COUNTING DISTINCT FUZZY SUBGROUPS OF SOME RANK-3 ABELIAN GROUPS

Document Type: Research Paper

Authors

Department of Mathematics, University of Fort Hare, ALICE, 5700, South Africa

Abstract

In this paper we classify fuzzy subgroups of a rank-3 abelian group $G = \mathbb{Z}_{p^n} + \mathbb{Z}_p + \mathbb{Z}_p$ for any fixed prime $p$ and any positive integer $n$, using a natural equivalence relation given in \cite{mur:01}. We present and prove explicit polynomial formulae for the number of (i) subgroups, (ii) maximal chains of subgroups, (iii) distinct fuzzy subgroups, (iv) non-isomorphic maximal chains of subgroups and (v) classes of isomorphic fuzzy subgroups of $G$. Illustrative examples are provided.

Keywords


[1] S. Branimir and A. Tepavcevic, A note on a natural equivalence relation on fuzzy power set,
Fuzzy Sets and Systems, 148 (2004), 201-210.
[2] G. Calugareanu, The total number of subgroups of a nite abelian group, Sci.Math.Jpn. 60
(2004), 157-167.
[3] C. Degang, J. Jiashang, W. Congxin and E. C. C. Tsang, Some notes on equivalent fuzzy
sets and fuzzy subgroups, Fuzzy Sets and systems, 152 (2005), 403-409.
[4] J. B. Fraleigh, A rst course in abstract algebra, Addison-Wesley Publishing Co., 1982.
[5] A. Iranmanesh and H. Naraghi, The connection between some equivalence relations on fuzzy
groups, Iranian Journal of Fuzzy systems, 8(5) (2011), 69-80.
[6] A. Jain, Fuzzy subgroups and certain equivalence relations, Iranian Journal of Fuzzy Systems,
3(2) (2006), 75-91.
[7] V. Murali and B. B. Makamba, On an equivalence of fuzzy subgroups I, Fuzzy Sets and
Systems, 123 (2001), 259-264.
[8] V. Murali and B. B. Makamba, Counting the number of subgroups of an abelian group of
nite order, Fuzzy Sets and Systems, 144 (2004), 459-470.
[9] V. Murali and B. B. Makamba, Fuzzy subgroups of abelian groups, Far East J.Maths.Sci.
(FEJM), 14(1) (2004), 113-125.
[10] V. Murali and B. B. Makamba, Equivalence and isomorphism of fuzzy subgroups of abelian
groups, Journal of Fuzzy Mathematics, 16(2) (2008), 351-360.
[11] O. Ndiweni and B. B. Makamba, Classi cation of fuzzy subgroups of a dihedral group of
order 2pqr for distinct primes p, q and r, International Jounal of Mathematical Sciences and
Engineering Applications, 6(4) (2012), 159-174.
[12] S. Ngcibi, Case studies of equivalent fuzzy subgroups of nite abelian groups, Thesis, Rhodes
Univ., Grahamstown, 2001.
[13] S. Ngcibi, V. Murali and B. B. Makamba, Fuzzy subgroups of rank two abelian p-Groups,
Iranian Journal of Fuzzy Systems, 7(2) (2010), 149-153.
[14] J. M. Oh, An explicit formula for the number of fuzzy subgroups of a nite abelian p-group
of rank two, Iranian Journal of Fuzzy Systems, 10(6) (2013), 125-135.
[15] M. Pruszyriska, M. Dudzicz, On isomorphism between Finite Chains, Jounal of Formalised
Mathematics 12 (2003), 1-2.
[16] S. Ray, Isomorphic fuzzy groups II, Fuzzy Sets and Systems, 50 (1992), 201-207.
[17] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512 - 517.
[18] V. N. Shokeuv, An expression for the number of subgroups of a given order of a nite p-group,
Mathematical notes of the Academy of Sciences of the USSR, 12(5) (1972), 774-778.(Transl
from Matematicheskie Zametki,12(5) (1972), 561-568).
[19] T. Stehling, On computing the number of subgroups of a nite abelian group, Combinatorica,
12(4) (1992), 475-479.
[20] M. Tarnauceanu M and L. Bentea, On the number of Subgroups of nite abelian Groups,
Fuzzy Sets and Systems, 159 (2008), 1084 - 1096.
[21] M. Tarnauceanu, An arithmetic method of counting the subgroups of a nite abelian group,
Bull. Math.Soc.Sci.Math.Roumanie Tome, 53(101) No. 4, (2010), 373-386.
[22] A. C. Volf, Counting fuzzy subgroups and chains of subgroups, Fuzzy Systems and Arti cial
Intelligence, 10(3) (2004), 191 - 200.
[23] Y. Zhang and K. Zou, A note on an equivalence relation on fuzzy subgroups, Fuzzy Sets and
Systems, 95 (1992), 243-247.