^{}Department of Mathematics, University of Fort Hare, ALICE, 5700, South Africa

Abstract

In this paper we classify fuzzy subgroups of a rank-3 abelian group $G = \mathbb{Z}_{p^n} + \mathbb{Z}_p + \mathbb{Z}_p$ for any fixed prime $p$ and any positive integer $n$, using a natural equivalence relation given in \cite{mur:01}. We present and prove explicit polynomial formulae for the number of (i) subgroups, (ii) maximal chains of subgroups, (iii) distinct fuzzy subgroups, (iv) non-isomorphic maximal chains of subgroups and (v) classes of isomorphic fuzzy subgroups of $G$. Illustrative examples are provided.

[1] S. Branimir and A. Tepavcevic, A note on a natural equivalence relation on fuzzy power set, Fuzzy Sets and Systems, 148 (2004), 201-210. [2] G. Calugareanu, The total number of subgroups of a nite abelian group, Sci.Math.Jpn. 60 (2004), 157-167. [3] C. Degang, J. Jiashang, W. Congxin and E. C. C. Tsang, Some notes on equivalent fuzzy sets and fuzzy subgroups, Fuzzy Sets and systems, 152 (2005), 403-409. [4] J. B. Fraleigh, A rst course in abstract algebra, Addison-Wesley Publishing Co., 1982. [5] A. Iranmanesh and H. Naraghi, The connection between some equivalence relations on fuzzy groups, Iranian Journal of Fuzzy systems, 8(5) (2011), 69-80. [6] A. Jain, Fuzzy subgroups and certain equivalence relations, Iranian Journal of Fuzzy Systems, 3(2) (2006), 75-91. [7] V. Murali and B. B. Makamba, On an equivalence of fuzzy subgroups I, Fuzzy Sets and Systems, 123 (2001), 259-264. [8] V. Murali and B. B. Makamba, Counting the number of subgroups of an abelian group of nite order, Fuzzy Sets and Systems, 144 (2004), 459-470. [9] V. Murali and B. B. Makamba, Fuzzy subgroups of abelian groups, Far East J.Maths.Sci. (FEJM), 14(1) (2004), 113-125. [10] V. Murali and B. B. Makamba, Equivalence and isomorphism of fuzzy subgroups of abelian groups, Journal of Fuzzy Mathematics, 16(2) (2008), 351-360. [11] O. Ndiweni and B. B. Makamba, Classication of fuzzy subgroups of a dihedral group of order 2pqr for distinct primes p, q and r, International Jounal of Mathematical Sciences and Engineering Applications, 6(4) (2012), 159-174. [12] S. Ngcibi, Case studies of equivalent fuzzy subgroups of nite abelian groups, Thesis, Rhodes Univ., Grahamstown, 2001. [13] S. Ngcibi, V. Murali and B. B. Makamba, Fuzzy subgroups of rank two abelian p-Groups, Iranian Journal of Fuzzy Systems, 7(2) (2010), 149-153. [14] J. M. Oh, An explicit formula for the number of fuzzy subgroups of a nite abelian p-group of rank two, Iranian Journal of Fuzzy Systems, 10(6) (2013), 125-135. [15] M. Pruszyriska, M. Dudzicz, On isomorphism between Finite Chains, Jounal of Formalised Mathematics 12 (2003), 1-2. [16] S. Ray, Isomorphic fuzzy groups II, Fuzzy Sets and Systems, 50 (1992), 201-207. [17] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512 - 517. [18] V. N. Shokeuv, An expression for the number of subgroups of a given order of a nite p-group, Mathematical notes of the Academy of Sciences of the USSR, 12(5) (1972), 774-778.(Transl from Matematicheskie Zametki,12(5) (1972), 561-568). [19] T. Stehling, On computing the number of subgroups of a nite abelian group, Combinatorica, 12(4) (1992), 475-479. [20] M. Tarnauceanu M and L. Bentea, On the number of Subgroups of nite abelian Groups, Fuzzy Sets and Systems, 159 (2008), 1084 - 1096. [21] M. Tarnauceanu, An arithmetic method of counting the subgroups of a nite abelian group, Bull. Math.Soc.Sci.Math.Roumanie Tome, 53(101) No. 4, (2010), 373-386. [22] A. C. Volf, Counting fuzzy subgroups and chains of subgroups, Fuzzy Systems and Articial Intelligence, 10(3) (2004), 191 - 200. [23] Y. Zhang and K. Zou, A note on an equivalence relation on fuzzy subgroups, Fuzzy Sets and Systems, 95 (1992), 243-247.