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ON LOCAL HUDETZ g-ENTROPY

M. RAHIMI

Abstract. In this paper, a local approach to the concept of Hudetz g-entropy

is presented. The introduced concept is stated in terms of Hudetz g-entropy.
This representation is based on the concept of g-ergodic decomposition which

is a result of the Choquet’s representation Theorem for compact convex metriz-

able subsets of locally convex spaces.

1. Introduction

The concept of g-entropy of a dynamical system [11, 16, 19] is a generalization
of the fuzzy entropy of a system [1, 2, 3, 4, 7, 8, 9, 10, 11, 15, 16, 18, 19], where
g : [0,∞]→ [0,∞] is an increasing bijective map such that g(0) = 0 and g(1) = 1.
A local approach to the concept of g-entropy is given in [14]. It is based on the
framework presented in [12]. The case g(x) = x results in the entropy in the sense of
Dumitrescu. The Dumitrescu entropy has the following defect: If the σ-algebra of
the fuzzy sets contains all constant functions then the entropy equals to infinity. To
eliminate this defect, the Hudetz entropy, as a correction to the concept of entropy,
is introduced [5, 6]. The general case, Hudetz correction of g-entropy, called Hudetz
g-entropy, is discussed in [17].

This paper is an attempt to present a local approach to the Hudetz g-entropy,
applying the g-ergodic decomposition, discussed in [14].

Section 2 is devoted to recall Hudetz g-entropy and g-ergodic decomposition. In
section 3, we introduce a new type of Hudetz g-entropy via a local approach. The
main theorem of the paper represents this new quantity in terms of the classical
Hudetz g-entropy [17].

2. Hudetz g-entropy and g-ergodic Decomposition

A family F ⊂ [0, 1]X of fuzzy subsets of a set X is said to be a fuzzy σ−algebra,
if the following axioms are satisfied:

(i) 1X ∈ F .
(ii) If f, g ∈ F then f.g ∈ F and (f − g)+ ∈ F where (f − g)+(x) := max{(f −

g)(x), 0}.
(iii) If {fn}n≥1 ⊂ F then

∨∞
n=1 fn ∈ F where

∨∞
n=1 fn := min{

∑∞
n=1 fn, 1}.

A function m : F → [0,∞) is called a fuzzy measure, if

(i) m(0X) = 0.
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(ii) m(
∨∞
n=1 fn) =

∑∞
n=1m(fn), whenever fn ∈ F and

∑∞
n=1 fn ≤ 1.

Let g : [0, 1]→ [0, 1] be an increasing map such that g(0) = 0 and g(1) = 1. A family

ξ = {f1, f2, ..., fk} of members of F is a g-fuzzy partition of X, if
∑k
i=1 g ◦ fi = 1

on X. When g(x) = x, a g-fuzzy partition is nothing but a fuzzy partition, i.e., a

family ξ = {f1, f2, ..., fk} such that
∑k
i=1 fi = 1 on X.

For a, b ∈ [0, 1] the following operations are defined:

a⊕ b := g−1 (g(a) + g(b)) (1)

a� b := g−1 (g(a).g(b)) (2)

and

a	 b := g−1 (g(a)− g(b)) (3)

whenever b ≤ a.
Note that, in (1), ⊕ is a partial operation on [0, 1], i.e., a ⊕ b is defined if

g(a) + g(b) ≤ 1.
Let m : F → [0, 1] be a g-decomposable measure on a fuzzy σ-algebra F , i.e.,

m(1X) = 1, m(0X) = 0 and

m

(
g−1(

∞∑
n=1

g ◦ fn)

)
= g−1

( ∞∑
n=1

g(m(fn))

)
whenever fn ∈ F (n = 1, 2, 3, ...) are such that

∑∞
n=1 g◦fn ≤ 1. Then m∗ := g◦m◦

g−1 is a fuzzy measure on F . Also, if B := {A ⊂ X : χA ∈ F} and µm∗ : B→ R is
defined by µm∗(A) := m∗(χA), then µm∗ is a measure on the σ-algebra B such that
m∗(f) =

∫
X
fdµm∗ . So, there is a correspondence m ←→ m∗ ←→ µm∗ between

the g-decomposable measures, fuzzy measures and probability measures on X.
For a g-fuzzy partition ξ = {f1, f2, ..., fk}, the entropy Hm,g(ξ) is defined by

Hm,g(ξ) :=

k⊕
i=1

Φ(m(fi)) (4)

where Φ = g−1 ◦ φ ◦ g and φ(x) = −x log x for x > 0, φ(0) = 0.
One may write (4) in detail as follows:

Hm,g(ξ) = g−1

(
k∑
i=1

g
(
g−1 ◦ φ ◦ g

)
(m(fi))

)

= g−1

(
k∑
i=1

φ(g(m(fi)))

)

= g−1

(
−

k∑
i=1

g(m(fi)) log g(m(fi))

)
where we set 0×∞ = 0 if m(fi) = 0.

We also have the following quantity:

Fm,g(ξ) := m(

k⊕
i=1

Φ(fi)) (5)
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Similarly, if one writes (5) in detail then

Fm,g(ξ) = m

(
g−1

(
k∑
i=1

g(Φ(fi))

))

= m

(
g−1

(
k∑
i=1

g(g−1 ◦ φ ◦ g)(fi)

))

= m

(
g−1

(
k∑
i=1

φ ◦ g ◦ fi

))

= m

(
g−1

(
−

k∑
i=1

(g ◦ fi) log(g ◦ fi)

))
Now, set

Hb
m,g(ξ) := Hm,g(ξ)	 Fm,g(ξ).

If T : X → X is a dynamical system preserving µm∗ then

hbm,g(T, ξ) := lim
n→∞

g−1
(

1

n

)
�Hb

m,g

(
n−1∨
i=0

T−i(ξ)

)
.

Finally, the Hudetz g-entropy of T is defined as follows:

hbm,g(T ) := sup
ξ
hbm,g(T, ξ)

where the supremum is taken over all g-fuzzy partitions.

Suppose that T : X → X is a continuous map on a compact metric space X,
F ⊂ [0, 1]X is the family of all Borel measurable maps f : X → [0, 1]. Then the
corresponding σ-algebra B = {A ⊂ X : χA ∈ F} is indeed the σ-algebra of Borel
sets of X. Let M∗(X) be the set of all fuzzy set measures m : F → [0,∞] satisfying
m(1X) = 1 and m(0X) = 0. The set of g-invariant measures of T is defined as the
set

M∗g (X,T ) := {m ∈M∗(X); m(g−1 ◦ f ◦ T ) = m(g−1 ◦ f), f ∈ F}

and the set of g-ergodic measures of T is defined as the set

E∗g (X,T ) := {m ∈M∗g (X,T ); f ◦ T = f ⇒ m(g−1 ◦ f) ∈ {0, 1}}.

In the following M∗(X) is equipped to a topology.

Definition 2.1. The w∗-topology on M∗(X) is the smallest topology making each
of the maps m∗ 7→

∫
X
fdµm∗ (f ∈ C(X)) continuous. A basis is given by the

collection of all sets of the form

Vm∗0 (f1, ..., fk; ε) = {m∗ ∈M∗(X) :

∣∣∣∣∫
X

fidµm∗ −
∫
X

fidµm∗0

∣∣∣∣ < ε, 1 ≤ i ≤ k}

where m∗0 ∈M∗(X), k ≥ 1, fi ∈ C(X) and ε > 0.
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In [14], it is shown that, with the previous w∗-topology, M∗g (X,T ) is a compact
convex subset of M∗(X) and ext(M∗g (X,T )) = E∗g (X,T ). We also have the follow-
ing corollary which is a generalized form of the decomposition applied in [12, 13].

Corollary 2.2. ([14] Corollary 3.6) For any m ∈ M∗g (X,T ) there exists a unique
probability measure τ on the σ-algebra of all Borel subsets of the compact metrizable
space M∗g (X,T ) such that τ(E∗g (X,T )) = 1 and∫

X

f(x)dµm∗(x) =

∫
E∗g (X,T )

(∫
X

f(x)dµν∗(x)

)
dτ(ν)

for every bounded measurable function f : X → R.

In particular, if f ∈ F then

m(f) = g−1

(∫
E∗g (X,T )

g(ν(f))dτ(ν)

)
.

Under the assumptions of Corollary 2.2 we write m =
∫
E∗g (X,T )

νdτ(ν) and it is

called the g-ergodic decomposition of m.

3. Local Hudetz g-entropy

In this section, we assume that T : X → X is a continuous map on a compact
metric space X. Let F ⊂ [0, 1]X be the family of all Borel measurable maps
f : X → [0, 1]. Then the corresponding σ−algebra B := {A ⊂ X : χA ∈ F} is
indeed the σ−algebra of Borel sets of X. For any x ∈ X and f ∈ F define

ωg(T, x, f) := g−1

(
lim inf
n→∞

1

n

n−1∑
i=0

((g ◦ f) ◦ T i)(x)

)
.

We write ω(T, x, f) instead of ωg(T, x, f) when g(x) = x.

Definition 3.1. If ξ = {h1, h2, ..., hm} is a g-fuzzy partition, then we define

Ω∗g(T, x, ξ) := ωg(T, x,

k⊕
i=1

Φ(hi)) = ωg(T, x, g
−1(

k∑
i=1

φ(g(hi)))).

We also define

Ωg(T, x, ξ) := g−1

(
k∑
i=1

g(Φ(ωg(T, x, hi)))

)
= g−1

(
k∑
i=1

φ(g(ωg(T, x, hi)))

)
.

We write Ω∗(T, x, ξ) and Ω(T, x, ξ) instead of Ω∗g(T, x, ξ) and Ωg(T, x, ξ) respec-
tively when g(x) = x. A direct application of Definition 3.1 will result the following
lemma.

Lemma 3.2. For x ∈ X and g-fuzzy partition ξ we have:

(i) Ω∗g(T, x, ξ) = g−1(Ω∗(T, x, g(ξ)));

(ii) Ωg(T, x, ξ) = g−1(Ω(T, x, g(ξ))).
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Definition 3.3. If ξ is a g-fuzzy partition, define

Ωbg(T, x, ξ) := Ωg(T, x, ξ)	 Ω∗g(T, x, ξ)

= g−1
(
g(Ωg(T, x, ξ))− g(Ω∗g(T, x, ξ))

)
.

Again we write Ωb(T, x, ξ) instead of Ωbg(T, x, ξ) when g(x) = x.
To guarantee that Definition 3.3 is meaningful, we prove the following lemma:

Lemma 3.4. Under the previous assumptions Ω∗g(T, x, ξ) ≤ Ωg(T, x, ξ).

Proof. Let ξ = {h1, h2, ..., hm}. Since g is increasing, by Lemma 3.2, it is enough
to show that Ω∗(T, x, ξ) ≤ Ω(T, x, ξ). We have

Ω∗(T, x, ξ) = ω(T, x,

m∑
i=1

φ(g ◦ hi))

= lim inf
n→∞

1

n

n−1∑
k=0

(
m∑
i=1

(
φ(g ◦ hi) ◦ T k

)
(x)

)

= lim inf
n→∞

1

n

n−1∑
k=0

m∑
i=1

φ(g(hi(T
k(x))))

=

m∑
i=1

lim inf
n→∞

1

n

n−1∑
k=0

φ(g(hi(T
k(x))))

=

m∑
i=1

lim inf
n→∞

n−1∑
k=0

1

n
φ(g(hi(T

k(x))))

≤
m∑
i=1

lim inf
n→∞

φ

(
1

n

n−1∑
k=0

((g ◦ hi) ◦ T k)(x)

)

≤
m∑
i=1

φ

(
lim inf
n→∞

1

n

n−1∑
k=0

((g ◦ hi) ◦ T k)(x)

)

=

m∑
i=1

φ(ω(T, x, g ◦ hi))

= Ω(T, x, g(ξ)).

We used concavity and continuity of the function φ. �

Lemma 3.5. For x ∈ X and g-fuzzy partition ξ we have

Ωbg(T, x, ξ) = g−1(Ωb(T, x, g(ξ))).

Proof. Apply Definition 3.3 and Lemma 3.2. �

Definition 3.6. For x ∈ X and g-fuzzy partition ξ, the local Hudetz g-entropy of
T with respect to ξ is defined as follows:

Hbg(T, x, ξ) := lim inf
n→∞

g−1(
1

n
)� Ωbg(T, x,∨n−1

i=0 T
−iξ)

= lim inf
n→∞

g−1

(
1

n
g
(

Ωbg(T, x,∨n−1
i=0 T

−iξ)
))

.
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Definition 3.7. For m ∈ M∗g (X,T ), the average Hudetz g-entropy of T with
respect to ξ is defined as follows:

h∗bm,g(T, ξ) :=

∫
X
Hbg(T, x, ξ)dµm(x).

Finally, the average Hudetz g-entropy of T is defined as

h∗bm,g(T ) := sup
ξ
h∗bm,g(T, ξ)

where the supremum is taken over all g-fuzzy partitions.

The following theorem states the average Hudetz g-entropy in terms of the
Hudetz g-entropy.

Theorem 3.8. Suppose that T : X → X is a continuous map on a compact metric
space X and F ⊂ [0, 1]X is the σ-algebra of Borel measurable maps f : X → [0, 1].
If m ∈ M∗g (X,T ) and m =

∫
E∗g (X,T )

νdτ(ν) is the g-ergodic decomposition of m,

then the following properties are satisfied:

(i) if ξ is a g-fuzzy partition then

h∗bm,g(T, ξ) =

∫
E∗g (X,T )

hbν,g(T, ξ)dτ(ν);

(ii) if E∗g (X,T ) is countable then

h∗bm,g(T ) =

∫
E∗g (X,T )

hbν,g(T )dτ(ν).

Proof. Let ξ = {f1, f2, ..., fk}. First let m ∈ E∗g (X,T ). Then µm∗ ∈ E(X,T ) and
by Birkhoff ergodic Theorem we obtain

Ω
∗
g(T, x, ξ) = ωg(T, x,

k⊕
i=1

Φ(fi))

= ωg

T, x, g−1

 k∑
i=1

g(Φ(fi))


= ωg

T, x, g−1

 k∑
i=1

φ(g ◦ fi)


= g

−1

lim inf
n→∞

1

n

n−1∑
j=0

g ◦ g−1
(

k∑
i=1

φ(g ◦ fi) ◦ T
j
(x))


= g

−1

lim inf
n→∞

1

n

n−1∑
j=0

 k∑
i=1

φ(g ◦ fi) ◦ T
j
(x)


= g

−1

∫
X

k∑
i=1

φ(g ◦ fi)dµm∗

 µm∗ .a.e.

= g
−1

m∗( k∑
i=1

φ ◦ g ◦ fi)


= m

g−1

 k∑
i=1

g(Φ(fi))


= m

 k⊕
i=1

Φ(fi)


= Fm,g(ξ).
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A similar justification will show that Ωg(T, x, ξ) = Hm,g(ξ) µm∗ .a.e. Therefore,

Ωbg(T, x, ξ) = g−1
(
g (Ωg(T, x, ξ))− g

(
Ω∗g(T, x, ξ)

))
= g−1 (g (Hm,g(ξ))− g (Fm,g(ξ))) µm∗ .a.e.

= Hm,g(ξ).

Now, it is easy to see that

Hbg(T, x, ξ) = hbm,g(T, ξ) µm∗ .a.e.

and so,

h∗bm,g(T, ξ) =

∫
X

Hbg(T, x, ξ)dµm∗(x) = hbm,g(T, ξ).

Since the previous relation holds for any given g-fuzzy partition ξ, we have

h∗bm,g(T ) = hbm,g(T ).

Now, let in general, m ∈ M∗g (X,T ). Define fn := min{Hbg(T, ·, ξ), n}, n = 1, 2, ....
Then the sequence {fn}n≥1 is an increasing sequence of bounded measurable func-
tions such that fn ↗ Hbg(T, ·, ξ). Applying Monotone Convergence Theorem we
will have

h∗bm,g(T, ξ) =

∫
X

Hbg(T, x, ξ)gµm∗(x)

= lim
n→∞

∫
X

fn(x)dµm∗(x)

= lim
n→∞

∫
E∗g (X,T )

(∫
X

fn(x)dµν∗(x)

)
dτ(ν)

=

∫
E∗g (X,T )

(∫
X

Hbg(T, x, ξ)dµν∗(x)

)
dτ(ν)

=

∫
E∗g (X,T )

h∗bν,g(T, ξ)dτ(ν)

=

∫
E∗g (X,T )

hbν,g(T, ξ)dτ(ν)

Now, let E∗g (X,T ) = {ν1, ν2, ..., νn, ...}. Put Kn := {ν1, ν2, ..., νn}, n = 1, 2, ....
Then it is easy to see that the sequence {Kn}n≥1 is an increasing sequence of finite
sets such that E∗g (X,T ) =

⋃∞
n=1Kn.

For any given g-fuzzy partition ξ we have

h∗bm,g(T, ξ) =

∫
E∗g (X,T )

hbν,g(T, ξ)dτ(ν) ≤
∫
E∗g (X,T )

hbν,g(T )dτ(ν).

Taking supremum over all g-fuzzy partitions we will have

h∗bm,g(T ) ≤
∫
E∗g (X,T )

hbν,g(T )dτ(ν).
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On the other hand, for any g-fuzzy partition ξ and n ∈ N we have

h∗bm,g(T ) ≥ h∗bm,g(T, ξ)

=

∫
E∗g (X,T )

hbν,g(T, ξ)dτ(ν)

≥
∫
Kn

hbν,g(T, ξ)dτ(ν)

=

n∑
j=1

hbνj ,g(T, ξ)τ(νj)

Since all of the terms in the previous summation are positive, taking supremum
over all g-fuzzy partitions ξ we will have

h∗bm,g(T ) ≥ sup
ξ

n∑
j=1

hbνj ,g(T, ξ)τ(νj)

=

n∑
j=1

sup
ξ
hbνj ,g(T, ξ)τ(νj)

=

n∑
j=1

hbνj ,g(T )τ(νj)

=

∫
Kn

hbν,g(T )dτ(ν)

for all n ∈ N. Finally,∫
E∗g (X,T )

hbν,g(T )dτ(ν) =

∫
⋃∞

n=1Kn

hbν,g(T )dτ(ν) = lim
n→∞

∫
Kn

hbν,g(T )dτ(ν) ≤ h∗bm,g(T ).

It completes the proof. �

4. Summary and Conclusions

This paper is an attempt to present a local study of the Hudetz g-entropy of a
dynamical system. Applying the framework constructed in [14], which resulted in
g-ergodic decomposition, we introduced a new type of Hudetz g-entropy via a local
approach and represented it in terms of the known Hudetz g-entropy.
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[16] B. Riečan and D. Markechová, The entropy of fuzzy dynamical systems, general scheme and

generators, Fuzzy Sets and Systems, 96 (1998), 191-199.
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