$\psi -$weak Contractions in Fuzzy Metric Spaces

Document Type: Research Paper

Authors

1 Department of Mathematics, Lahore University of Management Sci- ences, 54792- Lahore, Pakistan

2 Department of Mathematics, Aligarh Muslim University, 202002, Aligarh, India

3 Department of Mathematics and Humanities, S. V. National Institute of Technology, Surat, 395007, Gujarat, India

Abstract

In this paper, the notion of $\psi -$weak contraction \cite{Rhoades} is
extended to fuzzy metric spaces. The existence of common fixed points for
two mappings is established where one mapping is $\psi -$weak contraction
with respect to another mapping on a fuzzy metric space. Our result
generalizes a result of Gregori and Sapena \cite{Gregori}.

Keywords


bibitem{Alber} Y. I. Alber and S. Guerre-Delabriere, textit{Principles of
weakly contractive maps in Hilbert spaces}, In: I. Gohberg, Y. Lyubich
, eds., New Results in Operator Theory, In: Advances and Appl.,
Birkhauser, Basel, {bf98} (1997), 7-22.

bibitem{Dutta} P. N. Dutta, B. S. Chaudhury and K. Das, textit{Some fixed
point results in Menger spaces using a control function}, Surveys in
Mathematics and Its Application 4, (2009), 41-52.

bibitem{Deng} Z. K. Deng, textit{Fuzzy pseudo-metric spaces}, J. Math.
Anal. Appl. 86, (1982), 74-95.

bibitem{Naschie} M. S. El Naschie, textit{On a fuzzy khaler-like
manifold which is consistent with two slit experiment}, Int. J. Non-linear
Sci. and Numerical Simulation, {bf6} (2005), 95-98.

bibitem{Grabiec} M. Grabiec, textit{Fixed points in fuzzy metric spaces},
Fuzzy Sets and Systems, {bf27} (1988), 385-389.

bibitem{Grabiec2} M. Grabiec, Y. J. Cho and V. Radu, textit{On
nonsymmetric topological and probabilistic structures}, Nova Science
Publisher, New York, 2006.

bibitem{George} A. George and P. Veeramani, textit{On some results in
fuzzy metric spaces}, Fuzzy Sets and Systems, {bf64} (1994), 395-399.

bibitem{George2} A. George and P. Veeramani, textit{On some results of
analysis for fuzzy metric spaces}, Fuzzy Sets and Systems, {bf90} (1997), 365-368.

bibitem{Gregori} V. Gregori and A. Sapena, textit{On fixed-point
theorems in fuzzy metric spaces}, Fuzzy Sets and Systems, {bf125} (2000), 245-252.

bibitem{Hadzic} O. Hadzic and E. Pap, textit{Fixed point theory in
probabilistic metric spaces}, Kluwer Academic Publisher, Dordrecht, 2001.

bibitem{Kaleva} O. Kaleva and S. Seikkala, textit{On fuzzy metric spaces},
Fuzzy Sets and Systems, {bf27} (1984), 215-229.

bibitem{Kramosil} O. Kramosil and J. Michalek, textit{Fuzzy metric and
statistical metric spaces}, Kybernetika, {bf11} (1975), 326-334.

bibitem{Kirk} W. A. Kirk and B. Sims, textit{Hand book of metric fixed
point theory}, Kluwer Academic Publisher, 2001.

bibitem{Mihet} D. Mihet, textit{On fuzzy contractive mappings in fuzzy
metric spaces}, Fuzzy Sets and Systems, {bf158} (2007), 915-921.

bibitem{Saadati} R. Saadati, S. Sedghi and H. Zaou, {it A common fixed point
theorem for $psi -$ weakly commuting maps in $L-$fuzzy metric spaces},
Iranian Journal of Fuzzy Systems, {bf5(1)} (2008), 47-53

bibitem{Schweizer} I. Schweizer and A. Sklar, textit{Statistical metric
spaces}, Pacific J. Math., {bf10} (1960), 314-334.

bibitem{Sedghi} S. Sedghi, K. P. R. Rao and N. Shobe, {it A common fixed point
theorem for six weakly compatible mappings in M-fuzzy metric spaces},
Iranian Journal of Fuzzy Systems, {bf5(2)} (2008), 49-62.

bibitem{Rhoades} B. E. Rhoades, textit{Some theorems on weakly contractive
maps}, Non Linear Analysis, {bf47} (2001), 2683-2693.

bibitem{Vasuki} R. Vasuki and P. Veeramani, textit{Fixed point theorems
and Cauchy sequences in fuzzy metric spaces}, Fuzzy Sets and Systems
{bf135} (2003), 415-417.

bibitem{Zadeh} L. A. Zadeh, textit{Fuzzy Sets}, Information and Control,
{bf8} (1965), 338-353.