𝑦, 𝑓(𝑥)) → 𝑒𝑌 (𝑦, 𝑧)))

=
⋀
𝑥∈𝑋

⋀
𝑦∈𝑌 ((𝜙(𝑥) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥))) → 𝑒𝑌 (𝑦, 𝑧))

=
⋀
𝑥∈𝑋(

⋁
𝑦∈𝑌 (𝜙(𝑥) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥))) → 𝑒𝑌 (𝑦, 𝑧))

=
⋀
𝑦∈𝑌 (𝑓→∗ (𝜙)(𝑦) → 𝑒𝑌 (𝑦, 𝑧))

≤ 𝑒𝑌 (𝑦0, 𝑧).
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Thus we have ⊔𝑓→𝐿 (𝜙) = 𝑦0 = ⊔𝑓→∗ (𝜙).
(2) can be proved dually. □

Corollary 3.2. Let (𝑋, 𝑒𝑋), (𝑌, 𝑒𝑌 ) be 𝐿𝐹 -posets, 𝑓 : 𝑋 −→ 𝑌 a map. Then
(1) 𝑓 is an 𝐿𝐹 -join-preserving map if and only if 𝑓(⊔𝜙) = ⊔𝑓→𝐿 (𝜙) for all

𝜙 ∈ 𝐿𝑋 ;
(2) 𝑓 is an 𝐿𝐹 -meet-preserving map if and only if 𝑓(⊓𝜙) = ⊓𝑓→𝐿 (𝜙) for all

𝜙 ∈ 𝐿𝑋 .

The following Adjoint Functor Theorem (AFT) for 𝐿-fuzzy posets was proved
in [21] when 𝐿 is frame. It also holds for a complete residuated lattice. The result
is also seen in [7, 15, 16]. In addition, from Proposition 3.1 and Corollary 3.2 we
can get that the AFT here and Theorem 4.5 in [16] are just the same things.

Theorem 3.3. (Adjoint Functor Theorem) Let (𝑋, 𝑒𝑋), (𝑌, 𝑒𝑌 ) be 𝐿𝐹 -posets.
(1) Let 𝑓 : 𝑋 −→ 𝑌 be 𝐿𝐹 -monotone. If 𝑓 has a right 1-adjoint 𝑔 : 𝑌 −→ 𝑋

(that is, 𝑓 ⊣1 𝑔), then 𝑓 preserves all joins which exist in 𝑋; conversely, if 𝑋 is
𝐿-fuzzy complete and 𝑓 preserves all joins, then 𝑓 has a right 1-adjoint.

(2) Let 𝑔 : 𝑌 −→ 𝑋 be 𝐿𝐹 -monotone. If 𝑔 has a left 1-adjoint 𝑓 : 𝑋 −→ 𝑌 (that
is, 𝑓 ⊣1 𝑔), then 𝑔 preserves all meets which exist in 𝑌 ; conversely, if 𝑌 is 𝐿-fuzzy
complete and 𝑔 preserves all meets, then 𝑔 has a left 1-adjoint.

Corollary 3.4. Let (𝑋, 𝑒𝑋), (𝑌, 𝑒𝑌 ) be 𝐿𝐹 -complete lattices and 𝑓 : 𝑋 −→ 𝑌 an
𝐿𝐹 -monotone mapping.

(1) 𝑓 is a left 1-adjoint if and only if 𝑓 preserves joins of all 𝐿-fuzzy subsets.
(2) 𝑔 is a right 1-adjoint if and only if 𝑔 preserves meets of all 𝐿-fuzzy subsets.

Let Set denote the category of sets and mappings, 𝐿𝐹 -Pos denote the category
of 𝐿𝐹 -posets and 𝐿𝐹 -monotone mappings, and 𝐿𝐹 -CSLat(⊔), 𝐿𝐹 -CSLat(⊓) de-
note respectively the category of 𝐿𝐹 -complete lattices and 𝐿𝐹 -join-preserving map-
pings and the category of 𝐿𝐹 -complete lattices and 𝐿𝐹 -meet-preserving mappings.

Theorem 6.13 of [11] and Theorem 2.11 of [12] directly generate 𝑓→𝐿 from 𝑓 via
a universal construction for 𝐿 a complete quasi-monoidal integral lattice. Such
a universal construction is tantamount to having an adjunction between Set and
some category. Thus [11] and [12] directly generate 𝑓→𝐿 from 𝑓 via an adjunction
in which the right-hand category is not named. In the following we will directly
generate 𝑓→𝐿 from 𝑓 via an adjunction between Set and 𝐿𝐹 -CSLat(⊔) when 𝐿 is
a complete residuated lattice.

Lemma 3.5. (1) Let (𝑋, 𝑒𝑋), (𝑌, 𝑒𝑌 ) be 𝐿𝐹 -posets and 𝑓 : 𝑋 −→ 𝑌 an 𝐿𝐹 -
monotone mapping. Then

𝜓 ∈ 𝒮𝐿(𝑌 ) =⇒ 𝑒(𝑓→ ∘ 𝑓←(𝜓), 𝜓) = 1;

𝜓 ∈ ℒ𝐿(𝑌 ) =⇒ 𝑒(𝑓→∗ ∘ 𝑓←∗ (𝜓), 𝜓) = 1; 𝜓 ∈ 𝒰𝐿(𝑌 ) =⇒ 𝑒(𝑓∗→ ∘ 𝑓∗←(𝜓), 𝜓) = 1.

(2) Let 𝑋,𝑌 be non-empty sets and 𝑓 : 𝑋 −→ 𝑌 a mapping. Then

𝜓 ∈ 𝐿𝑌 =⇒ 𝑒𝑌 (𝑓
→
𝐿 ∘ 𝑓←𝐿 (𝜓), 𝜓) = 1.
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Proof. (1) We only prove the second argument, and the others can be shown simi-
larly.

Suppose 𝜓 ∈ ℒ𝐿(𝑌 ). Then

𝑒𝑌 (𝑓
→
∗ ∘ 𝑓←∗ (𝜓), 𝜓)

=
⋀
𝑦∈𝑌 (𝑓

→
∗ (𝑓←∗ (𝜓))(𝑦)→ 𝜓(𝑦))

=
⋀
𝑦∈𝑌 (

⋁
𝑥∈𝑋(𝑓←∗ (𝜓)(𝑥) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥)))→ 𝜓(𝑦))

=
⋀
𝑦∈𝑌

⋀
𝑥∈𝑋((

⋁
𝑥′∈𝑋(𝜓(𝑓(𝑥′)) ∗ 𝑒𝑋(𝑥, 𝑥′)) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥)))→ 𝜓(𝑦))

=
⋀
𝑦∈𝑌

⋀
𝑥∈𝑋(

⋁
𝑥′∈𝑋(𝜓(𝑓(𝑥′)) ∗ 𝑒𝑋(𝑥, 𝑥′) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥)))→ 𝜓(𝑦))

=
⋀
𝑦∈𝑌

⋀
𝑥∈𝑋

⋀
𝑥′∈𝑋((𝜓(𝑓(𝑥′)) ∗ 𝑒𝑋(𝑥, 𝑥′) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥)))→ 𝜓(𝑦))

=
⋀
𝑦∈𝑌

⋀
𝑥∈𝑋

⋀
𝑥′∈𝑋(𝜓(𝑓(𝑥′))→ ((𝑒𝑋(𝑥, 𝑥′) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥)))→ 𝜓(𝑦)))

=
⋀
𝑥′∈𝑋(𝜓(𝑓(𝑥′)→ ⋀

𝑦∈𝑌
⋀
𝑥∈𝑋((𝑒𝑋(𝑥, 𝑥′) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥)))→ 𝜓(𝑦)))

≥ ⋀
𝑥′∈𝑋(𝜓(𝑓(𝑥′))→ ⋀

𝑦∈𝑌
⋀
𝑥∈𝑋(𝑒𝑌 (𝑓(𝑥), 𝑓(𝑥

′)) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥)))→ 𝜓(𝑦)))

=
⋀
𝑥′∈𝑋(𝜓(𝑓(𝑥′))→ ⋀

𝑦∈𝑌 (
⋁
𝑥∈𝑋(𝑒𝑌 (𝑓(𝑥), 𝑓(𝑥

′)) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥)))→ 𝜓(𝑦)))

≥ ⋀
𝑥′∈𝑋(𝜓(𝑓(𝑥′))→ ⋀

𝑦∈𝑌 (𝑒𝑌 (𝑦, 𝑓(𝑥
′))→ 𝜓(𝑦)))

=
⋀
𝑦∈𝑌

⋀
𝑥′∈𝑋(𝜓(𝑓(𝑥′))→ (𝑒𝑌 (𝑦, 𝑓(𝑥

′))→ 𝜓(𝑦)))

=
⋀
𝑦∈𝑌

⋀
𝑥′∈𝑋((𝜓(𝑓(𝑥′)) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥′)))→ 𝜓(𝑦))

=
⋀
𝑦∈𝑌 (

⋁
𝑥′∈𝑋(𝜓(𝑓(𝑥′)) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥′)))→ 𝜓(𝑦))

≥ ⋀
𝑦∈𝑌 (𝜓(𝑦)→ 𝜓(𝑦)) (𝜓 is 𝐿𝐹 -lower)

= 1.

(2)

𝑒𝑌 (𝑓
→
𝐿 ∘ 𝑓←𝐿 (𝜓), 𝜓)

=
⋀
𝑦∈𝑌 (𝑓

→
𝐿 (𝑓←𝐿 (𝜓))(𝑦)→ 𝜓(𝑦))

=
⋀
𝑦∈𝑌 (

⋁
𝑥∈𝑓←({𝑦}) 𝑓

←
𝐿 (𝜓)(𝑥)→ 𝜓(𝑦))

=
⋀
𝑦∈𝑌 (

⋁
𝑥∈𝑓←({𝑦}) 𝜓(𝑓(𝑥))→ 𝜓(𝑦))

=
⋀
𝑦∈𝑌 (𝜓(𝑦)→ 𝜓(𝑦)) = 1.

□

Definition 3.6. (Adjunction Between Categories) [12] Let C and D be two
categories, and 𝐹 : C −→ D, 𝐺 : D −→ C functors. We say 𝐹 is left-adjoint to 𝐺
iff the following two criteria are satisfied in the order stated:

(1) Lifting/Continuity criterion:

∀𝐴 ∈ ∣C∣,∃𝜂 : 𝐴 −→ 𝐺𝐹 (𝐴),∀𝐵 ∈ D,∀𝑓 : 𝐴 −→ 𝐺(𝐵),

∃!𝑓 : 𝐹 (𝐴) −→ 𝐵, 𝑓 = 𝐺(𝑓) ∘ 𝜂
(2) Naturality criterion:

∀𝑓 : 𝐴1 −→ 𝐴2 ∈ C, 𝐹 (𝑓) = 𝜂𝐴2 ∘ 𝑓
We also say that 𝐺 is right-adjoint to 𝐹 or that (𝐹,𝐺) is an adjunction, or we
may write 𝐹 ⊣ 𝐺 and C ⊣ D. The map 𝜂 is the unit of the adjunction; and the
D morphism 𝜀 dual to 𝜂 in the duals of the above statements is the counit of the
adjunction.
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Theorem 3.7. (Set ⊣ 𝐿𝐹 -CSLat(⊔) and generation of Zadeh powerset
operators) Let P𝐿: Set−→ 𝐿𝐹 -CSLat(⊔) and V: 𝐿𝐹 -CSLat(⊔) −→ Set be
defined by

P𝐿(𝑋) = (𝐿𝑋 , 𝑒), V(𝑋, 𝑒) = 𝑋, V(𝑓) = 𝑓.

Then the followings hold:

(1) ∀𝑋 ∈ ∣Set∣, ∃𝜒𝑋 : 𝑋 −→ P𝐿(𝑋) defined by 𝜒𝑋(𝑥) = 𝜒{𝑥}, ∀(𝑌, 𝑒𝑌 ) ∈ ∣𝐿𝐹 -
CSLat(⊔)∣, ∀𝑓 : 𝑋 −→ 𝑌 in Set, ∃!𝑓 : P𝐿(𝑋) −→ (𝑌, 𝑒𝑌 ) in 𝐿𝐹 -CSLat(⊔),
𝑓 = V(𝑓) ∘ 𝜒𝑋 .

(2) If 𝑓 : 𝑋 −→ 𝑌 in Set is given and P𝐿(𝑓) is stipulated to be 𝜒𝑌 ∘ 𝑓 , then
P𝐿 is a functor and P𝐿 ⊣ V.

(3) 𝜒𝑌 ∘ 𝑓 : P𝐿(𝑋) −→ P𝐿(𝑌 ) is the traditional Zadeh forward powerset op-
erator 𝑓→𝐿 , i.e. for all 𝜙 ∈ 𝐿𝑋 and for all 𝑦 ∈ 𝑌 , 𝜒𝑌 ∘ 𝑓(𝜙)(𝑦) =

⋁{𝜙(𝑥) ∣ 𝑥 ∈
𝑓←({𝑦})}.

(4) Since 𝜒𝑌 ∘ 𝑓 is an 𝐿𝐹 -CSLat(⊔) morphism, then 𝑓→𝐿 preserves arbitrary
joins of 𝐿-fuzzy subsets and so has a right 1-adjoint 𝑔 (by the AFT) which is the
traditional Zadeh backward powerset operator 𝑓←𝐿 , i.e. for all 𝜓 ∈ 𝐿𝑌 and for all
𝑥 ∈ 𝑋, 𝑔(𝜓)(𝑥) = 𝜓 ∘ 𝑓(𝑥).
Proof. (1) Let 𝑓 : 𝐿𝑋 −→ 𝑌 be defined by 𝑓(𝜙) = ⊔𝑓→𝐿 (𝜙). Then 𝑓 is an 𝐿𝐹 -

CSLat(⊔) morphism, i.e. 𝑓(⊔Φ) = ⊔𝑓
→
∗ (Φ) for all Φ ∈ 𝐿𝐿

𝑋

. In fact, suppose
Φ is an 𝐿-fuzzy subset of 𝐿𝑋 . Then ⊔Φ ∈ 𝐿𝑋 and for all 𝑥 ∈ 𝑋, (⊔Φ)(𝑥) =⋁
𝜙∈𝐿𝑋 (Φ(𝜙) ∗ 𝜙(𝑥)) by Theorem 2.15. So for all 𝑦 ∈ 𝑌 ,

𝑓→𝐿 (⊔Φ)(𝑦) =
⋁
𝑥∈𝑓←({𝑦})(⊔Φ)(𝑥)

=
⋁
𝑥∈𝑓←({𝑦})(

⋁
𝜙∈𝐿𝑋 (Φ(𝜙) ∗ 𝜙(𝑥)))

=
⋁
𝜙∈𝐿𝑋 (Φ(𝜙) ∗ (⋁𝑥∈𝑓←({𝑦}) 𝜙(𝑥)))

=
⋁
𝜙∈𝐿𝑋 (Φ(𝜙) ∗ 𝑓→𝐿 (𝜙)(𝑦)).

Let 𝑦0 = ⊔𝑓
→
∗ (Φ). We will prove 𝑦0 = ⊔𝑓→𝐿 (⊔Φ). In fact, by Theorem 2.9, for all

𝑧 ∈ 𝑌 ,

𝑒𝑌 (𝑦0, 𝑧) =
⋀
𝑦∈𝑌 (𝑓

→
∗ (Φ)(𝑦)→ 𝑒𝑌 (𝑦, 𝑧))

=
⋀
𝑦∈𝑌 (

⋁
𝜙∈𝐿𝑋 (Φ(𝜙) ∗ 𝑒𝑌 (𝑦, 𝑓(𝜙)))→ 𝑒𝑌 (𝑦, 𝑧))

=
⋀
𝑦∈𝑌 (

⋁
𝜙∈𝐿𝑋 (Φ(𝜙) ∗ 𝑒𝑌 (𝑦,⊔𝑓→𝐿 (𝜙)))→ 𝑒𝑌 (𝑦, 𝑧))

=
⋀
𝑦∈𝑌

⋀
𝜙∈𝐿𝑋 ((Φ(𝜙) ∗ 𝑒𝑌 (𝑦,⊔𝑓→𝐿 (𝜙)))→ 𝑒𝑌 (𝑦, 𝑧))

=
⋀
𝑦∈𝑌

⋀
𝜙∈𝐿𝑋 (Φ(𝜙)→ (𝑒𝑌 (𝑦,⊔𝑓→𝐿 (𝜙))→ 𝑒𝑌 (𝑦, 𝑧)))

=
⋀
𝜙∈𝐿𝑋 (Φ(𝜙)→ ⋀

𝑦∈𝑌 (𝑒𝑌 (𝑦,⊔𝑓→𝐿 (𝜙))→ 𝑒𝑌 (𝑦, 𝑧)))

=
⋀
𝜙∈𝐿𝑋 (Φ(𝜙)→ 𝑒𝑌 (⊔𝑓→𝐿 (𝜙), 𝑧))

=
⋀
𝜙∈𝐿𝑋 (Φ(𝜙)→ ⋀

𝑦∈𝑌 (𝑓
→
𝐿 (𝜙)(𝑦)→ 𝑒𝑌 (𝑦, 𝑧)))

=
⋀
𝜙∈𝐿𝑋

⋀
𝑦∈𝑌 (Φ(𝜙)→ (𝑓→𝐿 (𝜙)(𝑦)→ 𝑒𝑌 (𝑦, 𝑧)))

=
⋀
𝑦∈𝑌

⋀
𝜙∈𝐿𝑋 ((Φ(𝜙) ∗ 𝑓→𝐿 (𝜙)(𝑦))→ 𝑒𝑌 (𝑦, 𝑧))

=
⋀
𝑦∈𝑌 (

⋁
𝜙∈𝐿𝑋 (Φ(𝜙) ∗ 𝑓→𝐿 (𝜙)(𝑦))→ 𝑒𝑌 (𝑦, 𝑧))

=
⋀
𝑦∈𝑌 (𝑓

→
𝐿 (⊔Φ)(𝑦)→ 𝑒𝑌 (𝑦, 𝑧)).
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Thus 𝑓(⊔Φ) = ⊔𝑓→𝐿 (⊔Φ) = 𝑦0 = ⊔𝑓
→
∗ (Φ), that is, 𝑓 is a join-preserving mapping.

Secondly, for all 𝑥 ∈ 𝑋,

V(𝑓) ∘ 𝜒𝑋(𝑥) = 𝑓(𝜒{𝑥}) = ⊔𝑓→𝐿 (𝜒{𝑥}) = ⊔𝜒{𝑓(𝑥)} = 𝑓(𝑥).

That is, V(𝑓) ∘ 𝜒𝑋 = 𝑓 .
Moreover, 𝑓 is the unique 𝐿𝐹 -CSLat(⊔) morphism satisfying V(𝑓) ∘ 𝜒𝑋 = 𝑓 .

In fact, if 𝑔 is also an 𝐿𝐹 -CSLat(⊔) morphism satisfying V(𝑔) ∘ 𝜒𝑋 = 𝑓 , then for

every 𝜙 ∈ 𝐿𝑋 , we define 𝜙 ∈ 𝐿𝐿𝑋

as follows: for all 𝜓 ∈ 𝐿𝑋 ,

𝜙(𝜓) =

{
𝜙(𝑥), ∃𝑥 ∈ 𝑋,𝜓 = 𝜒{𝑥},
0, otherwise.

By Theorem 2.15, for all 𝑥 ∈ 𝑋,

(⊔𝜙)(𝑥) =
⋁
𝜓∈𝐿𝑋 (𝜙(𝜓) ∗ 𝜓(𝑥))

=
⋁
𝜓=𝜒{𝑥′},𝑥′∈𝑋(𝜙(𝑥′) ∗ 𝜓(𝑥))

=
⋁
𝑥′∈𝑋(𝜙(𝑥′) ∗ 𝜒{𝑥′}(𝑥))

= 𝜙(𝑥),

that is, ⊔𝜙 = 𝜙, we have 𝑔(𝜙) = 𝑔(⊔𝜙) = ⊔𝑔→∗ (𝜙). However, for all 𝑦 ∈ 𝑌 ,

𝑔→∗ (𝜙)(𝑦) =
⋁
𝜓∈𝐿𝑋 (𝜙(𝜓) ∗ 𝑒𝑌 (𝑦, 𝑔(𝜓)))

=
⋁
𝜓=𝜒{𝑥},𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒𝑌 (𝑦, 𝑔(𝜓)))

=
⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒𝑌 (𝑦, 𝑔(𝜒{𝑥})))

=
⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥))) (since 𝑉 (𝑔) ∘ 𝜒𝑋 = 𝑓)

= 𝑓→∗ (𝜙)(𝑦),

that is, 𝑔→∗ (𝜙) = 𝑓→∗ (𝜙), so ⊔𝑔→∗ (𝜙) = ⊔𝑓→∗ (𝜙). By Proposition 3.1 we know that

𝑔(𝜙) = ⊔𝑔→∗ (𝜙) = ⊔𝑓→∗ (𝜙) = ⊔𝑓→𝐿 (𝜙) = 𝑓(𝜙). Thus 𝑔 = 𝑓 .

(2) It is easily proved that P𝐿 is a functor by (3), and by (1) we know that
P𝐿 ⊣ V.

(3) By the definition of () we know that 𝜒𝑌 ∘ 𝑓(𝜙) = ⊔(𝜒𝑌 ∘ 𝑓)→𝐿 (𝜙) for all
𝜙 ∈ 𝐿𝑋 . However, by Theorem 2.15 we have for all 𝑦 ∈ 𝑌 ,

(⊔(𝜒𝑌 ∘ 𝑓)→𝐿 (𝜙))(𝑦) =
⋁
𝜓∈𝐿𝑌 ((𝜒𝑌 ∘ 𝑓)→𝐿 (𝜙)(𝜓) ∗ 𝜓(𝑦))

=
⋁
𝜓∈𝐿𝑌 (

⋁
𝑥∈(𝜒𝑌 ∘𝑓)←({𝜓}) 𝜙(𝑥) ∗ 𝜓(𝑦))

=
⋁
𝜓∈𝐿𝑌 (

⋁
𝜓=𝜒𝑓(𝑥),𝑥∈𝑋 𝜙(𝑥) ∗ 𝜓(𝑦))

=
⋁
𝜓∈{𝜒𝑓(𝑥′)∣𝑥′∈𝑋}(

⋁
𝜓=𝜒𝑓(𝑥),𝑥∈𝑋 𝜙(𝑥) ∗ 𝜓(𝑦))

=
⋁
𝑥′∈𝑋(

⋁
𝜒𝑓(𝑥′)=𝜒𝑓(𝑥),𝑥∈𝑋 𝜙(𝑥) ∗ 𝜒{𝑓(𝑥′)}(𝑦))

=
⋁
𝑥′∈𝑓←({𝑦})

⋁
𝑥∈𝑓←({𝑓(𝑥′)}) 𝜙(𝑥)

=
⋁
𝑥∈𝑓←({𝑦}) 𝜙(𝑥) = 𝑓→𝐿 (𝜙)(𝑦).

Hence for all 𝜙 ∈ 𝐿𝑋 , 𝜒𝑌 ∘ 𝑓(𝜙) = ⊔(𝜒𝑌 ∘ 𝑓)→𝐿 (𝜙) = 𝑓→𝐿 (𝜙), that is, 𝜒𝑌 ∘ 𝑓 = 𝑓→𝐿
is the traditional Zadeh forward powerset operator.
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(4) By (1) we know that 𝜒𝑌 ∘ 𝑓 is an 𝐿𝐹 -CSLat(⊔) morphism, consequently it
preserves arbitrary joins of 𝐿-fuzzy subsets, which implies that the traditional Zadeh
forward powerset operator 𝑓→𝐿 preserves arbitrary joins of 𝐿-fuzzy subsets. By the
AFT, 𝑓→𝐿 has a right 1-adjoint 𝑔 : 𝐿𝑌 −→ 𝐿𝑋 , which is given by 𝑔(𝜓) = ⊔Φ𝜓,
where Φ𝜓 ∈ 𝐿𝐿𝑋

is defined by Φ𝜓(𝜙) = 𝑒(𝑓→𝐿 (𝜙), 𝜓) for all 𝜙 ∈ 𝐿𝑋 . Now we prove
that 𝑔 is exactly the traditional Zadeh backward powerset operator 𝑓←𝐿 . At first,
for all 𝑥 ∈ 𝑋,

𝑔(𝜓)(𝑥) = (⊔Φ𝜓)(𝑥)
=

⋁
𝜙∈𝐿𝑋 (Φ𝜓(𝜙) ∗ 𝜙(𝑥))

=
⋁
𝜙∈𝐿𝑋 (𝑒(𝑓→𝐿 (𝜙), 𝜓) ∗ 𝜙(𝑥))

≤ ⋁
𝜙∈𝐿𝑋 (𝑒(𝑓→𝐿 (𝜙), 𝜓) ∗ 𝑓→𝐿 (𝜙)(𝑓(𝑥)))

=
⋁
𝜙∈𝐿𝑋 (

⋀
𝑦∈𝑌 (𝑓

→
𝐿 (𝜙)(𝑦)→ 𝜓(𝑦)) ∗ 𝑓→𝐿 (𝜙)(𝑓(𝑥)))

≤ ⋁
𝜙∈𝐿𝑋 ((𝑓→𝐿 (𝜙)(𝑓(𝑥))→ 𝜓(𝑓(𝑥))) ∗ 𝑓→𝐿 (𝜙)(𝑓(𝑥)))

≤ 𝜓(𝑓(𝑥)).
Conversely,

𝑔(𝜓)(𝑥) = (⊔Φ𝜓)(𝑥)
=

⋁
𝜙∈𝐿𝑋 (Φ𝜓(𝜙) ∗ 𝜙(𝑥))

=
⋁
𝜙∈𝐿𝑋 (𝑒(𝑓→𝐿 (𝜙), 𝜓) ∗ 𝜙(𝑥))

≥ 𝑒(𝑓→𝐿 (𝑓←𝐿 (𝜓), 𝜓) ∗ 𝑓←𝐿 (𝜓)(𝑥)) (by taking 𝜙 = 𝑓←𝐿 (𝜓))
= 𝑓←𝐿 (𝜓)(𝑥). (by Lemma 2.5)

Thus 𝑔(𝜓) = 𝑓←𝐿 (𝜓) for all 𝜓 ∈ 𝐿𝑌 , that is, 𝑔 = 𝑓←𝐿 . □

Remark 3.8. Theorem 3.7 directly generates 𝑓→𝐿 from 𝑓 via an adjunction be-
tween the categories Set and 𝐿𝐹 -CSLat(⊔), and creates 𝑓←𝐿 by the AFT for 𝐿-
fuzzy posets. It easily sees that the category 𝐿𝐹 -CSLat(⊔) is exactly the category
CSLat(

⋁
) when 𝐿 is the binary lattice 2, and that the Zadeh powerset operators

𝑓→𝐿 , 𝑓←𝐿 are respectively identical to the traditional powerset operators 𝑓→, 𝑓←, and
that the 1-adjoint pair is the traditional adjoint pair, so this theorem generalizes
the corresponding work of [10-12] providing 𝐿 is a complete residuated lattice.

Lemma 3.9. (Yoneda Lemma) [6, 20] Let (𝑋, 𝑒) be an 𝐿𝐹 -poset. Then for every
𝑥 ∈ 𝑋, 𝜙 ∈ ℒ𝐿(𝑋) implies 𝑒(𝜄𝑥, 𝜙) = 𝜙(𝑥), and 𝜙 ∈ 𝒰𝐿(𝑋) implies 𝑒(𝜇𝑥, 𝜙) = 𝜙(𝑥),
and 𝜙 ∈ 𝒮𝐿(𝑋) implies 𝑒(𝑠𝑥, 𝜙) = 𝜙(𝑥).

Corollary 3.10. Let (𝑋, 𝑒) be an 𝐿𝐹 -poset. Then

𝑒(𝑥, 𝑦) = 𝑒(𝜄𝑥, 𝜄𝑦), 𝑒(𝑥, 𝑦) = 𝑒(𝜇𝑦, 𝜇𝑥), 𝑒(𝑥, 𝑦) = 𝑒(𝑠𝑥, 𝑠𝑦)

for all 𝑥, 𝑦 ∈ 𝑋.

Theorem 3.11. (𝐿𝐹 -Pos⊣ 𝐿𝐹 -CSLat(⊔) and generation of fuzzy powerset

operators 𝑓→∗ , 𝑓
←
∗ ) Let L𝐿: 𝐿𝐹 -Pos−→ 𝐿𝐹 -CSLat(⊔) and F: 𝐿𝐹 -CSLat(⊔) −→

𝐿𝐹 -Pos be defined by

L𝐿(𝑋, 𝑒) = (ℒ𝐿(𝑋), 𝑒), F(𝑋, 𝑒) = (𝑋, 𝑒), F(𝑓) = 𝑓.

Then the followings hold:
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(1) ∀(𝑋, 𝑒𝑋) ∈ ∣𝐿𝐹 -Pos∣, ∃𝜄𝑋 : (𝑋, 𝑒𝑋) −→ (ℒ𝐿(𝑋), 𝑒𝑋) defined by 𝜄𝑋(𝑥) = 𝜄𝑥,
∀(𝑌, 𝑒𝑌 ) ∈ ∣𝐿𝐹 -CSLat(⊔)∣, ∀𝑓 : (𝑋, 𝑒𝑋) −→ (𝑌, 𝑒𝑌 ) in 𝐿𝐹 -Pos, ∃!𝑓 : (ℒ𝐿(𝑋), 𝑒𝑋) −→
(𝑌, 𝑒𝑌 ) in 𝐿𝐹 -CSLat(⊔), 𝑓 = F(𝑓) ∘ 𝜄𝑋 .

(2) If 𝑓 : (𝑋, 𝑒𝑋) −→ (𝑌, 𝑒𝑌 ) in 𝐿𝐹 -Pos is given and L𝐿(𝑓) is stipulated to be
𝜄𝑌 ∘ 𝑓 , then L𝐿 is a functor and L𝐿 ⊣ F.

(3) 𝜄𝑌 ∘ 𝑓 : (ℒ𝐿(𝑋), 𝑒𝑋) −→ (ℒ𝐿(𝑌 ), 𝑒𝑌 ) is 𝑓→∗ , i.e. for all 𝜙 ∈ ℒ𝐿(𝑋) and for
all 𝑦 ∈ 𝑌 , 𝜄𝑌 ∘ 𝑓(𝜙)(𝑦) =

⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥))).

(4) Since 𝜄𝑌 ∘ 𝑓 is an 𝐿𝐹 -CSLat(⊔) morphism, then 𝑓→∗ preserves arbitrary

joins of 𝐿-fuzzy subsets and so has a right 1-adjoint 𝑔 (by the AFT) which is 𝑓←∗ ,
i.e. for all 𝜓 ∈ ℒ𝐿(𝑌 ) and for all 𝑥 ∈ 𝑋, 𝑔(𝜓)(𝑥) =

⋁
𝑥′∈𝑋(𝜓(𝑓(𝑥′)) ∗ 𝑒𝑋(𝑥, 𝑥′)).

Proof. (1) Let 𝑓 : ℒ𝐿(𝑋) −→ 𝑌 be defined by 𝑓(𝜙) = ⊔𝑓→∗ (𝜙). Then 𝑓 is an

𝐿𝐹 -CSLat(⊔) morphism, i.e. for all Φ ∈ 𝐿ℒ𝐿(𝑋), 𝑓(⊔Φ) = ⊔𝑓
→
∗ (Φ). In fact,

suppose Φ is an 𝐿-fuzzy subset of ℒ𝐿(𝑋). Then ⊔Φ ∈ ℒ𝐿(𝑋) and for all 𝑥 ∈ 𝑋,
(⊔Φ)(𝑥) = ⋁

𝜙∈ℒ𝐿(𝑋)(Φ(𝜙) ∗ 𝜙(𝑥)) by Theorem 2.17. So for all 𝑦 ∈ 𝑌 ,

𝑓→∗ (⊔Φ)(𝑦) =
⋁
𝑥∈𝑋((⊔Φ)(𝑥) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥)))

=
⋁
𝑥∈𝑋((

⋁
𝜙∈ℒ𝐿(𝑋)(Φ(𝜙) ∗ 𝜙(𝑥))) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥)))

=
⋁
𝑥∈𝑋

⋁
𝜙∈ℒ𝐿(𝑋)(Φ(𝜙) ∗ 𝜙(𝑥) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥)))

=
⋁
𝜙∈ℒ𝐿(𝑋)(Φ(𝜙) ∗

⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥))))

=
⋁
𝜙∈ℒ𝐿(𝑋)(Φ(𝜙) ∗ 𝑓→∗ (𝜙)(𝑦)).

Let 𝑦0 = ⊔𝑓
→
∗ (Φ). We will prove 𝑦0 = ⊔𝑓→∗ (⊔Φ). In fact, by Theorem 2.9, for all

𝑧 ∈ 𝑌 ,

𝑒𝑌 (𝑦0, 𝑧) =
⋀
𝑦∈𝑌 (𝑓

→
∗ (Φ)(𝑦)→ 𝑒𝑌 (𝑦, 𝑧))

=
⋀
𝑦∈𝑌 (

⋁
𝜙∈ℒ𝐿(𝑋)(Φ(𝜙) ∗ 𝑒𝑌 (𝑦, 𝑓(𝜙)))→ 𝑒𝑌 (𝑦, 𝑧))

=
⋀
𝑦∈𝑌 (

⋁
𝜙∈ℒ𝐿(𝑋)(Φ(𝜙) ∗ 𝑒𝑌 (𝑦,⊔𝑓→∗ (𝜙)))→ 𝑒𝑌 (𝑦, 𝑧))

=
⋀
𝑦∈𝑌

⋀
𝜙∈ℒ𝐿(𝑋)((Φ(𝜙) ∗ 𝑒𝑌 (𝑦,⊔𝑓→∗ (𝜙)))→ 𝑒𝑌 (𝑦, 𝑧))

=
⋀
𝑦∈𝑌

⋀
𝜙∈ℒ𝐿(𝑋)(Φ(𝜙)→ (𝑒𝑌 (𝑦,⊔𝑓→∗ (𝜙))→ 𝑒𝑌 (𝑦, 𝑧)))

=
⋀
𝜙∈ℒ𝐿(𝑋)(Φ(𝜙)→

⋀
𝑦∈𝑌 (𝑒𝑌 (𝑦,⊔𝑓→∗ (𝜙))→ 𝑒𝑌 (𝑦, 𝑧)))

=
⋀
𝜙∈ℒ𝐿(𝑋)(Φ(𝜙)→ 𝑒𝑌 (⊔𝑓→∗ (𝜙), 𝑧))

=
⋀
𝜙∈ℒ𝐿(𝑋)(Φ(𝜙)→

⋀
𝑦∈𝑌 (𝑓

→
∗ (𝜙)(𝑦)→ 𝑒𝑌 (𝑦, 𝑧)))

=
⋀
𝜙∈ℒ𝐿(𝑋)

⋀
𝑦∈𝑌 (Φ(𝜙)→ (𝑓→∗ (𝜙)(𝑦)→ 𝑒𝑌 (𝑦, 𝑧)))

=
⋀
𝑦∈𝑌

⋀
𝜙∈ℒ𝐿(𝑋)((Φ(𝜙) ∗ 𝑓→∗ (𝜙)(𝑦))→ 𝑒𝑌 (𝑦, 𝑧))

=
⋀
𝑦∈𝑌 (

⋁
𝜙∈ℒ𝐿(𝑋)(Φ(𝜙) ∗ 𝑓→∗ (𝜙)(𝑦))→ 𝑒𝑌 (𝑦, 𝑧))

=
⋀
𝑦∈𝑌 (𝑓

→
∗ (⊔Φ)(𝑦)→ 𝑒𝑌 (𝑦, 𝑧)).

Thus 𝑓(⊔Φ) = ⊔𝑓→∗ (⊔Φ) = 𝑦0 = ⊔𝑓
→
∗ (Φ), that is, 𝑓 is a join-preserving mapping.

Secondly, for all 𝑥 ∈ 𝑋,

F(𝑓) ∘ 𝜄𝑋(𝑥) = 𝑓(𝜄𝑥) = ⊔𝑓→∗ (𝜄𝑥) = ⊔𝜄𝑓(𝑥) = 𝑓(𝑥).
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That is, F(𝑓) ∘ 𝜄𝑋 = 𝑓 .
Moreover, 𝑓 is the unique 𝐿𝐹 -CSLat(⊔) morphism satisfying F(𝑓) ∘ 𝜄𝑋 = 𝑓 .

In fact, if 𝑔 is also an 𝐿𝐹 -CSLat(⊔) morphism satisfying F(𝑔) ∘ 𝜄𝑋 = 𝑓 , then for

every 𝜙 ∈ ℒ𝐿(𝑋), we define 𝜙 ∈ 𝐿ℒ𝐿(𝑋) as follows: for all 𝜓 ∈ ℒ𝐿(𝑋),

𝜙(𝜓) =
⋁
𝑥∈𝑋

(𝜙(𝑥) ∗ 𝑒(𝜓, 𝜄𝑥))

Since for all 𝑥 ∈ 𝑋,

(⊔𝜙)(𝑥) =
⋁
𝜓∈ℒ𝐿(𝑋)(𝜙(𝜓) ∗ 𝜓(𝑥))

=
⋁
𝜓∈ℒ𝐿(𝑋)(

⋁
𝑥′∈𝑋(𝜙(𝑥′) ∗ 𝑒(𝜓, 𝜄𝑥′)) ∗ 𝜓(𝑥))

=
⋁
𝜓∈ℒ𝐿(𝑋)

⋁
𝑥′∈𝑋(𝜙(𝑥′) ∗ 𝑒(𝜓, 𝜄𝑥′) ∗ 𝜓(𝑥))

=
⋁
𝑥′∈𝑋(𝜙(𝑥′) ∗⋁𝜓∈ℒ𝐿(𝑋)(𝑒(𝜓, 𝜄𝑥′) ∗ 𝜓(𝑥)))

=
⋁
𝑥′∈𝑋(𝜙(𝑥′) ∗⋁𝜓∈ℒ𝐿(𝑋)(𝑒(𝜓, 𝜄𝑥′) ∗ 𝑒(𝜄𝑥, 𝜓))) (by Yoneda Lemma)

=
⋁
𝑥′∈𝑋(𝜙(𝑥′) ∗ 𝑒(𝜄𝑥, 𝜄𝑥′))

=
⋁
𝑥′∈𝑋(𝜙(𝑥′) ∗ 𝑒(𝑥, 𝑥′)) (by Corollary 2.10)

= 𝜙(𝑥) (since 𝜙 is an 𝐿𝐹 -lower set),

that is, ⊔𝜙 = 𝜙, we have 𝑔(𝜙) = 𝑔(⊔𝜙) = ⊔𝑔→∗ (𝜙). However, for all 𝑦 ∈ 𝑌 ,

𝑔→∗ (𝜙)(𝑦) =
⋁
𝜓∈ℒ𝐿(𝑋)(𝜙(𝜓) ∗ 𝑒𝑌 (𝑦, 𝑔(𝜓)))

=
⋁
𝜓∈ℒ𝐿(𝑋)(

⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒(𝜓, 𝜄𝑥)) ∗ 𝑒𝑌 (𝑦, 𝑔(𝜓)))

=
⋁
𝑥∈𝑋(𝜙(𝑥) ∗⋁𝜓∈ℒ𝐿(𝑋)(𝑒(𝜓, 𝜄𝑥) ∗ 𝑒𝑌 (𝑦, 𝑔(𝜓))))

=
⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒𝑌 (𝑦, 𝑔(𝜄𝑥))) (since 𝑔 is 𝐿𝐹 -monotone)

=
⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥))) (since 𝐹 (𝑔) ∘ 𝜄𝑋 = 𝑓)

= 𝑓→∗ (𝜙)(𝑦),

that is, 𝑔→∗ (𝜙) = 𝑓→∗ (𝜙), so 𝑔(𝜙) = ⊔𝑔→∗ (𝜙) = ⊔𝑓→∗ (𝜙) = 𝑓(𝜙). Thus 𝑔 = 𝑓 .

(2) It is easily proved that L𝐿 is a functor by (3), and by (1) we know that
L𝐿 ⊣ F.

(3) By the definition of () we know that 𝜄𝑌 ∘ 𝑓(𝜙) = ⊔ ˜(𝜄𝑌 ∘ 𝑓)
→
∗ (𝜙) for all 𝜙 ∈

ℒ𝐿(𝑋). However by Theorem 2.17, for all 𝑦 ∈ 𝑌 ,

(⊔ ˜(𝜄𝑌 ∘ 𝑓)
→
∗ (𝜙))(𝑦)

=
⋁
𝜓∈ℒ𝐿(𝑌 )(

˜(𝜄𝑌 ∘ 𝑓)
→
∗ (𝜙)(𝜓) ∗ 𝜓(𝑦))

=
⋁
𝜓∈ℒ𝐿(𝑌 )(

⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒(𝜓, (𝜄𝑌 ∘ 𝑓)(𝑥))) ∗ 𝜓(𝑦))

=
⋁
𝜓∈ℒ𝐿(𝑌 )(

⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒(𝜓, 𝜄𝑓(𝑥))) ∗ 𝜓(𝑦))

=
⋁
𝑥∈𝑋(𝜙(𝑥) ∗⋁𝜓∈ℒ𝐿(𝑌 )(𝑒(𝜓, 𝜄𝑓(𝑥)) ∗ 𝜓(𝑦)))

=
⋁
𝑥∈𝑋(𝜙(𝑥) ∗⋁𝜓∈ℒ𝐿(𝑌 )(𝑒(𝜓, 𝜄𝑓(𝑥))) ∗ 𝑒(𝜄𝑦, 𝜓)) (by Yoneda Lemma)

=
⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒(𝜄𝑦, 𝜄𝑓(𝑥)))

=
⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥))) (by Corollary 2.10)

= 𝑓→∗ (𝜙)(𝑦).

Hence for all 𝜙 ∈ 𝐿𝑋 , 𝜄𝑌 ∘ 𝑓(𝜙) = ⊔ ˜(𝜄𝑌 ∘ 𝑓)
→
∗ (𝜙) = 𝑓→∗ (𝜙), that is, 𝜄𝑌 ∘ 𝑓 = 𝑓→∗ .
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(4) By (1) we know that 𝜄𝑌 ∘ 𝑓 is an 𝐿𝐹 -CSLat(⊔) morphism, consequently it
preserves arbitrary joins of 𝐿-fuzzy subsets, which implies that the fuzzy forward

powerset operator 𝑓→∗ preserves arbitrary joins of 𝐿-fuzzy subsets. By AFT, 𝑓→∗
has a right 1-adjoint 𝑔 : ℒ𝐿(𝑌 ) −→ ℒ𝐿(𝑋), which is given by 𝑔(𝜓) = ⊔Φ𝜓, where
Φ𝜓 ∈ 𝐿ℒ𝐿(𝑋) is defined by Φ𝜓(𝜙) = 𝑒(𝑓→∗ (𝜙), 𝜓) for all 𝜙 ∈ ℒ𝐿(𝑋). Now we prove

that 𝑔 is exactly the fuzzy backward powerset operator 𝑓←∗ . At first, for all 𝑥 ∈ 𝑋,

𝑔(𝜓)(𝑥) = ⊔Φ𝜓(𝑥)
=

⋁
𝜙∈ℒ𝐿(𝑋)(Φ𝜓(𝜙) ∗ 𝜙(𝑥))

=
⋁
𝜙∈ℒ𝐿(𝑋)(𝑒(𝑓

→
∗ (𝜙), 𝜓) ∗ 𝜙(𝑥))

=
⋁
𝜙∈ℒ𝐿(𝑋)(𝑒(𝑓

→
∗ (𝜙), 𝜓) ∗ 𝑒(𝜄𝑥, 𝜙)) (by Yoneda Lemma)

= 𝑒(𝑓→∗ (𝜄𝑥), 𝜓) (since 𝑓→∗ is 𝐿𝐹 -monotone)
= 𝑒(𝜄𝑓(𝑥), 𝜓)
= 𝜓(𝑓(𝑥)) (by Yoneda Lemma)
=

⋁
𝑥′∈𝑋(𝜓(𝑓(𝑥′)) ∗ 𝑒(𝑥, 𝑥′)) (since 𝑓 is 𝐿𝐹 -monotone and 𝜓 is 𝐿𝐹 -lower)

= 𝑓←∗ (𝜓)(𝑥).

Thus 𝑔(𝜓) = 𝑓←∗ (𝜓) for all 𝜓 ∈ ℒ𝐿(𝑌 ), that is, 𝑔 = 𝑓←∗ . □

Remark 3.12. Theorem 3.11 indicates that 𝑓 can directly generate 𝑓→∗ via an

adjunction between the categories 𝐿𝐹 -Pos and 𝐿𝐹 -CSLat(⊔) and create 𝑓←∗ by

the AFT for 𝐿-fuzzy posets. Similarly we can prove that 𝑓 can directly generate 𝑓→

via an adjunction between the categories 𝐿𝐹 -Pos and 𝐿𝐹 -CSLat(⊔) and create

𝑓← by the AFT for 𝐿-fuzzy posets. See the following theorem.

Theorem 3.13. (𝐿𝐹 -Pos⊣ 𝐿𝐹 -CSLat(⊔) and generation of fuzzy powerset

operators 𝑓→, 𝑓←) Let S𝐿: 𝐿𝐹 -Pos−→ 𝐿𝐹 -CSLat(⊔) and F: 𝐿𝐹 -CSLat(⊔) −→
𝐿𝐹 -Pos be defined by

S𝐿(𝑋, 𝑒) = (𝒮𝐿(𝑋), 𝑒), F(𝑋, 𝑒) = (𝑋, 𝑒), F(𝑓) = 𝑓.

Then the followings hold:

(1) ∀(𝑋, 𝑒𝑋) ∈ ∣𝐿𝐹 -Pos∣, ∃𝑠𝑋 : (𝑋, 𝑒𝑋) −→ (𝒮𝐿(𝑋), 𝑒𝑋) defined by 𝑠𝑋(𝑥) = 𝑠𝑥,

∀(𝑌, 𝑒𝑌 ) ∈ ∣𝐿𝐹 -CSLat(⊔)∣, ∀𝑓 : (𝑋, 𝑒𝑋) −→ (𝑌, 𝑒𝑌 ) in 𝐿𝐹 -Pos, ∃!𝑓 : (𝒮𝐿(𝑋), 𝑒𝑋) −→
(𝑌, 𝑒𝑌 ) in 𝐿𝐹 -CSLat(⊔), 𝑓 = F(𝑓) ∘ 𝑠𝑋 .

(2) If 𝑓 : (𝑋, 𝑒𝑋) −→ (𝑌, 𝑒𝑌 ) in 𝐿𝐹 -Pos is given and S𝐿(𝑓) is stipulated to be
𝑠𝑌 ∘ 𝑓 , then S𝐿 is a functor and S𝐿 ⊣ F.

(3) 𝑠𝑌 ∘ 𝑓 : (𝒮𝐿(𝑋), 𝑒𝑋) −→ (𝒮𝐿(𝑌 ), 𝑒𝑌 ) is 𝑓→, i.e. for all 𝜙 ∈ 𝒮𝐿(𝑋) and for
all 𝑦 ∈ 𝑌 , 𝑠𝑌 ∘ 𝑓(𝜙)(𝑦) =

⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒𝑌 (𝑦, 𝑓(𝑥)) ∗ 𝑒𝑌 (𝑓(𝑥), 𝑦)).

(4) Since 𝑠𝑌 ∘ 𝑓 is an 𝐿𝐹 -CSLat(⊔) morphism, then 𝑓→ preserves arbitrary

joins of 𝐿-fuzzy subsets and so has a right 1-adjoint 𝑔 (by the AFT) which is 𝑓←,
i.e. for all 𝜓 ∈ 𝒮𝐿(𝑌 ) and for all 𝑥 ∈ 𝑋, 𝑔(𝜓)(𝑥) =

⋁
𝑥′∈𝑋(𝜓(𝑓(𝑥′)) ∗ 𝑒𝑋(𝑥, 𝑥′) ∗

𝑒𝑋(𝑥′𝑥)).
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Lemma 3.14. Let (𝑋, 𝑒) be an 𝐿𝐹 -complete lattice and 𝜙 ∈ 𝐿𝑋 and let ⊔𝜙,⊔𝑜𝑝𝜙
denote respectively the join of 𝜙 in (𝑋, 𝑒) and (𝑋, 𝑒𝑜𝑝), and ⊓𝜙,⊓𝑜𝑝𝜙 denote respec-
tively the meet of 𝜙 in (𝑋, 𝑒) and (𝑋, 𝑒𝑜𝑝). Then ⊓𝑜𝑝𝜙 = ⊔𝜙 and ⊔𝑜𝑝𝜙 = ⊓𝜙, which
implies the dual (𝑋, 𝑒𝑜𝑝) of (𝑋, 𝑒) is also an 𝐿𝐹 -complete lattice.

Proof. We only prove the equality ⊓𝑜𝑝𝜙 = ⊔𝜙, and the equality ⊔𝑜𝑝𝜙 = ⊓𝜙 can be
shown dually.

Let 𝑥0 = ⊔𝜙. For all 𝑦 ∈ 𝑋, since 𝑒𝑜𝑝(𝑦, 𝑥0) = 𝑒(𝑥0, 𝑦) =
⋀
𝑥∈𝑋(𝜙(𝑥) →

𝑒(𝑥, 𝑦)) =
⋀
𝑥∈𝑋(𝜙(𝑥) → 𝑒𝑜𝑝(𝑦, 𝑥)), we have 𝑥0 = ⊓𝑜𝑝𝜙 by Theorem 2.9. Thus

⊓𝑜𝑝𝜙 = ⊔𝜙. □

Corollary 3.15. Let 𝑋 be a non-empty set and (𝑌, 𝑒) an 𝐿𝐹 -complete lattice and

𝑓 : 𝑋 −→ 𝑌 a mapping. For 𝜙 ∈ 𝐿𝑋 , let 𝑓→∗ (𝜙)𝑜𝑝, 𝑓∗→(𝜙)𝑜𝑝 be respectively defined
by

𝑓→∗ (𝜙)𝑜𝑝(𝑦) =
⋁
𝑥∈𝑋

(𝜙(𝑥)∗𝑒𝑜𝑝(𝑦, 𝑓(𝑥))), 𝑓∗→(𝜙)𝑜𝑝(𝑦) =
⋁
𝑥∈𝑋

(𝜙(𝑥)∗𝑒𝑜𝑝(𝑓(𝑥), 𝑦)), ∀𝑦 ∈ 𝑌.

Then ⊓𝑜𝑝𝑓∗→(𝜙)𝑜𝑝 = ⊔𝑓→∗ (𝜙) and ⊔𝑜𝑝𝑓→∗ (𝜙)𝑜𝑝 = ⊓𝑓∗→(𝜙).

Proof. It easily follows that 𝑓∗→(𝜙)𝑜𝑝 = 𝑓→∗ (𝜙) and 𝑓→∗ (𝜙)𝑜𝑝 = 𝑓∗→(𝜙) by their

definitions. So by Lemma 3.14 we have ⊓𝑜𝑝𝑓∗→(𝜙)𝑜𝑝 = ⊔𝑓∗→(𝜙)𝑜𝑝 = ⊔𝑓→∗ (𝜙) and

⊔𝑜𝑝𝑓→∗ (𝜙)𝑜𝑝 = ⊓𝑓→∗ (𝜙)𝑜𝑝 = ⊓𝑓∗→(𝜙). □

By Lemma 3.14 and Corollary 3.15 we can easily obtain the following theorem.

Theorem 3.16. The assignment (𝑋, 𝑒) 7→ (𝑋, 𝑒𝑜𝑝), 𝑓 : (𝑋, 𝑒𝑋) −→ (𝑌, 𝑒𝑌 ) 7→
𝑓 : (𝑋, 𝑒𝑜𝑝𝑋 ) −→ (𝑌, 𝑒𝑜𝑝𝑌 ) give an isomorphism between the categories 𝐿𝐹 -CSLat(⊔)
and 𝐿𝐹 -CSLat(⊓).
Theorem 3.17. (𝐿𝐹 -Pos⊣ 𝐿𝐹 -CSLat(⊓) and generation of fuzzy power-

set operators 𝑓∗→, 𝑓∗←)) Let U𝐿: 𝐿𝐹 -Pos−→ 𝐿𝐹 -CSLat(⊓) and F: 𝐿𝐹 -
CSLat(⊓) −→ 𝐿𝐹 -Pos be defined by

U𝐿(𝑋, 𝑒) = (𝒰𝐿(𝑋), 𝑒𝑜𝑝), F(𝑋, 𝑒) = (𝑋, 𝑒), F(𝑓) = 𝑓.

Then the followings hold:

(1) ∀(𝑋, 𝑒𝑋) ∈ ∣𝐿𝐹 -Pos∣, ∃𝜇𝑋 : (𝑋, 𝑒𝑋) −→ (𝒰𝐿(𝑋), 𝑒𝑜𝑝𝑋 ) defined by 𝜇𝑋(𝑥) = 𝜇𝑥,

∀(𝑌, 𝑒𝑌 ) ∈ 𝐿𝐹 -CSLat(⊓), ∀𝑓 : (𝑋, 𝑒𝑋) −→ (𝑌, 𝑒𝑌 ) in 𝐿𝐹 -Pos, ∃!𝑓 : (𝒰𝐿(𝑋), 𝑒𝑜𝑝𝑋 ) −→
(𝑌, 𝑒𝑌 ) in 𝐿𝐹 -CSLat(⊓), 𝑓 = F(𝑓) ∘ 𝜇𝑋 .

(2) If 𝑓 : (𝑋, 𝑒𝑋) −→ (𝑌, 𝑒𝑌 ) in 𝐿𝐹 -Pos is given and U𝐿(𝑓) is stipulated to be
𝜇𝑌 ∘ 𝑓 , then U𝐿 is a functor and U𝐿 ⊣ F.

(3) 𝜇𝑌 ∘ 𝑓 : (𝒰𝐿(𝑋), 𝑒𝑜𝑝𝑋 ) −→ (𝒰𝐿(𝑌 ), 𝑒𝑜𝑝𝑌 ) is 𝑓∗
→
, i.e. for all 𝜙 ∈ 𝒰𝐿(𝑋) and

for all 𝑦 ∈ 𝑌 , 𝜇𝑌 ∘ 𝑓(𝜙)(𝑦) =
⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒𝑌 (𝑓(𝑥), 𝑦)).

(4) Since 𝜇𝑌 ∘ 𝑓 is an 𝐿𝐹 -CSLat(⊓) morphism, 𝑓∗
→

preserves arbitrary meets

of 𝐿-fuzzy subsets and so has a left 1-adjoint 𝑔 (by the AFT) which is 𝑓∗
←
, i.e. for

all 𝜓 ∈ 𝒰𝐿(𝑌 ) and for all 𝑥 ∈ 𝑋, 𝑔(𝜓)(𝑥) =
⋁
𝑥′∈𝑋(𝜓(𝑓(𝑥′)) ∗ 𝑒𝑋(𝑥′, 𝑥)).



Algebraic Generations of Some Fuzzy Powerset Operators 47

Proof. (1) Let 𝑓 : 𝒰𝐿(𝑋) −→ 𝑌 be defined by 𝑓(𝜙) = ⊓𝑓∗→(𝜙). Then 𝑓 is an

𝐿𝐹 -CSLat(⊓) morphism, i.e. for all Φ ∈ 𝐿𝒰𝐿(𝑋), 𝑓(⊓𝑜𝑝Φ) = ⊓𝑓
∗→

(Φ). In fact,
suppose Φ is an 𝐿-fuzzy subset of 𝒰𝐿(𝑋). Then by Theorem 2.17 and Lemma 3.14,
⊓𝑜𝑝Φ ∈ 𝒰𝐿(𝑋) and for all 𝑥 ∈ 𝑋, (⊓𝑜𝑝Φ)(𝑥) = (⊔Φ)(𝑥) = ⋁

𝜙∈𝒰𝐿(𝑋)(Φ(𝜙) ∗ 𝜙(𝑥)).
So for all 𝑦 ∈ 𝑌 ,

𝑓∗→(⊓𝑜𝑝Φ)(𝑦) = 𝑓∗→(⊔Φ)(𝑦)
=

⋁
𝑥∈𝑋((⊔Φ)(𝑥) ∗ 𝑒𝑌 (𝑓(𝑥), 𝑦))

=
⋁
𝑥∈𝑋((

⋁
𝜙∈𝒰𝐿(𝑋)(Φ(𝜙) ∗ 𝜙(𝑥))) ∗ 𝑒𝑌 (𝑓(𝑥), 𝑦))

=
⋁
𝑥∈𝑋

⋁
𝜙∈𝒰𝐿(𝑋)(Φ(𝜙) ∗ 𝜙(𝑥) ∗ 𝑒𝑌 (𝑓(𝑥), 𝑦))

=
⋁
𝜙∈𝒰𝐿(𝑋)(Φ(𝜙) ∗⋁

𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒𝑌 (𝑓(𝑥), 𝑦)))

=
⋁
𝜙∈𝒰𝐿(𝑋)(Φ(𝜙) ∗ 𝑓∗→(𝜙)(𝑦)).

Let 𝑦1 = ⊓𝑓
∗→

(Φ). We will prove 𝑦1 = ⊓𝑓∗→(⊔Φ). In fact, by Theorem 2.9, for
all 𝑧 ∈ 𝑌 ,

𝑒𝑌 (𝑧, 𝑦1) =
⋀
𝑦∈𝑌 (𝑓

∗→
(Φ)(𝑦) → 𝑒𝑌 (𝑧, 𝑦))

=
⋀
𝑦∈𝑌 (

⋁
𝜙∈𝒰𝐿(𝑋)(Φ(𝜙) ∗ 𝑒𝑌 (𝑓(𝜙), 𝑦)) → 𝑒𝑌 (𝑧, 𝑦))

=
⋀
𝑦∈𝑌 (

⋁
𝜙∈𝒰𝐿(𝑋)(Φ(𝜙) ∗ 𝑒𝑌 (⊓𝑓∗→(𝜙), 𝑦)) → 𝑒𝑌 (𝑧, 𝑦))

=
⋀
𝑦∈𝑌

⋀
𝜙∈𝒰𝐿(𝑋)((Φ(𝜙) ∗ 𝑒𝑌 (⊓𝑓∗→(𝜙), 𝑦)) → 𝑒𝑌 (𝑧, 𝑦))

=
⋀
𝑦∈𝑌

⋀
𝜙∈𝒰𝐿(𝑋)(Φ(𝜙) → (𝑒𝑌 (⊓𝑓∗→(𝜙), 𝑦) → 𝑒𝑌 (𝑧, 𝑦)))

=
⋀
𝜙∈𝒰𝐿(𝑋)(Φ(𝜙) → ⋀

𝑦∈𝑌 (𝑒𝑌 (⊓𝑓∗→(𝜙), 𝑦) → 𝑒𝑌 (𝑧, 𝑦)))

=
⋀
𝜙∈𝒰𝐿(𝑋)(Φ(𝜙) → 𝑒𝑌 (𝑧,⊓𝑓∗→(𝜙)))

=
⋀
𝜙∈𝒰𝐿(𝑋)(Φ(𝜙) → ⋀

𝑦∈𝑌 (𝑓∗→(𝜙)(𝑦) → 𝑒𝑌 (𝑧, 𝑦)))

=
⋀
𝜙∈𝒰𝐿(𝑋)

⋀
𝑦∈𝑌 (Φ(𝜙) → (𝑓∗→(𝜙)(𝑦) → 𝑒𝑌 (𝑧, 𝑦)))

=
⋀
𝑦∈𝑌

⋀
𝜙∈𝒰𝐿(𝑋)((Φ(𝜙) ∗ 𝑓∗→(𝜙)(𝑦)) → 𝑒𝑌 (𝑧, 𝑦))

=
⋀
𝑦∈𝑌 (

⋁
𝜙∈𝒰𝐿(𝑋)(Φ(𝜙) ∗ 𝑓∗→(𝜙)(𝑦)) → 𝑒𝑌 (𝑧, 𝑦))

=
⋀
𝑦∈𝑌 (𝑓∗→(⊓𝑜𝑝Φ)(𝑦) → 𝑒𝑌 (𝑧, 𝑦)).

Thus 𝑓(⊓𝑜𝑝Φ) = ⊓𝑓∗→(⊓𝑜𝑝Φ) = 𝑦1 = ⊓𝑓
∗→

(Φ), that is, 𝑓 is a meet-preserving
mapping.

Secondly, for all 𝑥 ∈ 𝑋,

F(𝑓) ∘ 𝜇𝑋(𝑥) = 𝑓(𝜇𝑥) = ⊓𝑓∗→(𝜇𝑥) = ⊓𝜇𝑓(𝑥) = 𝑓(𝑥).

That is, F(𝑓) ∘ 𝜇𝑋 = 𝑓 .
Moreover, 𝑓 is the unique 𝐿𝐹 -CSLat(⊓) morphism satisfying F(𝑓) ∘ 𝜇𝑋 = 𝑓 .

In fact, if 𝑔 is also an 𝐿𝐹 -CSLat(⊓) morphism satisfying F(𝑔) ∘ 𝜇𝑋 = 𝑓 , then for

every 𝜙 ∈ 𝒰𝐿(𝑋), we define 𝜙 ∈ 𝐿𝒰𝐿(𝑋) as follows: for all 𝜓 ∈ 𝒰𝐿(𝑋),

𝜙(𝜓) =
⋁
𝑥∈𝑋

(𝜙(𝑥) ∗ 𝑒(𝜓, 𝜇𝑥))

Since for all 𝑥 ∈ 𝑋, by Theorem 2.17 and Lemma 3.14,

(⊓𝑜𝑝𝜙)(𝑥) = (⊔𝜙)(𝑥) =
⋁
𝜓∈𝒰𝐿(𝑋)(𝜙(𝜓) ∗ 𝜓(𝑥))

=
⋁
𝜓∈𝒰𝐿(𝑋)(

⋁
𝑥′∈𝑋(𝜙(𝑥′) ∗ 𝑒(𝜓, 𝜇𝑥′ )) ∗ 𝜓(𝑥))

=
⋁
𝑥′∈𝑋(𝜙(𝑥′) ∗⋁

𝜓∈𝒰𝐿(𝑋)(𝑒(𝜓, 𝜇𝑥′ ) ∗ 𝜓(𝑥)))
=

⋁
𝑥′∈𝑋(𝜙(𝑥′) ∗⋁

𝜓∈𝒰𝐿(𝑋)(𝑒(𝜓, 𝜇𝑥′ ) ∗ 𝑒(𝜇𝑥, 𝜓))) (by Yoneda Lemma)

=
⋁
𝑥′∈𝑋(𝜙(𝑥′) ∗ 𝑒(𝜇𝑥, 𝜇𝑥′ ))

=
⋁
𝑥′∈𝑋(𝜙(𝑥′) ∗ 𝑒(𝑥′, 𝑥)) (by Corollary 3.10)

= 𝜙(𝑥) (since 𝜙 is an 𝐿𝐹 -upper set),
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that is, ⊓𝑜𝑝𝜙 = 𝜙, we have 𝑔(𝜙) = 𝑔(⊓𝑜𝑝𝜙) = ⊓𝑔∗→(𝜙). However, for all 𝑦 ∈ 𝑌 ,

𝑔∗→(𝜙)(𝑦) =
⋁
𝜓∈𝒰𝐿(𝑋)(𝜙(𝜓) ∗ 𝑒𝑌 (𝑔(𝜓), 𝑦))

=
⋁
𝜓∈𝒰𝐿(𝑋)(

⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒(𝜓, 𝜇𝑥)) ∗ 𝑒𝑌 (𝑔(𝜓), 𝑦))

=
⋁
𝑥∈𝑋(𝜙(𝑥) ∗⋁𝜓∈𝒰𝐿(𝑋)(𝑒

𝑜𝑝(𝜇𝑥, 𝜓) ∗ 𝑒𝑌 (𝑔(𝜓), 𝑦)))
=

⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒𝑌 (𝑔(𝜇𝑥), 𝑦)) (since 𝑔 is 𝐿𝐹 -monotone)

=
⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒𝑌 (𝑓(𝑥), 𝑦)) (since F(𝑔) ∘ 𝜇𝑋 = 𝑓)

= 𝑓∗→(𝜙)(𝑦),

that is, 𝑔∗→(𝜙) = 𝑓∗→(𝜙), so 𝑔(𝜙) = ⊓𝑔∗→(𝜙) = ⊓𝑓∗→(𝜙) = 𝑓(𝜙). Thus 𝑔 = 𝑓 .
(2) It is easily proved that U𝐿 is a functor by (3), and by (1) we know that

U𝐿 ⊣ F.

(3) By the definition of () we know that 𝜇𝑌 ∘ 𝑓(𝜙) = ⊓𝑜𝑝 ˜(𝜇𝑌 ∘ 𝑓)
∗→

(𝜙)𝑜𝑝 for all
𝜙 ∈ 𝒰𝐿(𝑋). However, for all 𝑦 ∈ 𝑌 , by Corollary 3.15

⊓𝑜𝑝 ˜(𝜇𝑌 ∘ 𝑓)
∗→

(𝜙)𝑜𝑝(𝑦)

= ⊔ ˜(𝜇𝑌 ∘ 𝑓)
→
∗ (𝜙)(𝑦)

=
⋁
𝜓∈𝒰𝐿(𝑌 )(

˜(𝜇𝑌 ∘ 𝑓)
→
∗ (𝜙)(𝜓) ∗ 𝜓(𝑦))

=
⋁
𝜓∈𝒰𝐿(𝑌 )(

⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒(𝜓, (𝜇𝑌 ∘ 𝑓)(𝑥))) ∗ 𝜓(𝑦))

=
⋁
𝜓∈𝒰𝐿(𝑌 )(

⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒(𝜓, 𝜇𝑓(𝑥))) ∗ 𝜓(𝑦))

=
⋁
𝑥∈𝑋(𝜙(𝑥) ∗⋁𝜓∈𝒰𝐿(𝑌 )(𝑒(𝜓, 𝜇𝑓(𝑥)) ∗ 𝜓(𝑦)))

=
⋁
𝑥∈𝑋(𝜙(𝑥) ∗⋁𝜓∈𝒰𝐿(𝑌 )(𝑒(𝜓, 𝜇𝑓(𝑥))) ∗ 𝑒(𝜇𝑦, 𝜓)) (by Yoneda Lemma)

=
⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒(𝜇𝑦, 𝜇𝑓(𝑥)))

=
⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒𝑌 (𝑓(𝑥), 𝑦)) (by Corollary 2.10)

= 𝑓∗→(𝜙)(𝑦).

Hence for all 𝜙 ∈ 𝐿𝑋 , 𝜇𝑌 ∘ 𝑓(𝜙) = ⊓𝑜𝑝 ˜(𝜇𝑌 ∘ 𝑓)
∗→

(𝜙)𝑜𝑝 = 𝑓∗→(𝜙), that is, 𝜇𝑌 ∘ 𝑓 =

𝑓∗→.

(4) By (1) and (3) we know that 𝑓∗→ = 𝜇𝑌 ∘ 𝑓 : (𝒰𝐿(𝑋), 𝑒𝑜𝑝) −→ (𝒰𝐿(𝑌 ), 𝑒𝑜𝑝) is
an 𝐿𝐹 -CSLat(⊓) morphism, consequently it preserves arbitrary meets of 𝐿-fuzzy

subsets, which implies that 𝑓∗→ : (𝒰𝐿(𝑋), 𝑒) −→ (𝒰𝐿(𝑌 ), 𝑒) preserves arbitrary

joins of 𝐿-fuzzy subsets. By the AFT, 𝑓∗→ has a right 1-adjoint 𝑔 : (𝒰𝐿(𝑌 ), 𝑒) −→
(𝒰𝐿(𝑋), 𝑒) (in fact, 𝑓∗→ has a left 1-adjoint 𝑔 : (𝒰𝐿(𝑌 ), 𝑒𝑜𝑝) −→ (𝒰𝐿(𝑋), 𝑒𝑜𝑝) from
Corollary 3.20), which is given by 𝑔(𝜓) = ⊔Φ𝜓, where Φ𝜓 ∈ 𝐿𝒰𝐿(𝑋) is defined by

Φ𝜓(𝜙) = 𝑒(𝑓∗→(𝜙), 𝜓) for all 𝜙 ∈ 𝒰𝐿(𝑋). Now we prove that 𝑔 is exactly the fuzzy

backward powerset operator 𝑓∗←. At first, for all 𝑥 ∈ 𝑋,

𝑔(𝜓)(𝑥) = ⊔Φ𝜓(𝑥)
=

⋁
𝜙∈𝒰𝐿(𝑋)(Φ𝜓(𝜙) ∗ 𝜙(𝑥))

=
⋁
𝜙∈𝒰𝐿(𝑋)(𝑒(𝑓

∗→(𝜙), 𝜓) ∗ 𝜙(𝑥))
=

⋁
𝜙∈𝒰𝐿(𝑋)(𝑒(𝑓

∗→(𝜙), 𝜓) ∗ 𝑒(𝜇𝑥, 𝜙)) (by Yoneda Lemma)

= 𝑒(𝑓∗→(𝜇𝑥), 𝜓) (since 𝑓∗→ is 𝐿𝐹 -monotone)
= 𝑒(𝜇𝑓(𝑥), 𝜓)
= 𝜓(𝑓(𝑥)) (by Yoneda Lemma)
=

⋁
𝑥′∈𝑋(𝜓(𝑓(𝑥′)) ∗ 𝑒(𝑥′, 𝑥)) (since 𝑓 is 𝐿𝐹 -monotone and 𝜓 is 𝐿𝐹 -upper)

= 𝑓∗←(𝜓)(𝑥).
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Thus 𝑔(𝜓) = 𝑓∗←(𝜓) for all 𝜓 ∈ 𝒰𝐿(𝑌 ), that is, 𝑔 = 𝑓∗←. □

Remark 3.18. (1) Theorem 3.17 indicates that 𝑓 can directly generate 𝑓∗→ via

an adjunction between the categories 𝐿𝐹 -Pos and 𝐿𝐹 -CSLat(⊓) and create 𝑓∗←

by the AFT for 𝐿-fuzzy posets.

(2) In [20] it is proved that if 𝑓 : 𝑋 −→ 𝑌 is an 𝐿𝐹 -monotone mapping then

𝑓←(𝜓) = 𝑓←𝐿 (𝜓) for all 𝜓 ∈ 𝒮𝐿(𝑌 ) and 𝑓←∗ (𝜓) = 𝑓←𝐿 (𝜓) for all 𝜓 ∈ ℒ𝐿(𝑌 ) and

𝑓∗←(𝜓) = 𝑓←𝐿 (𝜓) for all 𝜓 ∈ 𝒰𝐿(𝑌 ). Thus Theorems 3.11, 3.13 and 3.17 indeed

create 𝑓←𝐿 from 𝑓→, 𝑓→∗ , 𝑓
∗→ by the AFT for 𝐿-fuzzy posets.

Lemma 3.19. Let (𝑋, 𝑒𝑋) and (𝑌, 𝑒𝑌 ) be 𝐿𝐹 -posets and let 𝑓 : 𝑋 −→ 𝑌 and
𝑔 : 𝑌 −→ 𝑋 be 𝐿-fuzzy monotone mappings.

(1) If 𝑓 has a right 1-adjoint, then the right 1-adjoint is unique.
(2) If 𝑔 has a left 1-adjoint, then the left 1-adjoint is unique.

Proof. (1) Suppose 𝑔1 and 𝑔2 are all right 1-adjoints of 𝑓 . Then for all 𝑥 ∈ 𝑋 and
for all 𝑦 ∈ 𝑌 , 𝑒𝑋(𝑥, 𝑔1(𝑦)) = 𝑒𝑌 (𝑓(𝑥), 𝑦) = 𝑒𝑋(𝑥, 𝑔2(𝑦)). Taking 𝑥 = 𝑔1(𝑦) and
𝑥 = 𝑔2(𝑦), we have 𝑒𝑋(𝑔2(𝑦), 𝑔1(𝑦)) = 1 = 𝑒𝑋(𝑔1(𝑦), 𝑔2(𝑦)). Thus 𝑔1(𝑦) = 𝑔2(𝑦) for
all 𝑦 ∈ 𝑌 , that is, 𝑔1 = 𝑔2.

(2) Similar to (1). □

Corollary 3.20. Let (𝑋, 𝑒𝑋) and (𝑌, 𝑒𝑌 ) be 𝐿𝐹 -posets, 𝑓 : (𝑋, 𝑒𝑋) −→ (𝑌, 𝑒𝑌 )
an 𝐿𝐹 -join-preserving mapping and 𝑔 : (𝑌, 𝑒𝑌 ) −→ (𝑋, 𝑒𝑋) an 𝐿𝐹 -meet-preserving
mapping. Then

(1) the right 1-adjoint of 𝑓 : (𝑋, 𝑒𝑋) −→ (𝑌, 𝑒𝑌 ) is exactly the left 1-adjoint of
𝑓 : (𝑋, 𝑒𝑜𝑝𝑋 ) −→ (𝑌, 𝑒𝑜𝑝𝑌 );

(2) the left 1-adjoint of 𝑔 : (𝑌, 𝑒𝑌 ) −→ (𝑋, 𝑒𝑋) is exactly the right 1-adjoint of
𝑔 : (𝑌, 𝑒𝑜𝑝𝑌 ) −→ (𝑋, 𝑒𝑜𝑝𝑋 ).

Proof. (1) Let ℎ is the unique right 1-adjoint of 𝑓 : (𝑋, 𝑒𝑋) −→ (𝑌, 𝑒𝑌 ). Then
𝑒𝑋(𝑓(𝑥), 𝑦) = 𝑒𝑌 (𝑥, ℎ(𝑦)) for all 𝑥 ∈ 𝑋 and for all 𝑦 ∈ 𝑌 . Whence 𝑒𝑜𝑝𝑌 (ℎ(𝑦), 𝑥) =
𝑒𝑌 (𝑥, ℎ(𝑦)) = 𝑒𝑋(𝑓(𝑥), 𝑦) = 𝑒𝑜𝑝𝑋 (𝑦, 𝑓(𝑥)) for all 𝑥 ∈ 𝑋 and for all 𝑦 ∈ 𝑌 , which
implies that ℎ is the unique left 1-adjoint of 𝑓 : (𝑋, 𝑒𝑜𝑝𝑋 ) −→ (𝑌, 𝑒𝑜𝑝𝑌 ) by Lemma
3.19.

(2) can be proved similarly to (1). □

Lemma 3.21. Let (𝑋, 𝑒𝑋), (𝑌, 𝑒𝑌 ) and (𝑍, 𝑒𝑍) be 𝐿𝐹 -posets and let 𝑓1 : 𝑋 −→ 𝑌
and 𝑓2 : 𝑌 −→ 𝑍 be 𝐿𝐹 -monotone mappings. If 𝑔1 is the right 1-adjoint of 𝑓1 and
𝑔2 is the right 1-adjoint of 𝑓2, then 𝑔1 ∘ 𝑔2 is the right 1-adjoint of 𝑓2 ∘ 𝑓1.
Proof. Suppose 𝑔1 is the right 1-adjoint of 𝑓1 and 𝑔2 is the right 1-adjoint of 𝑓2.
Then for all 𝑥 ∈ 𝑋 and for all 𝑦 ∈ 𝑌 and for all 𝑧 ∈ 𝑍, 𝑒𝑌 (𝑓1(𝑥), 𝑦) = 𝑒𝑋(𝑥, 𝑔1(𝑦))
and 𝑒𝑌 (𝑓2(𝑦), 𝑧) = 𝑒𝑋(𝑦, 𝑔2(𝑧)). So for all 𝑥 ∈ 𝑋 and for all 𝑧 ∈ 𝑍, 𝑒𝑍(𝑓2 ∘
𝑓1(𝑥), 𝑧) = 𝑒𝑍(𝑓2(𝑓1(𝑥)), 𝑧) = 𝑒𝑌 (𝑓1(𝑥), 𝑔2(𝑧)) = 𝑒𝑋(𝑥, 𝑔1(𝑔2(𝑧))) = 𝑒𝑋(𝑥, 𝑔1 ∘
𝑔2(𝑧)). Thus 𝑔1 ∘ 𝑔2 is the right 1-adjoint of 𝑓2 ∘ 𝑓1. □
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Theorem 3.22. The category 𝐿𝐹 -CSLat(⊔) is isomorphic to its opposite 𝐿𝐹 -
CSLat(⊔)𝑜𝑝 and the category 𝐿𝐹 -CSLat(⊓) is isomorphic to its opposite 𝐿𝐹 -
CSLat(⊓)𝑜𝑝.
Proof. Define 𝐹 : 𝐿𝐹 -CSLat(⊔) −→ 𝐿𝐹 -CSLat(⊔)𝑜𝑝 as follows: 𝐹 sends an
𝐿𝐹 -complete lattice (𝑋, 𝑒) to its dual (𝑋, 𝑒𝑜𝑝) and an 𝐿𝐹 -join-preserving mapping
𝑓 : (𝑋, 𝑒𝑋) −→ (𝑌, 𝑒𝑌 ) to 𝑔

𝑜𝑝 : (𝑋, 𝑒𝑜𝑝𝑋 ) −→ (𝑌, 𝑒𝑜𝑝𝑌 ), where 𝑔 : (𝑌, 𝑒𝑌 ) −→ (𝑋, 𝑒𝑋)
is the right 1-adjoint of 𝑓 . And define 𝐺 : 𝐿𝐹 -CSLat(⊔)𝑜𝑝 −→ 𝐿𝐹 -CSLat(⊔) as
follows: 𝐺 sends an 𝐿𝐹 -complete lattice (𝑋, 𝑒) to its dual (𝑋, 𝑒𝑜𝑝) and a mapping
𝑓𝑜𝑝 : (𝑌, 𝑒𝑌 ) −→ (𝑋, 𝑒𝑋) (where 𝑓 : (𝑋, 𝑒𝑋) −→ (𝑌, 𝑒𝑌 ) is in 𝐿𝐹 -CSLat(⊔)) to
the right 1-adjoint 𝑔 : (𝑌, 𝑒𝑜𝑝𝑌 ) −→ (𝑋, 𝑒𝑜𝑝𝑋 ) of 𝑓 . By Lemma 3.19 and Lemma
3.21 it easily shows that 𝐹 and 𝐺 are all covariant functors. Moreover 𝐺 ∘ 𝐹 =
𝐼𝑑𝐿𝐹 -CSLat(⊔) and 𝐹 ∘ 𝐺 = 𝐼𝑑𝐿𝐹 -CSLat(⊔)𝑜𝑝 by Lemma 3.14 and Corollary 3.15
and Corollary 3.20. Thus the category 𝐿𝐹 -CSLat(⊔) is isomorphic to its opposite
𝐿𝐹 -CSLat(⊔)𝑜𝑝.

One can prove that the category 𝐿𝐹 -CSLat(⊓) is isomorphic to its opposite
𝐿𝐹 -CSLat(⊓)𝑜𝑝 dually. □

4. Generate the Powerset Operators 𝑓→𝐿 , 𝑓→, 𝑓→∗ , 𝑓
∗→, 𝑓←𝐿 , 𝑓←, 𝑓←∗ , 𝑓

∗← by
Means of Algebraic Theories

Definition 4.1. [9, 13] T = (𝑇, 𝜂, ⋄) is an algebraic theory (in clone form) in ground
category K providing we have the following data subject to the following axioms:

(D1) 𝑇 : ∣K∣ −→ ∣K∣ is an object function on K.

(D2) 𝜂 assigns a K morphism 𝜂𝐴 : 𝐴 −→ 𝑇 (𝐴) to each 𝐴 ∈ ∣K∣.
(D3) ⋄ assigns a K morphism 𝑔 ⋄ 𝑓 : 𝐴 −→ 𝑇 (𝐶) to each pair of K morphisms

𝑓 : 𝐴 −→ 𝑇 (𝐵), 𝑔 : 𝐵 −→ 𝑇 (𝐶) and is called the clone composition.

(A1) ⋄ is associative: ∀𝑓 : 𝐴 −→ 𝑇 (𝐵), 𝑔 : 𝐵 −→ 𝑇 (𝐶), ℎ : 𝐶 −→ 𝑇 (𝐷),

ℎ ⋄ (𝑔 ⋄ 𝑓) = (ℎ ⋄ 𝑔) ⋄ 𝑓.
(A2) 𝜂 furnishes (left) identities: ∀𝑓 : 𝐴 −→ 𝑇 (𝐵),

𝜂𝐵 ⋄ 𝑓 = 𝑓.

(A3) ⋄ is compatible with the composition ∘ of K morphisms: ∀𝑓 : 𝐴 −→ 𝐵, 𝑔 :
𝐵 −→ 𝑇 (𝐶), and setting 𝑓△ : 𝐴 −→ 𝑇 (𝐵) by 𝑓△ = 𝜂𝐵 ∘ 𝑓 , it is the case that

𝑔 ⋄ 𝑓△ = 𝑔 ∘ 𝑓.
Remark 4.2. (1) Axiom (A2) only specifies that 𝜂 gives left-hand identities. But
in fact:

(A2′) 𝜂 furnishes identities on both sides for ⋄ : ∀𝑓 : 𝐴 −→ 𝑇 (𝐵),

𝜂𝐵 ⋄ 𝑓 = 𝑓, 𝑓 ⋄ 𝜂𝐴 = 𝑓.

(2) EachKmorphism 𝑓 : 𝐴 −→ 𝐵 induces aKmorphism 𝑇 (𝑓) : 𝑇 (𝐴) −→ 𝑇 (𝐵),
lifting 𝑓 , by

𝑇 (𝑓) = 𝑓△ ⋄ 𝑖𝑑𝑇 (𝐴).

In fact, 𝑇 : K −→ K is functor and 𝜂 is a natural transformation from 𝐼𝑑K to 𝑇 .
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Definition 4.3. [8] A triple or monad T = (𝑇, 𝜂, 𝜇) on a category K consists of a
functor 𝑇 : K −→ K, together with two natural transformation 𝜂 : 𝐼𝑑K −→ 𝑇 and
𝜇 : 𝑇𝑇 −→ 𝑇 for which the following diagrams commute for every object 𝐴 of K:

In [9], a triple or monad T = (𝑇, 𝜂, 𝜇) is called an algebraic theory (in monoid
form).

Theorem 4.4. [9] In any category K, the passage from algebraic theories T =
(𝑇, 𝜂, ⋄) to monads T = (𝑇, 𝜂, 𝜇) defined as follows is bijective:
∙ for an algebraic theory T = (𝑇, 𝜂, ⋄), let 𝜇⋄ be defined by

𝜇⋄𝐴 = 𝑖𝑑𝑇 (𝐴) ⋄ 𝑖𝑑𝑇𝑇 (𝐴) : 𝑇𝑇 (𝐴) −→ 𝑇 (𝐴), ∀𝐴 ∈ ∣K∣,
then T = (𝑇, 𝜂, 𝜇⋄) is a monad.

In fact, the inverse passage can be achieved as follows:
∙ for a monad T = (𝑇, 𝜂, 𝜇), let ⋄𝜇 be defined by

𝑔 ⋄𝜇 𝑓 = 𝜇𝐶 ∘ 𝑇 (𝑔) ∘ 𝑓 : 𝐴 −→ 𝑇 (𝐶), ∀𝑓 : 𝐴 −→ 𝑇 (𝐵),∀𝑔 : 𝐵 −→ 𝑇 (𝐶),

then T = (𝑇, 𝜂, ⋄𝜇) is an algebraic theory.

Theorem 4.5. [13] Let (𝐿,≤,⊗) ∈ SQuant and T = (𝑇, 𝜂, ⋄) be as follows:

𝐷1. 𝑇 : ∣Set∣ −→ ∣Set∣ by 𝑇 (𝑋) = 𝐿𝑋 ;
𝐷2. ∀𝑋 ∈ ∣Set∣, the component 𝜂𝑋 : 𝑋 −→ 𝐿𝑋 of 𝜂 is defined by 𝜂𝑋(𝑥) = 𝜒{𝑥};
𝐷3. ∀𝑓 : 𝑋 −→ 𝐿𝑌 , ∀𝑔 : 𝑌 −→ 𝐿𝑍 in Set, define 𝑔 ⋄ 𝑓 : 𝑋 −→ 𝐿𝑍 by

[(𝑔 ⋄ 𝑓)(𝑥)](𝑧) =
⋁
𝑦∈𝑌

[(𝑓(𝑥))(𝑦)⊗ (𝑔(𝑦))(𝑧)].

Then T is an algebraic theory in Set if and only if (𝐿,≤,⊗) is an st-quantale.

Theorem 4.6. [8] Every adjunction ⟨𝐹,𝐺, 𝜂, 𝜀⟩ gives rise to a monad T = (𝑇, 𝜂, 𝜇)
by 𝑇 = 𝐺𝐹, 𝜂 = 𝜂, 𝜇 = 𝐺𝜀𝐹 . Therefore, every adjunction gives rise to an algebraic
theory by Theorem 4.4.

In the following 𝐿 always denotes a complete residuated lattice, which is a com-
mutative st-quantale with ⊗ = ∗.
Corollary 4.7. The algebraic theory T𝑧 = ⟨𝑇 𝑧, 𝜂𝑧, ⋄𝑧⟩ determined by the ad-
junction ⟨P𝐿,V, 𝜂

𝑧, 𝜀⟩ between Set and 𝐿𝐹 -CSLat(⊔) in Theorem 3.7, where
𝜂𝑧𝑋 = 𝜒𝑋 : 𝑋 −→ 𝐿𝑋 for every 𝑋 ∈ ∣Set∣ and 𝜀𝑧 : (𝐿𝑋 , 𝑒) → (𝑋, 𝑒), 𝜙 7→ ⊔𝜙 for
every (𝑋, 𝑒) ∈ ∣𝐿𝐹 -CSLat(⊔)∣, is identical to the algebraic theory in Theorem 4.5.
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Proof. Let T𝑧 = ⟨𝑇 𝑧, 𝜂𝑧, 𝜇𝑧⟩ denote the monad generated by the the adjunction
⟨P𝐿,V, 𝜂

𝑧, 𝜀𝑧⟩ between Set and 𝐿𝐹 -CSLat(⊔) in Theorem 3.7. From the proof of
this theorem we know that

∙ ∀𝑋 ∈ ∣Set∣ and ∀𝑓 : 𝑋 −→ 𝑌 in Set,

𝑇 𝑧(𝑋) = VP𝐿(𝑋) = V(𝐿𝑋 , 𝑒) = 𝐿𝑋 , 𝑇 𝑧(𝑓) = VP𝐿(𝑓) = V(𝑓→𝐿 ) = 𝑓→𝐿 ;

∙ ∀𝑋 ∈ ∣Set∣, the component 𝜂𝑧𝑋 of the natural transformation 𝜂𝑧 is 𝜂𝑧𝑋 = 𝜒𝑋 :
𝑋 −→ 𝐿𝑋 . It is exactly the 𝜂𝑋 defined in Theorem 4.5;

∙ ∀𝑋 ∈ ∣Set∣, the component 𝜇𝑧𝑋 = (V𝜀𝑧P𝐿)𝑋 : 𝐿𝐿
𝑋 −→ 𝐿𝑋 of the natural

transformation 𝜇𝑧 is defined by 𝜇𝑧𝑋(Φ) = ⊔Φ for all Φ ∈ 𝐿𝐿𝑋

.

Furthermore, by Theorem 4.4 the monad ⟨𝑇 𝑧, 𝜂𝑧, 𝜇𝑧⟩ in Set gives rise to the
algebraic theory T𝑧 = (𝑇 𝑧, 𝜂𝑧, ⋄𝑧) in Set by defining ⋄𝑧 as follows:

𝑔 ⋄𝑧 𝑓 = 𝜇𝑧 ∘ 𝑇 𝑧(𝑔) ∘ 𝑓, ∀𝑓 : 𝑋 −→ 𝐿𝑌 ,∀𝑔 : 𝑌 −→ 𝐿𝑍 .

Meanwhile, for 𝑥 ∈ 𝑋 and 𝑧 ∈ 𝑍,
[(𝑔 ⋄𝑧 𝑓)(𝑥)](𝑧)

= [(𝜇𝑧 ∘ 𝑇 𝑧(𝑔) ∘ 𝑓)(𝑥)](𝑧)
= [(𝜇𝑧 ∘ 𝑇 𝑧(𝑔))(𝑓(𝑥))](𝑧)
= [𝜇𝑧(𝑔→𝐿 (𝑓(𝑥)))](𝑧)
= [⊔𝑔→𝐿 (𝑓(𝑥))](𝑧)
=

⋁
𝜓∈𝐿𝑍 (𝑔→𝐿 (𝑓(𝑥))(𝜓) ∗ 𝜓(𝑧)) (by Theorem 2.15)

=
⋁
𝜓∈𝐿𝑍 ([

⋁
𝑦∈𝑔←({𝜓}) 𝑓(𝑥)(𝑦)] ∗ 𝜓(𝑧))

=
⋁
𝜓∈𝑔(𝑌 )([

⋁
𝑦∈𝑔←({𝜓}) 𝑓(𝑥)(𝑦)] ∗ 𝜓(𝑧))

=
⋁
𝑦′∈𝑌 ([

⋁
𝑦∈𝑔←({𝑔(𝑦′)}) 𝑓(𝑥)(𝑦)] ∗ 𝑔(𝑦′)(𝑧))

=
⋁
𝑦′∈𝑌

⋁
𝑦∈𝑔←({𝑔(𝑦′)})(𝑓(𝑥)(𝑦) ∗ 𝑔(𝑦)(𝑧))

=
⋁
𝑦∈𝑌 (𝑓(𝑥)(𝑦) ∗ 𝑔(𝑦)(𝑧))

= [(𝑔 ⋄ 𝑓)(𝑥)](𝑧) (in Theorem 4.5).

□
Corollary 4.8. The algebraic theory T𝑙 = ⟨𝑇 𝑙, 𝜂𝑙, ⋄𝑙⟩ determined by the adjunction
⟨L𝐿,F, 𝜂𝑙, 𝜀𝑙⟩ between 𝐿𝐹 -Pos and 𝐿𝐹 -CSLat(⊔) in Theorem 3.11, where 𝜂𝑙𝑋 =
𝜄𝑋 : (𝑋, 𝑒) −→ (ℒ𝐿(𝑋), 𝑒) for every (𝑋, 𝑒) ∈ ∣𝐿𝐹 -Pos∣ and 𝜀𝑙 : (ℒ𝐿(𝑋), 𝑒) →
(𝑋, 𝑒), 𝜙 7→ ⊔𝜙 for every (𝑋, 𝑒) ∈ ∣𝐿𝐹 -CSLat(⊔)∣, is as follows:
𝐿1. 𝑇 𝑙 : ∣𝐿𝐹 -Pos∣ −→ ∣𝐿𝐹 -Pos∣ by 𝑇 ((𝑋, 𝑒)) = (ℒ𝐿(𝑋), 𝑒);
𝐿2. ∀(𝑋, 𝑒) ∈ ∣𝐿𝐹 -Pos∣, the component 𝜂𝑙𝑋 of the natural transformation 𝜂𝑙 is

𝜂𝑙𝑋 = 𝜄𝑋 : (𝑋, 𝑒) −→ (ℒ𝐿(𝑋), 𝑒);
𝐿3. ∀𝑓 : (𝑋, 𝑒𝑋) −→ (ℒ𝐿(𝑌 ), 𝑒𝑌 ), ∀𝑔 : (𝑌, 𝑒𝑌 ) −→ (ℒ𝐿(𝑍), 𝑒𝑍) in 𝐿𝐹 -Pos,

define 𝑔 ⋄𝑙 𝑓 : (𝑋, 𝑒𝑋) −→ (ℒ𝐿(𝑍), 𝑒𝑍) by
[(𝑔 ⋄𝑙 𝑓)(𝑥)](𝑧) =

⋁
𝑦∈𝑌

[(𝑓(𝑥))(𝑦) ∗ (𝑔(𝑦))(𝑧)].

Proof. First, the monad ⟨𝑇 𝑙, 𝜂𝑙, 𝜇𝑙⟩ generated by the adjunction ⟨L𝐿,F, 𝜂𝑙, 𝜀𝑙⟩ be-
tween 𝐿𝐹 -Pos and 𝐿𝐹 -CSLat(⊔) in Theorem 3.11 is as follows:



Algebraic Generations of Some Fuzzy Powerset Operators 53

∙ ∀(𝑋, 𝑒) ∈ ∣𝐿𝐹 -Pos∣ and ∀𝑓 : (𝑋, 𝑒𝑋) −→ (𝑌, 𝑒𝑌 ) in 𝐿𝐹 -Pos,

𝑇 𝑙(𝑋) = FL𝐿((𝑋, 𝑒)) = F((ℒ𝐿(𝑋), 𝑒)) = (ℒ𝐿(𝑋), 𝑒), 𝑇 𝑙(𝑓) = FL𝐿(𝑓) = F(𝑓→∗ ) = 𝑓→∗ ;

∙ ∀(𝑋, 𝑒) ∈ ∣𝐿𝐹 -Pos∣, the component 𝜂𝑙𝑋 of the natural transformation 𝜂𝑙 is
𝜂𝑙𝑋 = 𝜄𝑋 : (𝑋, 𝑒) −→ (ℒ𝐿(𝑋), 𝑒);

∙ ∀(𝑋, 𝑒) ∈ ∣𝐿𝐹 -Pos∣, the component 𝜇𝑙𝑋 = (F𝜀𝑙L𝐿)𝑋 : ℒ𝐿(ℒ𝐿(𝑋)) −→ ℒ𝐿(𝑋)
of the natural transformation 𝜇𝑙 is defined by 𝜇𝑙𝑋(Φ) = ⊔Φ for all Φ ∈ ℒ𝐿(ℒ𝐿(𝑋)).

Second, by Theorem 4.4 the monad ⟨𝑇 𝑙, 𝜂𝑙, 𝜇𝑙⟩ in 𝐿𝐹 -Pos gives rise to the alge-
braic theory T𝑙 = (𝑇 𝑙, 𝜂𝑙, ⋄𝑙) in 𝐿𝐹 -Pos by defining ⋄𝑙 as follows:
𝑔 ⋄𝑙 𝑓 = 𝜇𝑙 ∘ 𝑇 𝑙(𝑔) ∘ 𝑓, ∀𝑓 : (𝑋, 𝑒𝑋) −→ (ℒ𝐿(𝑌 ), 𝑒𝑌 ),∀𝑔 : (𝑌, 𝑒𝑌 ) −→ (ℒ𝐿(𝑍), 𝑒𝑍).
Meanwhile, for 𝑥 ∈ 𝑋 and 𝑧 ∈ 𝑍,

[(𝑔 ⋄𝑙 𝑓)(𝑥)](𝑧)
= [(𝜇𝑙 ∘ 𝑇 𝑙(𝑔) ∘ 𝑓)(𝑥)](𝑧)
= [(𝜇𝑙 ∘ 𝑇 𝑙(𝑔))(𝑓(𝑥))](𝑧)
= [𝜇𝑙(𝑔→∗ (𝑓(𝑥)))](𝑧)
= [⊔𝑔→∗ (𝑓(𝑥))](𝑧)
=

⋁
𝜓∈ℒ𝐿(𝑍)(𝑔

→
∗ (𝑓(𝑥))(𝜓) ∗ 𝜓(𝑧)) (by Theorem 2.17)

=
⋁
𝜓∈ℒ𝐿(𝑍)([

⋁
𝑦∈𝑌 (𝑓(𝑥)(𝑦) ∗ 𝑒(𝜓, 𝑔(𝑦)))] ∗ 𝜓(𝑧))

=
⋁
𝑦∈𝑌 (𝑓(𝑥)(𝑦) ∗

⋁
𝜓∈ℒ𝐿(𝑍)(𝑒(𝜓, 𝑔(𝑦)) ∗ 𝑒(𝜄𝑧, 𝜓))) (by Yoneda Lemma)

=
⋁
𝑦∈𝑌 (𝑓(𝑥)(𝑦) ∗ 𝑒(𝜄𝑧, 𝑔(𝑦)))

=
⋁
𝑦∈𝑌 (𝑓(𝑥)(𝑦) ∗ 𝑔(𝑦)(𝑧)). (by Yoneda Lemma)

□
Similar to the proof of Corollary 4.8 we can get the following corollary.

Corollary 4.9. The algebraic theory T𝑠 = ⟨𝑇 𝑠, 𝜂𝑠, ⋄𝑠⟩ determined by the adjunc-
tion ⟨S𝐿,F, 𝜂𝑠, 𝜀𝑠⟩ between 𝐿𝐹 -Pos and 𝐿𝐹 -CSLat(⊔) in Theorem 3.13, where
𝜂𝑠𝑋 = 𝑠𝑋 : (𝑋, 𝑒) −→ (𝒮𝐿(𝑋), 𝑒) for every (𝑋, 𝑒) ∈ ∣𝐿𝐹 -Pos∣ and 𝜀𝑠 : (𝒮𝐿(𝑋), 𝑒)→
(𝑋, 𝑒), 𝜙 7→ ⊔𝜙 for every (𝑋, 𝑒) ∈ ∣𝐿𝐹 -CSLat(⊔)∣, is as follows:
𝑆1. 𝑇 𝑠 : ∣𝐿𝐹 -Pos∣ −→ ∣𝐿𝐹 -Pos∣ by 𝑇 ((𝑋, 𝑒)) = (𝒮𝐿(𝑋), 𝑒);
𝑆2. ∀(𝑋, 𝑒) ∈ ∣𝐿𝐹 -Pos∣, the component 𝜂𝑠𝑋 of the natural transformation 𝜂𝑠 is

𝜂𝑠𝑋 = 𝑠𝑋 : (𝑋, 𝑒) −→ (𝒮𝐿(𝑋), 𝑒);
𝑆3. ∀𝑓 : (𝑋, 𝑒𝑋) −→ (𝒮𝐿(𝑌 ), 𝑒𝑌 ), ∀𝑔 : (𝑌, 𝑒𝑌 ) −→ (𝒮𝐿(𝑍), 𝑒𝑍) in 𝐿𝐹 -Pos,

define 𝑔 ⋄𝑙 𝑓 : (𝑋, 𝑒𝑋) −→ (𝒮𝐿(𝑍), 𝑒𝑍) by
[(𝑔 ⋄𝑠 𝑓)(𝑥)](𝑧) =

⋁
𝑦∈𝑌

[(𝑓(𝑥))(𝑦) ∗ (𝑔(𝑦))(𝑧)].

Corollary 4.10. The algebraic theory T𝑢 = ⟨𝑇𝑢, 𝜂𝑢, ⋄𝑢⟩ determined by the ad-
junction ⟨U𝐿,F, 𝜂

𝑢, 𝜀𝑢⟩ between 𝐿𝐹 -Pos and 𝐿𝐹 -CSLat(⊓) in Theorem 3.17,
where 𝜂𝑢𝑋 = 𝜇𝑋 : (𝑋, 𝑒) −→ (𝒰𝐿(𝑋), 𝑒𝑜𝑝) for every (𝑋, 𝑒) ∈ ∣𝐿𝐹 -Pos∣ and
𝜀𝑢 : (𝒰𝐿(𝑋), 𝑒𝑜𝑝) → (𝑋, 𝑒), 𝜙 7→ ⊓𝑜𝑝𝜙 for every (𝑋, 𝑒) ∈ ∣𝐿𝐹 -CSLat(⊓)∣, is as
follows:

𝑈1. 𝑇𝑢 : ∣𝐿𝐹 -Pos∣ −→ ∣𝐿𝐹 -Pos∣ by 𝑇 ((𝑋, 𝑒)) = (𝒰𝐿(𝑋), 𝑒𝑜𝑝);
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𝑈2. ∀(𝑋, 𝑒) ∈ ∣𝐿𝐹 -Pos∣, the component 𝜂𝑢𝑋 of the natural transformation 𝜂𝑢 is
𝜂𝑢𝑋 = 𝜇𝑋 : (𝑋, 𝑒) −→ (𝒰𝐿(𝑋), 𝑒𝑜𝑝);

𝑈3. ∀𝑓 : (𝑋, 𝑒𝑋) −→ (𝒰𝐿(𝑌 ), 𝑒𝑜𝑝𝑌 ), ∀𝑔 : (𝑌, 𝑒𝑌 ) −→ (𝒰𝐿(𝑍), 𝑒𝑜𝑝𝑍 ) in 𝐿𝐹 -Pos,
define 𝑔 ⋄𝑢 𝑓 : (𝑋, 𝑒𝑋) −→ (𝒰𝐿(𝑍), 𝑒𝑜𝑝𝑍 ) by

[(𝑔 ⋄𝑢 𝑓)(𝑥)](𝑧) =
⋁
𝑦∈𝑌

[(𝑓(𝑥))(𝑦) ∗ (𝑔(𝑦))(𝑧)].

Proof. First, the monad ⟨𝑇𝑢, 𝜂𝑢, 𝜇𝑢⟩ generated by the adjunction ⟨U𝐿,F, 𝜂
𝑢, 𝜀𝑢⟩

between 𝐿𝐹 -Pos and 𝐿𝐹 -CSLat(⊔) in Theorem 3.17 is as follows:

∙ ∀(𝑋, 𝑒) ∈ ∣𝐿𝐹 -Pos∣ and ∀𝑓 : (𝑋, 𝑒𝑋) −→ (𝑌, 𝑒𝑌 ) in 𝐿𝐹 -Pos,

𝑇 𝑙(𝑋) = FL𝐿((𝑋, 𝑒)) = F((𝒰𝐿(𝑋), 𝑒𝑜𝑝)) = (𝒰𝐿(𝑋), 𝑒𝑜𝑝), 𝑇 𝑙(𝑓) = FU𝐿(𝑓) = F(𝑓∗→) = 𝑓∗→;

∙ ∀(𝑋, 𝑒) ∈ ∣𝐿𝐹 -Pos∣, the component 𝜂𝑢𝑋 of the natural transformation 𝜂𝑙 is
𝜂𝑢𝑋 = 𝜇𝑋 : (𝑋, 𝑒) −→ (𝒰𝐿(𝑋), 𝑒𝑜𝑝);

∙ ∀(𝑋, 𝑒) ∈ ∣𝐿𝐹 -Pos∣, the component 𝜇𝑙𝑋 = (F𝜀𝑢U𝐿)𝑋 : 𝒰𝐿(𝒰𝐿(𝑋)) −→
𝒰𝐿(𝑋) of the natural transformation 𝜇𝑢 is defined by 𝜇𝑢𝑋(Φ) = ⊓𝑜𝑝Φ = ⊔Φ for all
Φ ∈ 𝒰𝐿(𝒰𝐿(𝑋)).

Second, by Theorem 4.4 the monad ⟨𝑇𝑢, 𝜂𝑢, 𝜇𝑢⟩ in 𝐿𝐹 -Pos gives rise to the
algebraic theory T𝑢 = (𝑇𝑢, 𝜂𝑢, ⋄𝑢) in 𝐿𝐹 -Pos by defining ⋄𝑙 as follows:
𝑔⋄𝑢𝑓 = 𝜇𝑢∘𝑇𝑢(𝑔)∘𝑓, ∀𝑓 : (𝑋, 𝑒𝑋) −→ (𝒰𝐿(𝑌 ), 𝑒𝑜𝑝𝑌 ),∀𝑔 : (𝑌, 𝑒𝑌 ) −→ (ℒ𝐿(𝑍), 𝑒𝑜𝑝𝑍 ).

Meanwhile, for 𝑥 ∈ 𝑋 and 𝑧 ∈ 𝑍,
[(𝑔 ⋄𝑢 𝑓)(𝑥)](𝑧)

= [(𝜇𝑢 ∘ 𝑇𝑢(𝑔) ∘ 𝑓)(𝑥)](𝑧)
= [(𝜇𝑢 ∘ 𝑇𝑢(𝑔))(𝑓(𝑥))](𝑧)
= [𝜇𝑢(𝑔∗→(𝑓(𝑥)))](𝑧)
= [⊔𝑔∗→(𝑓(𝑥))](𝑧)
=

⋁
𝜓∈𝒰𝐿(𝑍)(𝑔

∗→(𝑓(𝑥))(𝜓) ∗ 𝜓(𝑧)) (by Theorem 2.17)

=
⋁
𝜓∈𝒰𝐿(𝑍)([

⋁
𝑦∈𝑌 (𝑓(𝑥)(𝑦) ∗ 𝑒(𝑔(𝑦), 𝜓))] ∗ 𝜓(𝑧))

=
⋁
𝑦∈𝑌 (𝑓(𝑥)(𝑦) ∗

⋁
𝜓∈𝒰𝐿(𝑍)(𝑒(𝜓, 𝑔(𝑦)) ∗ 𝑒(𝜇𝑧, 𝜓))) (by Yoneda Lemma)

=
⋁
𝑦∈𝑌 (𝑓(𝑥)(𝑦) ∗ 𝑒(𝜇𝑧, 𝑔(𝑦)))

=
⋁
𝑦∈𝑌 (𝑓(𝑥)(𝑦) ∗ 𝑔(𝑦)(𝑧)). (by Yoneda Lemma)

□
In the following, similar to [13], we give the axioms for fuzzy powerset theories

in our settings. Then we will prove the fuzzy powerset operators defined above all
can be generated by algebraic theories.

Definition 4.11. Let a categoryK be given, called a ground category. We consider
the following conditions:

(P1) Powerset generator: 𝑃 : ∣K∣ −→ ∣𝐿𝐹 -CSLat(⊔)∣ is an object-mapping.

(P2) Forward/image powerset operator: assuming (P1), there is an operator
→ such that ∀𝑓 : 𝐴 −→ 𝐵 in K, ∃𝑓→P : 𝑃 (𝐴) −→ 𝑃 (𝐵) in 𝐿𝐹 -Pos.
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(P3) Backward/image powerset operator: assuming (P1), there is an oper-
ator ← such that ∀𝑓 : 𝐴 −→ 𝐵 in K, ∃𝑓←P : 𝑃 (𝐵) −→ 𝑃 (𝐴) in 𝐿𝐹 -Pos.

(Ad) Adjunction: assuming (P1-P3), ∀𝑓 : 𝐴 −→ 𝐵 in K, 𝑓→P ⊣1 𝑓←P .
(C) Concreteness: assuming (P1, P2), ∃ a concrete functor 𝑉 : K −→ Set

and an insertion map 𝜂 which determines for each 𝐴 ∈ ∣K∣ a Set morphism 𝜂𝐴 :
𝑉 (𝐴) −→ 𝑃 (𝐴).

(N) Naturality: assuming (P1, P2, C) and 𝑓 : 𝐴 −→ 𝐵 in K, then in Set
𝑓→P ∘ 𝜂𝐴 = 𝜂𝐵 ∘ 𝑉 (𝑓).

(T) Topological criterion: assuming (P1, P3), this criterion comprises the
following conditions:

(T1) ∀𝑓 : 𝐴 −→ 𝐵 in K, 𝑓←P : 𝑃 (𝐵) −→ 𝑃 (𝐴) is in 𝐿𝐹 -CSLat(⊔);
(T2) ∀𝑓 : 𝐴 −→ 𝐵, 𝑔 : 𝐵 −→ 𝐶 in K, (𝑔 ∘ 𝑓)←P = 𝑓←P ∘ 𝑔←P ;
(T3) ∀𝐴 in K, (𝑖𝑑𝐴)

←
P = 𝑖𝑑𝑃 (𝐴).

Definition 4.12. Let a category K be given, called a ground category.

(1) P = (𝑃,→) is a forward 𝐿𝐹 -powerset theory in K if (P1, P2) are satisfied.

(2) P = (𝑃,←) is a backward 𝐿𝐹 -powerset theory in K if (P1, P3) are satisfied.

(3) P = (𝑃,→,←) is a balanced 𝐿𝐹 -powerset theory in K if (P1-P3) are satisfied.

(4) P = (𝑃,→,←) is an adjunctive 𝐿𝐹 -powerset theory in K if (P1-P3, Ad) are
satisfied.

(5) P = (𝑃,→, 𝑉, 𝜂) is a concrete 𝐿𝐹 -powerset theory in K if (P1, P2, C) are
satisfied; and P is Natural if additionally (N) is satisfied.

(6) P = (𝑃,←) is a topological 𝐿𝐹 -powerset theory in K if (P1, P3, T) are
satisfied.

From the above definitions and by Theorem 3.3 (AFT) we are not difficult to
obtain the following proposition.

Proposition 4.13. Let a category K be a ground category, and 𝑃 satisfies (𝑃1).
The following hold:

(1) If (𝑃2) is satisfied, then (∀𝑓 : 𝐴 −→ 𝐵 in K, 𝑓→P : 𝑃 (𝐴) −→ 𝑃 (𝐵) in 𝐿𝐹 -
CSLat(⊔)) if and only if (∀𝑓 : 𝐴 −→ 𝐵 in K, 𝑓←P : 𝑃 (𝐵) −→ 𝑃 (𝐴) is uniquely
determined such that P = (𝑃,→,←) is an adjunctive 𝐿𝐹 -powerset theory).

(2) If (𝑃3) is satisfied, then (∀𝑓 : 𝐴 −→ 𝐵 in K, 𝑓←P : 𝑃 (𝐵) −→ 𝑃 (𝐴) in 𝐿𝐹 -
CSLat(⊓)) if and only if (∀𝑓 : 𝐴 −→ 𝐵 in K, 𝑓→P : 𝑃 (𝐴) −→ 𝑃 (𝐵) is uniquely
determined such that P = (𝑃,→,←) is an adjunctive 𝐿𝐹 -powerset theory).

(3) There is an operator → such that P = (𝑃,←) is a topological 𝐿-powerset
theory if and only if the object mapping 𝑃 extends to a contravariant functor 𝑃← :
K −→ 𝐿𝐹 -CSLat(⊔).

Example 4.14. (Zadeh Fuzzy Powerset Theories in the Category Set) Let
K = Set. Put 𝑃 𝑧 : ∣K∣ −→ ∣𝐿𝐹 -CSLat(⊔)∣ by 𝑃 𝑧(𝑋) = (𝐿𝑋 , 𝑒),
∙ for 𝑓 : 𝑋 −→ 𝑌 put 𝑓→P = 𝑓→𝐿 : (𝐿𝑋 , 𝑒𝑋) −→ (𝐿𝑌 , 𝑒𝑌 ), 𝑓

←
P = 𝑓←𝐿 :

(𝐿𝑌 , 𝑒𝑌 ) −→ (𝐿𝑋 , 𝑒𝑋);
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∙ put 𝑉 : K −→ Set by 𝑉 = 𝐼𝑑Set;
∙ for 𝑋 ∈ ∣Set∣ define 𝜂𝑧𝑋 : 𝑉 (𝑋) −→ 𝑃 (𝑋) by 𝜂𝑧𝑋 = 𝜒𝑋 .

Then by the definitions and Theorem 3.7 we easily know that P𝑧 = (𝑃 𝑧 , ()→𝐿 , ()
←
𝐿

, 𝑉, 𝜂𝑧) is an adjunctive, concrete, natural topological 𝐿𝐹 -powerset theory in Set.

Example 4.15. (Some Fuzzy Powerset Theories in 𝐿𝐹 -Pos) Let K = 𝐿𝐹 -Pos.

(1) Put 𝑃 𝑙 : ∣K∣ −→ ∣𝐿𝐹 -CSLat(⊔)∣ by 𝑃 𝑙(𝑋) = (ℒ𝐿(𝑋), 𝑒),

∙ for 𝑓 : (𝑋, 𝑒𝑋) −→ (𝑌, 𝑒𝑌 ) inK, put 𝑓→P𝑙 = 𝑓→∗ : (ℒ𝐿(𝑋), 𝑒𝑋) −→ (ℒ𝐿(𝑌 ), 𝑒𝑌 ),

𝑓←P𝑙 = 𝑓←∗ : (ℒ𝐿(𝑌 ), 𝑒𝑌 ) −→ (ℒ𝐿(𝑋), 𝑒𝑋);
∙ put 𝑉 : K −→ Set by 𝑉 ((𝑋, 𝑒)) = 𝑋,𝑉 (𝑓) = 𝑓 ;
∙ for 𝑋 ∈ ∣Set∣ define 𝜂𝑋 : 𝑉 (𝑋) −→ 𝑃 𝑙(𝑋) by 𝜂𝑙𝑋 = 𝜄𝑋 .

Then by the definitions and the proof of Theorem 3.11 we know that P𝑙 = (𝑃 𝑙, (̃)
→
∗ , (̃)

←
∗

, 𝑉, 𝜂𝑙) is an adjunctive, concrete, natural topological 𝐿𝐹 -powerset theory in 𝐿𝐹 -
Pos.

(2) Put 𝑃 𝑠 : ∣K∣ −→ ∣𝐿𝐹 -CSLat(⊔)∣ by 𝑃 𝑠(𝑋) = (𝒮𝐿(𝑋), 𝑒),

∙ for 𝑓 : (𝑋, 𝑒𝑋) −→ (𝑌, 𝑒𝑌 ) inK, put 𝑓→P𝑠 = 𝑓→∗ : (𝒮𝐿(𝑋), 𝑒𝑋) −→ (𝒮𝐿(𝑌 ), 𝑒𝑌 ),

𝑓←P𝑠 = 𝑓←∗ : (𝒮𝐿(𝑌 ), 𝑒𝑌 ) −→ (𝒮𝐿(𝑋), 𝑒𝑋);
∙ put 𝑉 : K −→ Set by 𝑉 ((𝑋, 𝑒)) = 𝑋,𝑉 (𝑓) = 𝑓 ;
∙ for 𝑋 ∈ ∣Set∣ define 𝜂𝑋 : 𝑉 (𝑋) −→ 𝑃 𝑠(𝑋) by 𝜂𝑠𝑋 = 𝑠𝑋 .

Then by the definitions and Theorem 3.13 we know that P𝑠 = (𝑃 𝑠, (̃)
→
, (̃)
←
, 𝑉, 𝜂𝑠)

is an adjunctive, concrete, natural topological 𝐿𝐹 -powerset theory in 𝐿𝐹 -Pos.

(3) Put 𝑃𝑢 : ∣K∣ −→ ∣𝐿𝐹 -CSLat(⊔)∣ by 𝑃𝑢(𝑋) = (𝒰𝐿(𝑋), 𝑒),

∙ for 𝑓 : (𝑋, 𝑒𝑋) −→ (𝑌, 𝑒𝑌 ) in K, put 𝑓→P𝑢 = 𝑓∗→ : (𝒰𝐿(𝑋), 𝑒𝑋) −→
(𝒰𝐿(𝑌 ), 𝑒𝑌 ), 𝑓

←
P𝑢 = 𝑓∗← : (𝒰𝐿(𝑌 ), 𝑒𝑌 ) −→ (𝒰𝐿(𝑋), 𝑒𝑋);

∙ put 𝑉 : K −→ Set by 𝑉 ((𝑋, 𝑒)) = 𝑋,𝑉 (𝑓) = 𝑓 ;
∙ for 𝑋 ∈ ∣Set∣ define 𝜂𝑋 : 𝑉 (𝑋) −→ 𝑃𝑢(𝑋) by 𝜂𝑢𝑋 = 𝜇𝑋 .

Then by the definitions and the proof of Theorem 3.17 we know that P𝑢 =

(𝑃𝑢, (̃)
∗→
, (̃)
∗←
, 𝑉, 𝜂𝑢) is an adjunctive, concrete, natural topological 𝐿𝐹 -powerset

theory in 𝐿𝐹 -Pos.

Definition 4.16. [13] An algebraic theory T = (𝑇, 𝜂, ⋄) in a category K generates
a concrete 𝐿𝐹 -powerset theory P = (𝑃,→, 𝑉, 𝜂) if the following are satisfied:

(G1) Compatibility of objective functions: ∀𝐴 ∈ ∣K∣, 𝑉 (𝑇 (𝐴)) = 𝑃 (𝐴).

(G2) Compatibility of insertion morphisms: ∀𝐴 ∈ ∣K∣, 𝑉 (𝜂𝐴) = 𝜂𝐴.

(G3) Generation of forward/image powerset operator: ∀𝐴 ∈ ∣K∣, the
operator 𝑓→T : 𝑉 (𝑇 (𝐴)) −→ 𝑉 (𝑇 (𝐵)) defined by setting 𝑓→T = 𝑉 (𝑇 (𝑓)) is precisely
the image operator 𝑓→P : 𝑃 (𝐴) −→ 𝑃 (𝐵) of P, where 𝑇 (𝑓) : 𝑇 (𝐴) −→ 𝑇 (𝐵) is
arrow induced by T.

If P = (𝑃,→,←, 𝑉, 𝜂) is a balanced, concrete 𝐿𝐹 -powerset theory, then P is
generated from an algebraic theory T if T generates (𝑃,→, 𝑉, 𝜂) and the following
additional condition holds:



Algebraic Generations of Some Fuzzy Powerset Operators 57

(G4) Generation of forward/image powerset operator: 𝑓←P is always uniquely
determined from 𝑓→P so that (P3) and (Ad) are satisfied.

Theorem 4.17. The algebraic theory T𝑧 in Corollary 4.7 generates the natural
topological 𝐿𝐹 -powerset theory P𝑧 in Set of Example 4.14.

Proof. From the definitions we easily get (G1) and (G2), (G4) is obtained by The-
orem 3.7. For (G3) let 𝑓 : 𝑋 −→ 𝑌 , by the definition of 𝑓→T𝑧 , we have for any
𝜙 ∈ 𝐿𝑋 and 𝑦 ∈ 𝑌 ,

𝑓T𝑧 (𝜙)(𝑦) = (𝑇 𝑧(𝑓))(𝜙)(𝑦)
= [(𝑓△ ⋄𝑧 𝑖𝑑𝑇 (𝑋))(𝜙)](𝑦)
=

⋁
𝑥∈𝑋(𝑖𝑑𝑇 (𝑋)(𝜙)(𝑥) ∗ (𝜂𝑧 ∘ 𝑓)(𝑥)(𝑦))

=
⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝜒{𝑓(𝑥)}(𝑦))

= 𝑓→𝐿 (𝜙)(𝑦) = 𝑓→P𝑧 (𝜙)(𝑦)

□

Theorem 4.18. The algebraic theories T𝑙,T𝑠,T𝑢 in Corollaries 4.8, 4.9, 4.10 gen-
erate the natural topological 𝐿𝐹 -powerset theories P𝑙,P𝑠,P𝑢 in 𝐿𝐹 -Pos of Example
4.15 (1), (2), (3), respectively.

Proof. We only prove the third case, and other cases are similar.
(G1), (G2) and (G4) can be obtained by the definitions and Theorem 3.17. For

(G3) let 𝑓 : (𝑋, 𝑒𝑋) −→ (𝑌, 𝑒𝑌 ) in 𝐿𝐹 -Pos, by the definition of 𝑓→T𝑢 , we have for
any 𝜙 ∈ 𝒰𝐿(𝑋) and 𝑦 ∈ 𝑌 ,

𝑓T𝑢(𝜙)(𝑦) = (𝑇𝑢(𝑓))(𝜙)(𝑦)
= [(𝑓△ ⋄𝑢 𝑖𝑑𝑇 (𝑋))(𝜙)](𝑦)
=

⋁
𝑥∈𝑋(𝑖𝑑𝑇 (𝑋)(𝜙)(𝑥) ∗ (𝜂𝑢 ∘ 𝑓)(𝑥)(𝑦))

=
⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝜇{𝑓(𝑥)}(𝑦))

=
⋁
𝑥∈𝑋(𝜙(𝑥) ∗ 𝑒𝑌 (𝑓(𝑥), 𝑦))

= 𝑓∗→(𝜙)(𝑦) = 𝑓→P𝑢(𝜙)(𝑦)

□
Acknowledgements.The author is thankful to the referees for their valuable com-
ments and suggestions.
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[5] U. Höhle and S. E. Rodabaugh, eds., Mathematics of fuzzy sets: logic, topology,

and measure theory, The Handbooks of Fuzzy Sets Series, Kluwer Academic Pubers
(Boston/Dordrecht/London), 3 (1999).

[6] G. M. Kelly, Basic concepts of enriched category theory, London Mathematical Soceity Lec-
ture Notes Series 64, Cambridge University Press, 1982. Also: Reprints in Theory and Ap-

plications of Categories, 10 (2005).
[7] H. L. Lai and D. X. Zhang, Complete and directed complete Ω-categories, Theoretical Com-

puter Science, 388 (2007), 1-25.
[8] S. Mac Lane, Categories for the working mathematician (2nd edition), Springer-Verlag

(Berlin/Heidelberg/New York), 2003.
[9] E. G. Manes, Algebraic theories, Springer Verlag (Berlin/Heidelberg/New York), 1976.

[10] S. E. Rodabaugh, Point-set lattice-theoretic topology, Fuzzy Sets and Systems, 40(2) (1991),
297-345 .

[11] S. E. Rodabaugh, Powerset operator based foundation for point-set lattice-theoretic
(POSLAT) fuzzy set theories and topologies, Quaestiones Mathematicae, 20(3) (1997), 463-
530.

[12] S. E. Rodabaugh, Powerset operator foundations for poslat fuzzy set theories and topologies,

Chapter 2 in [5], 91-116.
[13] S. E. Rodabaugh, Relationship of algebraic theories to powerset theories and fuzzy topolog-

ical theories for lattice-valued mathematics, International Journal of Mathematics and the

Mathematical Sciences 3, Article ID 43645, doi:10.1155/2007/43645, (2007), 71.
[14] K. R. Wagner, Solving recursive domain equations with enriched categories, Ph. D. Thesis,

School of Computer Science, Carnegie Mellon University, Pittsburgh, 1994.
[15] W. Yao and L. X. Lu, Fuzzy Galois connections on fuzzy posets, Mathematical Logic Quar-

terly, 55 (2009), 105-112.
[16] W. Yao, Quantitative domains via fuzzy sets: part I: continuity of fuzzy directed complete

posets, Fuzzy Sets and Systems, 161 (2010), 973-987.
[17] L. A. Zadeh, Fuzzy Sets, Information and Control, 8 (1965), 338-353.

[18] Q. Y. Zhang and L. Fan, Continuity in quantitative domains, Fuzzy Sets and Systems, 154
(2005), 118-131.

[19] Q. Y. Zhang and L. Fan, A kind of 𝐿-fuzzy complete lattices and adjoint functor theorem
for 𝐿𝐹 -posets, Report on the Fourth International Symposium on Domain Theory, Hunan

University, Changsha, China, June 2006.
[20] Q. Y. Zhang and W. X. Xie, Fuzzy complete lattices, Fuzzy Sets and Systems, 160 (2009),

2275-2291.
[21] Q. Y. Zhang, L. Fan and W. X. Xie, Adjoint functor theorem for fuzzy posets, Indian Journal

of Mathematics, 51 (2009), 305-342.

Qi-Ye Zhang, School of Mathematics and Systems Science, Beihang University, Bei-
jing 100191, China and LMIB of the Ministry of Education, Beijing 100191, China

E-mail address: zhangqiye@buaa.edu.cn


