A NEW WAY TO FUZZY h-IDEALS OF HEMIRINGS

Document Type: Research Paper

Authors

1 School of Sciences, East China Institute of Technology, Fuzhou, Jiangxi 344000, China

2 Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province 445000, China

3 Department of Mathematics, Honghe University, Mengzi, Yunnan 661100, China

Abstract

By means of a kind of new idea, we consider  the $(\in,\ivq)$-fuzzy
$h$-ideals of a hemiring.  First, the concepts of $(\in,\ivq)$-fuzzy
left(right) $h$-ideals of a hemiring are provided and some related
properties are investigated. Then, a kind  of quotient hemiring  of
a hemiring by an $(\in,\ivq)$-fuzzy $h$-ideal is presented and
studied. Moreover, the notions of generalized $\varphi$-compatible
$(\in,\ivq)$-fuzzy left(right) $h$-ideals of a hemiring are
introduced and some properties of them are provided. Finally, the
relationships among $(\in,\ivq)$-fuzzy $h$-ideals, quotient
hemirings and homomorphisms are  explored and several homomorphism
theorems are provided.

Keywords


bibitem{Bhakat} S. K. Bhakat and P. Das, emph{$(in,ivq)$-fuzzy  subgroups}, Fuzzy Sets and Systems, textbf{80} (1996), 359-368.

bibitem{Davvaz} B. Davvaz and P. Corsini,   emph{On $(alpha,beta)$-fuzzy
$H_v$-ideals of $H_v$-rings}, Iranian Journal of Fuzzy Systems,
textbf{5} (2008), 35-47.


bibitem{Dudek} W. A. Dudek, M. Shabir and M. I. Ali, emph{$(alpha,beta)$-fuzzy ideals of
hemirings}, Computers and Math. Appl., textbf{58} (2009), 310-321.


bibitem{Glazek} K. Glazek, emph{A guide to the literature on semirings and their applications in mathematics and information sciences: with complete
bibliography}, Kluwer Acad. Publ., Dodrecht, 2002.

bibitem{Henriksen} M. Henriksen, emph{Ideals in semirings with commutative addition}, Am. Math. Soc. Notces, textbf{6} (1958), 321.

bibitem{Huang} X. Huang, H. Li and Y. Yin, emph{The $h$-hemiregular fuzzy duo hemirings}, International Journal of Fuzzy
       Systems, textbf{9} (2007), 105-109.

bibitem{Iizuka} K. Iizuka, emph{On the Jacobson radical of a semiring}, Tohoku
Math. J, textbf{11(2)} (1959), 409-421.

 

bibitem{Jun} Y. B. Jun, M. A. $ddot{O}$zt$ddot{u}$rk and S. Z. Song, emph{On fuzzy $h$-ideals in hemirings}, Information  Sciences, textbf{162} (2004), 211-226.

 

bibitem{LaTorre} D. R. La Torre, emph{On $h$-ideals and $k$-ideals in hemrings}, Publ. Math. Debrecen, textbf{12} (1965), 219-226.

bibitem{Li} H. Li, X. Huang and Y. Yin, emph{the characterization of regular
hemirings}, Southeast Asian Bull. Math., textbf{32} (2008),
1091-1100.

bibitem{Ma} X. Ma and J. Zhan, emph{Generalized fuzzy $h$-bi-ideals and $h$-quasi-ideals of hemirings}, Information  Sciences, textbf{179} (2009), 1249-1268.

bibitem{Rosenfeld} A. Rosenfeld, emph{Fuzzy groups}, J. Math. Anal. Appl, textbf{35} (1971), 512-517.


bibitem{Wechler} W. Wechler, emph{The concept  of fuzziness in automata and
language theory}, Akademie-Verlag, Belin, 1978.

bibitem{Yin} Y. Yin and H. Li, emph{The characterizations of $h$-hemiregular hemirings and
$h$-intra-hemiregular hemirings}, Information  Sciences, textbf{178} (2008),
3451-3464.

bibitem{Yin2009} Y. Yin, X. Huang, D. Xu and F. Li, emph{The characterization of $h$-semisimple hemirings},
International Journal of Fuzzy  Systems, textbf{11} (2009),
116-122.


bibitem{Zhan2007}  J. Zhan and W. A. Dudek, emph{Fuzzy $h$-ideal of hemirings}, Information  Sciences, textbf{177} (2007), 876-886.

bibitem{Zhan1} J. Zhan, Y. B. Jun and B. Davvaz,  emph{On $(in,invee q)$-fuzzy
ideals of BCI-algebras}, Iranian Journal of Fuzzy Systems,
textbf{6} (2009), 81-94.