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ON LOCAL HUDETZ ¢-ENTROPY

M. RAHIMI

ABSTRACT. In this paper, a local approach to the concept of Hudetz g-entropy
is presented. The introduced concept is stated in terms of Hudetz g-entropy.
This representation is based on the concept of g-ergodic decomposition which
is a result of the Choquet’s representation Theorem for compact convex metriz-
able subsets of locally convex spaces.

1. Introduction

The concept of g-entropy of a dynamical system [11, 16, 19] is a generalization
of the fuzzy entropy of a system [1, 2, 3, 4, 7, 8, 9, 10, 11, 15, 16, 18, 19], where
g :[0,00] — [0,00] is an increasing bijective map such that g(0) = 0 and g(1) = 1.
A local approach to the concept of g-entropy is given in [14]. It is based on the
framework presented in [12]. The case g(x) = x results in the entropy in the sense of
Dumitrescu. The Dumitrescu entropy has the following defect: If the o-algebra of
the fuzzy sets contains all constant functions then the entropy equals to infinity. To
eliminate this defect, the Hudetz entropy, as a correction to the concept of entropy,
is introduced [5, 6]. The general case, Hudetz correction of g-entropy, called Hudetz
g-entropy, is discussed in [17].

This paper is an attempt to present a local approach to the Hudetz g-entropy,
applying the g-ergodic decomposition, discussed in [14].

Section 2 is devoted to recall Hudetz g-entropy and g-ergodic decomposition. In
section 3, we introduce a new type of Hudetz g-entropy via a local approach. The
main theorem of the paper represents this new quantity in terms of the classical
Hudetz g-entropy [17].

2. Hudetz g-entropy and g-ergodic Decomposition

A family F C [0,1]¥ of fuzzy subsets of a set X is said to be a fuzzy o—algebra,
if the following axioms are satisfied:
(1) 1x € F.
(i) If f,g € F then f.g € F and (f —g)*" € F where (f —g)*(z) := maz{(f —
9)(x),0}.
(iil) If {fn}n>1 C F then \/ 2| fn € F where \/7, fr :=min{d >~ fn,1}.
A function m : F — [0, 00) is called a fuzzy measure, if
(i) m(0x) =0.
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(i) m(\Vory fn) = >oney m(fn), whenever f, € F and Y oo, fn < 1.
Let g : [0,1] — [0, 1] be an increasing map such that g(0) = 0 and g(1) = 1. A family
& ={f1, fa, ..., fx} of members of F is a g-fuzzy partition of X, if Zle gofi=1
on X. When g(z) = x, a g-fuzzy partition is nothing but a fuzzy partition, i.e., a

family & = {f1, f2, ..., fx} such that Zle fi=1lon X.
For a,b € [0,1] the following operations are defined:

a®b:=g" " (g(a) + g(b)) (1)

a®b:=g""(g(a).g(b)) (2)
and

aob:=g " (g(a) — g(b)) (3)

whenever b < a.

Note that, in (1), @ is a partial operation on [0,1], i.e., a ® b is defined if
g(a) +g(b) < 1.

Let m : F — [0,1] be a g-decomposable measure on a fuzzy o-algebra F, i.e.,
m(lx) =1, m(0x) =0 and

m (91(29 ° fn)) =g (Z g(m(fn))>
n=1 n=1

whenever f, € F (n =1,2,3,...) are such that > 7 go f, < 1. Then m* := gomo
g~ 1 is a fuzzy measure on F. Also, if B := {A C X : xa € F} and fip,- : B — Ris
defined by fiy,+(A) := m*(xa4), then p,, is a measure on the og-algebra B such that
m*(f) = [y fdpm=+. So, there is a correspondence m <— m* <— fi;,+ between
the g-decomposable measures, fuzzy measures and probability measures on X.
For a g-fuzzy partition & = {f1, fo, ..., fx}, the entropy Hp, 4(§) is defined by

k
= g?@(m(fz)) (4)

where ® = g1 o ¢ o g and ¢(z) = —xlogx for z > 0, ¢(0) = 0.
One may write (4) in detail as follows:

Hpg(§) = (Zg Logog)(m (ﬁ)))

. (Z ¢<g<m<fi>>>>

k
( Zg )) log g(m (ﬂ)))

where we set 0 x oo = 0 if m(f;) = 0.

We also have the following quantity:

k
Fng(€) = m(@ O(f,)) (5)
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Similarly, if one writes (5) in detail then

Fng(§) = m<gl (ig(fﬁ(ﬁ))))
- (S tconann)
nfr )
= ( < ﬁ;fJsz 10g90f1)>>

Hp, 4(€) = Hung(€) © Fru g (6).
IfT:X — X is a dynamical system preserving pi,,« then

hb, o (T,€) = nan;Ogl( )@H” <\/ T )

Finally, the Hudetz g-entropy of T is defined as follows:
hi g (T) = Slgphm o(T,)

Now, set

where the supremum is taken over all g-fuzzy partitions.

Suppose that T : X — X is a continuous map on a compact metric space X,
F C [0,1]% is the family of all Borel measurable maps f : X — [0,1]. Then the
corresponding o-algebra B = {A C X : x4 € F} is indeed the o-algebra of Borel
sets of X. Let M*(X) be the set of all fuzzy set measures m : F — [0, oo] satisfying
m(lx) =1 and m(0x) = 0. The set of g-invariant measures of T' is defined as the
set

* L * . —1 o -1
M;(X,T):={me M*(X); m(g - ofoT)=m(g  of), fe€F}
and the set of g-ergodic measures of T is defined as the set
EXNX,T):={me M}(X,T); foT=f=m(g " of)e{0,1}}.
In the following M*(X) is equipped to a topology.

Definition 2.1. The w*-topology on M*(X) is the smallest topology making each
of the maps m* — [y fdum- (f € C(X)) continuous. A basis is given by the
collection of all sets of the form

Vma(fl""’fk;e) = {m* € M*(X) : ’/X fidpims — /XfideS

where m§ € M*(X), k> 1, f; € C(X) and € > 0.

<e 1<i<k}
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In [14], it is shown that, with the previous w*-topology, M (X, T') is a compact
convex subset of M*(X) and ext(M;(X,T)) = E;(X,T). We also have the follow-
ing corollary which is a generalized form of the decomposition applied in [12, 13].

Corollary 2.2. ([14] Corollary 3.6) For any m € M;(X,T) there evists a unique
probability measure T on the o-algebra of all Borel subsets of the compact metrizable
space My(X,T) such that 7(E;(X,T)) =1 and

[r@ane@ = [ ([ @) are)

for every bounded measurable function f: X — R.

In particular, if f € F then

m(f)=g" (/E*(X - Q(V(f))dT(V)> .

Under the assumptions of Corollary 2.2 we write m = | o

(X.1) vdr(v) and it is

called the g-ergodic decomposition of m.

3. Local Hudetz g-entropy

In this section, we assume that T': X — X is a continuous map on a compact
metric space X. Let F C [0,1]%X be the family of all Borel measurable maps
f:X — [0,1]. Then the corresponding o—algebra B := {A C X : x4 € F}is
indeed the o—algebra of Borel sets of X. For any x € X and f € F define

n—1
wy(Tya, f) =g~ " (Q{glogf; > ((gof) OTi)($)> :

=0
We write w(T, z, f) instead of wy (T, z, f) when g(z) = .

Definition 3.1. If £ = {hy, ha, ..., Ap, } is a g-fuzzy partition then we define

k
Qu(T,2,8) = wg(T,x,@fD(hi (T, 2,9~ Z(b

i=1

We also define

Qy (T, z,€) : (Zg (wy (T, z, hy)) ) (qu ngxh)))>

We write Q*(T', z,§) and (T, z, §) instead of Qy (T, x,§) and Qy (T, z,§) respec-
tively when g(z) = . A direct application of Definition 3.1 will result the following
lemma.

Lemma 3.2. For z € X and g-fuzzy partition € we have:
(i) Qy(T,2,8) = g~ (Q(T,2,9(¢)));
(ii) QQ(T7 T, g) = g_l(Q(T7 T, g(f)))
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Definition 3.3. If € is a g-fuzzy partition, define
(T, 2,8) = Q(T,2,6) © (T, x,8)
= g 1 (9(Q(T,z,8)) — g(Q(T, 2,£))) -

Again we write Q(T, x, ) instead of QZ(T,x,f) when g(x) =

To guarantee that Definition 3.3 is meaningful, we prove the following lemma:
Lemma 3.4. Under the previous assumptions Q3 (T, z,§) < Qy(T,,§).
Proof. Let & = {h1,ha, ...,y }. Since g is increasing, by Lemma 3.2, it is enough
to show that Q*(T,x, &) < Q(T, z,£). We have

Q (T, z,¢) z, ) ¢(gohi)

i=1
n

= hnrggfnz<z (gohy) oTk)(m)>

=1

nlm

= lmint D5 ) oot

k=0 i=1

- S inf - i olg(ha(T* (2))))

= Zh,{ggfz = o(g(hi(T"())))
Zl%rggf¢<:lz (gohy)oTH)(z ))
=1

0

> (hgi;f LS ((gom)o T’“)(x)>

=1 k=0

IN

IN

= Z ¢(W(T7 Z, g0 hl))

= UT,=,g(5))
We used concavity and continuity of the function ¢. O
Lemma 3.5. For z € X and g-fuzzy partition & we have
(T, 2,8) = g~ (T, 2, 9(¢))).
Proof. Apply Definition 3.3 and Lemma 3.2. O

Definition 3.6. For z € X and g-fuzzy partition &, the local Hudetz g-entropy of
T with respect to £ is defined as follows:

1
b . 1 b n—lm—i
Ho(T,2,8) = llmlnfg ( ) O Q (T2, ViZyT™*E)

1
= liminfg™! ( (Qb(T z, Vi, 1T 15))) .
n— o0 n
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Definition 3.7. For m € M;(X,T), the average Hudetz g-entropy of T with
respect to £ is defined as follows:

Wity (0.0 = [ HY(T . ().

Finally, the average Hudetz g-entropy of T is defined as
Pina(T) = sup hin o (T, €)

where the supremum is taken over all g-fuzzy partitions.

The following theorem states the average Hudetz g-entropy in terms of the
Hudetz g-entropy.

Theorem 3.8. Suppose that T : X — X is a continuous map on a compact metric
space X and F C [0,1]% is the o-algebra of Borel measurable maps f : X — [0, 1].
If m e Mj(X,T) and m = fE;(X,T) vdr(v) is the g-ergodic decomposition of m,
then the following properties are satisfied:

(i) if € is a g-fuzzy partition then

R (T, ¢) = nb (T, &)dr(v);
m,g( 76) /g( e U,g( :5) (l/)’
(ll) Z’ E; (X, T) is countable then

Wito) = [ i),

Proof. Let £ = {f1, f2, ..., fr.}. First let m € E;(X,T). Then - € E(X,T) and
by Birkhoff ergodic Theorem we obtain

k
Q(T,2,8) = wy(T,z, P (fi)

i=1

k

= wy <T,z,g*1 (Z g(¢’(fi>>>>
i=1

= wg (T z, 9" (Z¢(90f7 ))

hmmff Z gog (Z ¢(g°fi)OTj(fE)))

=1

e

e (Berer)
~(
[

k
Z G(g 0 fi)dp ) Lg% -ae.

<Z¢ogofz)

= m (971 (Z: g(‘i’(ﬂ))))
= m (é ‘P(fi,))

= F”m,g(&)‘
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A similar justification will show that Qg (T, x,&) = Hy, g(§)  pem-.a.e. Therefore,

D(T,2,6) = g7 (9(2(T,2,6) — g (T, 2,)))
TG (Hmg(€) = 9 (Frg(€)) e,
= mg(f)

Now, it is easy to see that
HT, @,8) = hb, J(T€)  pim=.a.e.
and so,
(1.6 = [ HT 0, (2) = Wy (1.9)
Since the previous relation holds for any given g-fuzzy partition £, we have

hiy o (T) = hi, o (T).

m,g m,g
Now, let in general, m € M;(X,T). Define f, := min{Hg(T, S&),nt,n=12...
Then the sequence {f,},>1 is an increasing sequence of bounded measurable func-

tions such that f, HZ(T, -, &). Applying Monotone Convergence Theorem we
will have

h:;l;,g(T7€) / Hg(T’xaf)gﬂm* (.1?)
X

= lim fn( )dum* (x)

n—oo

= 0 ( / fn(:v)duw(x)> drv)
~/E* (X,7) (/ Hy(To 2, O)dpo- (2 )> drv)
B /E«X,T) hie(T.)dr(v)

/ B (T.€)dr(v)
B (X.T)

Now, let E;(X,T) = {v1,v2, ..., Vn, ..} Put Ky i= {vi,v0, . v}, no= 1,2,
Then it is easy to see that the sequence { K, },,>1 is an increasing sequence of finite
sets such that £ (X, T) =U,_, K.

For any given g-fuzzy partition £ we have

B (T, €) = b (T, &)d e (T)dr(v).
Rt = [ menes [ a0

Taking supremum over all g-fuzzy partitions we will have

hit o (T) < / hY (T)dr(v).
' E*(X,T)
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On the other hand, for any g-fuzzy partition £ and n € N we have
*b *b
b g(T) = hyy o(T.€)

b
= / hV’g(T, &)dr(v)
E;(X,T)

/ B (T.€)dr(v)
K,

v

= D h (T.O7(vy)
j=1

Since all of the terms in the previous summation are positive, taking supremum
over all g-fuzzy partitions £ we will have

hit (T) > Sgpzhﬁ_j,g(T,é)T(Vj)
j=1
= Y suphl (T, &)7(v;)
=1 ¢
= > h (D))
j=1

b
= [ @)
K,
for all n € N. Finally,

b . *
/ b (T)dr(v) = / hy o(T)dr(v) = Tim | hy o(T)dr(v) < by o(T).
E;(X,T) o K K,

n=1"""

It completes the proof. O

4. Summary and Conclusions

This paper is an attempt to present a local study of the Hudetz g-entropy of a
dynamical system. Applying the framework constructed in [14], which resulted in
g-ergodic decomposition, we introduced a new type of Hudetz g-entropy via a local
approach and represented it in terms of the known Hudetz g-entropy.
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