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FUZZY PREORDERED SET, FUZZY TOPOLOGY AND FUZZY

AUTOMATON BASED ON GENERALIZED RESIDUATED

LATTICE

A. K. SINGH

Abstract. This work is towards the study of the relationship between fuzzy

preordered sets and Alexandrov (left/right) fuzzy topologies based on gener-
alized residuated lattices here the fuzzy sets are equipped with generalized

residuated lattice in which the commutative property doesn’t hold. Further,

the obtained results are used in the study of fuzzy automata theory.

1. Introduction

The study of fuzzy automata was initiated by Wee [27] and Santos [21] in 1960’s
after the introduction of fuzzy set theory by Zadeh [29]. Much later, a considerably
simpler notion of a fuzzy finite state machine (which is almost identical to a fuzzy
automaton) was introduced by Malik, Mordeson and Sen [14, 15]. Somewhat dif-
ferent notions were introduced subsequently in [6, 7, 8, 9, 10, 19]. In these studies,
the membership values in the closed interval [0, 1] were considered. During the
recent years, the researchers began to work on fuzzy automata with membership
values in complete residuated lattices, lattice-ordered monoids and some other kind
of lattices [3, 12, 16, 17, 18, 20, 28].

Recently, in [4], the concept of subsystem of a fuzzy transition system (fuzzy
finite automata over residuated lattice, in the sense of [15]) was introduced and
studied. Such concept of subsystems of a fuzzy transition system was proposed
in [5] as a natural generalization of the same studied in [15]. Simultaneously, the
topological study of subsystems was carried out in [1, 24].

In view of above, in this paper, we introduce Alexandrov (left/right) fuzzy topolo-
gies by using the concepts of (left/right) upper sets and (left/right) lower sets of a
fuzzy preordered set as well as derive several results. Further, we use these concepts
for the study of fuzzy automata (a generalization of the concept of fuzzy transition
system introduced in [4]). The study made here differs from the existing studies
done in [1, 15, 23, 24], in the sense that here the fuzzy sets are equipped with
generalized residuated lattice in which the commutative property doesn’t hold.

This paper is organized as follows: In section 2, we recall some notions related to
generalized residuated lattices, (left/right) upper set and (left/right) lower set of a
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fuzzy preordered set. In section 3, we introduce and study the concepts of Alexan-
drov (left/right) fuzzy topologies by using (left/right) upper sets and (left/right)
lower sets of fuzzy preordered set; while in section 4, we study the concepts of fuzzy
topologies introduced in previous sections for the study of fuzzy automata.

2. Preliminaries

In this section, we introduce some basic concepts related to generalized resid-
uated lattice. We recall the following concepts of generalized residuated lattice
from [2].

Definition 2.1. A generalized residuated lattice is an algebra
L = 〈L,∧,∨,⊗,→,;, 0, 1,>〉 such that the following condition hold.

(i) 〈L,∧,∨, 0, 1〉 is a bounded lattice with the least element 0 and the greatest
element 1.

(ii) 〈L,⊗,>〉 is a monoid.
(iii) For all x, y, z ∈ L, we have the equivalence:

x⊗ y ≤ z ⇔ x ≤ y → z ⇔ y ≤ x; z.

→ and ; are called the left and right implication of ⊗, respectively.

Definition 2.2. A generalized residuated lattice L = 〈L,∧,∨,⊗,→,;, 0, 1,>〉 is
said to be

(i) commutative (resp., non-commutative) if⊗ is commutative (resp., non-
commutative),

(ii) integral if > = 1,
(iii) complete if the underlying lattice 〈L,∧,∨, 0, 1〉 is complete.

Clearly, if ⊗ is commutative, then →=; holds.

Example 2.3. Consider the bounded lattice L = {0, a, b, 1} with the partial order
≤ defined by: 0 < a < b < 1, whose non-commutative ⊗ is defined as follows:

⊗ 0 a b 1
0 0 0 0 0
a 0 a b a
b 0 a b b
1 0 a b 1

It is easy to get.

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 0 b 1
1 0 a b 1

and

; 0 a b 1
0 1 1 1 1
a 0 a 1 1
b 0 a 1 1
1 0 a b 1

As we have (b→ a)⊗ b = 0 6= b⊗(b; a) = a. This shows that the
L = 〈L,∧,∨,⊗,→,;, 0, 1,>〉 is a generalized residuated lattice.

Some of the basic properties of generalized residuated lattices, which we use, are
as follows:
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Proposition 2.4. [26] Let 〈L,∧,∨,⊗,→,;, 0, 1,>〉 be a generalized residuated
lattices. Then the following properties hold for all a, b, c ∈ L:

(i) b→ (a→ c) = (b⊗ a)→ c and b; (a; c) = (a⊗ b) ; c;
(ii) > → a = a and >; a = a;

(iii) (b→ c)⊗(a→ b) ≤ a→ c and (a; b)⊗(b; c) ≤ a; c;
(iv) a⊗(∨i∈Jbi) = ∨i∈J(a⊗ bi) and (∨i∈Jbi)⊗ a = ∨i∈J(bi⊗ a);
(v) a→ 1 = 1 and a; 1 = 1;
(vi) (b→ a)⊗ b ≤ a and b⊗(b; a) ≤ a.
(vii) if b ≤ c, then a→ b ≤ a→ c and a; b ≤ a; c.

The concepts of fuzzy sets, fuzzy relations, fuzzy topologies and fuzzy automata,
we study in this paper, have the membership values in a generalized residuate
lattice. For example, a fuzzy subset of a nonempty set X is a function from X to L
and a fuzzy relation on X is a function from X ×X to L. Throughout, LX denotes
the family of all fuzzy subsets of X.

3. Fuzzy Preordered Set and Fuzzy Topology

The concept of fuzzy topology induces by upper sets of a fuzzy preordered sets
with the membership values in [0, 1] has been introduced and studied in [11]. In
this section, we study the concepts associated with (left/right) upper sets and
(left/right) lower sets of a fuzzy preordered set with the membership values in a
complete generalized residuated lattice. We show that the collection of (left/right)
upper (lower) sets of a fuzzy preordered set form a fuzzy topology. We begin with
the following concept of a fuzzy preordered set.

Definition 3.1. [22] Let R be a fuzzy relation on X. Then R is called

(i) reflexive if ∀x ∈ X,R(x, x) = 1, and
(ii) left transitive if R(x, y)⊗R(y, z) ≤ R(x, z) and

right transitive if R(y, z)⊗R(x, y) ≤ R(x, z),∀x, y, z ∈ X.

A reflexive and (left/right) transitive fuzzy relation is called a (left/right) fuzzy
preorder. If R is a (left/right) fuzzy preorder on X, then the pair (X,R) is called
a (left/right) fuzzy preordered set.

Given a left fuzzy preordered set (X,R), let Rop ∈ LX×X such that Rop(x, y) =
R(y, x). Then (X,Rop) is a right fuzzy preordered set.

Remark 3.2. If R is a left transitive, then Rop is a right transitive, i.e., If R is a left
transitive, then ∀x, y, z ∈ X,R(x, y)⊗R(y, z) ≤ R(x, z) → Rop(y, x)⊗Rop(z, y) ≤
Rop(z, x). Thus Rop is right transitive.

Definition 3.3. Let (X,R) be a left fuzzy preordered set and A ∈ LX . Then

(i) A is said to left upper set if A(x)⊗R(x, y) ≤ A(y),∀x, y ∈ X.
(ii) A is said to right upper set if R(x, y)⊗A(x) ≤ A(y),∀x, y ∈ X.

(iii) A is said to left lower set if A(y)⊗R(x, y) ≤ A(x),∀x, y ∈ X.
(iv) A is said to right lower set if R(x, y)⊗A(y) ≤ A(x),∀x, y ∈ X.
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Proposition 3.4. If A is a left upper set in a left fuzzy preordered set (X,R), then
A is a left lower set in a right fuzzy preordered set (X,Rop). Also if A is a right
upper set in a left fuzzy preordered set (X,R), then A is a right lower set in a right
fuzzy preordered set (X,Rop).

Proof. Let A be a left upper set in (X,R). Then ∀x, y ∈ X,A(x)⊗R(x, y) ≤
A(y)→ A(x)⊗Rop(y, x) ≤ A(y). Thus A is a left lower set in (X,Rop). Similarly,
if A is a right upper set in (X,R). Then ∀x, y ∈ X,R(x, y)⊗A(x) ≤ A(y) →
Rop(y, x)⊗A(x) ≤ A(y). Thus A is a right lower set in (X,Rop). �

Proposition 3.5. Let (X,R) be a (left/right) fuzzy preordered set and λ ∈ LX .
Then

(i) λ is a left upper set of a left fuzzy preordered set (X,R) if and only if λ is
a left lower set of a right fuzzy preordered set (X,Rop).

(ii) λ is a right upper set of a left fuzzy preordered set (X,R) if and only if λ
is a right lower set of a right fuzzy preordered set (X,Rop).

Proof. We only prove here for left upper set. The other can be proved in a similar
way.

(i) Let λ be a left upper set of a left fuzzy preordered set (X,R). Then λ(x)⊗R(x
, y) ≤ λ(y),∀x, y ∈ X. Hence, we have λ(y)⊗Rop(y, x) ≤ λ(x),∀x, y ∈ X, or
that λ(y)⊗R(x, y) ≤ λ(x),∀x, y ∈ X. Thus λ is a left lower set of a right fuzzy
preordered set (X,Rop). Similarly, it can be prove that if λ is a left lower set of a
right fuzzy preordered set (X,Rop), then it is also a left upper set of a left fuzzy
preordered set (X,R). �

In this paper we are discussing only for left fuzzy preordered set which are similar
to fuzzy preordered set (X,R) and the right fuzzy preordered set (X,Rop) follows
analogously.

Proposition 3.6. Let (X,R) be a fuzzy preordered set and λ ∈ LX . Then

(i) λ is a left upper set of (X,R) if and only if λ : (X,R) −→ (L,;) is an
order preserving map.

(ii) λ is a right upper set of (X,R) if and only if λ : (X,R) −→ (L,→) is an
order preserving map.

Proof. We only prove here for left upper set. The others can be proved in a similar
way. Let λ ∈ LX be a left upper set of a fuzzy preordered set (X,R). Then
λ(x)⊗R(x, y) ≤ λ(y),∀x, y ∈ X, or that R(x, y) ≤ λ(x) ; λ(y),∀x, y ∈ X. Thus
λ : (X,R) −→ (L,;) preserves order. Converse follows similarly. �

Proposition 3.7. Let (X,R) be a fuzzy preordered set and x, z ∈ X. Then

(i) [z]R ∈ LX such that [z]R(x) = R(z, x) is a left upper set of (X,R), and
(ii) [z]R ∈ LX such that [z]R(x) = R(x, z) is a right lower set of (X,R).

Proof. (i) Let [z]R(x) = R(z, x), x, z ∈ X. Then [z]R(x)⊗R(x, y) = R(z, x)⊗R(x, y)
≤ R(z, y), as R is left transitive. Thus [z]R(x)⊗R(x, y) ≤ R(z, y) = [z]R(y). Hence
[z]R is a left upper set of (X,R).
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(ii) Let [z]R(y) = R(y, z), y, z ∈ X. Then R(x, y)⊗[z]R(y) = R(x, y)⊗R(y, z) ≤
R(x, z), as R is transitive. Thus R(x, y)⊗[z]R(y) ≤ R(x, z) = [z]R(x). Hence [z]R
is a right lower set of (X,R). �

Proposition 3.8. Let (X,R) be a fuzzy preordered set and λ ∈ LX . Then

(i) if λ is a left upper set of (X,R), then for each a ∈ L, λ; a is a right lower
set of (X,R).

(ii) if λ is a left lower set of (X,R), then for each a ∈ L, λ; a is a right upper
set of (X,R).

Proof. (i) Let λ be a left upper set of a fuzzy preordered set (X,R). Then λ(x)⊗
R(x, y) ≤ λ(y),∀x, y ∈ X. To show that λ; a is a right lower set, it is enough to
show thatR(x, y)⊗(λ(y) ; a) ≤ λ(x) ; a,∀x, y ∈ X, or that λ(x)⊗R(x, y)⊗(λ(y)
; a) ≤ a,∀x, y ∈ X. Now, λ(x)⊗R(x, y)⊗(λ(y) ; a) ≤ λ(y)⊗(λ(y) ; a) ≤ a
(cf., Proposition 2.4). Thus λ; a is a right lower set.

(ii) Similarly, it can be prove that if λ is a left lower set of a fuzzy preordered
set (X,R), then for each a ∈ L, λ; a is a right upper set of (X,R). �

Proposition 3.9. Let (X,R) be a fuzzy preordered set and λ ∈ LX . Then

(i) if λ is a right upper set of (X,R), then for each a ∈ L, λ→ a is a left lower
set of (X,R).

(ii) if λ is a right lower set of (X,R), then for each a ∈ L, λ→ a is a left upper
set of (X,R).

Proof. (i) Let λ be a right upper set in a fuzzy preordered set (X,R). Then R(x, y)⊗
λ(x) ≤ λ(y),∀x, y ∈ X. To show that λ→ a is a left lower set, it is enough to show
that (λ(y) → a) ⊗ R(x, y) ≤ λ(x) → a,∀x, y ∈ X, or that (λ(y) → a) ⊗ R(x, y) ⊗
λ(x) ≤ a,∀x, y ∈ X. Now, (λ(y) → a) ⊗ R(x, y) ⊗ λ(x) ≤ (λ(y) → a) ⊗ λ(y) ≤ a
(cf., Proposition 2.4). Thus λ→ a is a left lower set.

(ii) Similarly, it can be prove that if λ is a right lower set of a fuzzy preordered
set (X,R), then for each a ∈ L, λ→ a is a left upper set of (X,R). �

Proposition 3.10. Let (X,R) be a fuzzy preordered set and λ ∈ LX . Then

(i) if λ is a right upper set of (X,R), then for each a ∈ L, λ⊗a is a right upper
set of (X,R).

(ii) if λ is a right lower set of (X,R), then for each a ∈ L, λ⊗a is a right lower
set of (X,R).

Proof. (i) Let λ be a right upper set of a fuzzy preordered set (X,R) and a ∈ L.
Then R(x, y) ⊗ λ(x) ≤ λ(y),∀x, y ∈ X, which implying that R(x, y) ⊗ λ(x) ⊗ a ≤
λ(y)⊗ a,∀x, y ∈ X. Thus λ⊗ a is a right upper set in (X,R).

(ii) The proof for the case of right lower set follows similarly. �

Proposition 3.11. Let (X,R) be a fuzzy preordered set and λ ∈ LX . Then

(i) if λ is a left upper set of (X,R), then for each a ∈ L, a⊗ λ is a left upper
set of (X,R).

(ii) if λ is a left lower set of (X,R), then for each a ∈ L, a ⊗ λ is a left lower
set of (X,R).
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Proof. Follows from [25]. �

The following is the concept of fuzzy topology in the sense of Lowen [13].

Definition 3.12. A fuzzy topology τ on X is a subset of LX , which is closed
under arbitrary suprema and finite infima and which contains all constant fuzzy
sets. The fuzzy sets in τ are called fuzzy τ-open.

Proposition 3.13. If (X,R) is a fuzzy preordered set then the family τ of its all
left (resp. right) upper sets satisfies the following conditions, ∀λi ∈ τ and ∀α ∈ L:

(i) α ∈ τ ,
(ii) ∨i∈Jλi ∈ τ and ∧i∈Jλi ∈ τ ,

(iii) α⊗ λ ∈ τ (resp.λ⊗ α ∈ τ),
(iv) α; λ ∈ τ (resp.α→ λ ∈ τ).

Proof. We only prove here for left upper set. The others can be proved in a similar
way.
(i) is obvious.
(ii) Let λi ∈ τ, i ∈ J . Then λi(x) ⊗ R(x, y) ≤ λi(y),∀x, y ∈ X and ∀i ∈ J . Now,
(∨i∈Jλi(x)) ⊗ R(x, y) = ∨i∈J(λi(x) ⊗ R(x, y)) ≤ ∨i∈Jλi(y). Thus ∨i∈Jλi ∈ τ .
Also, (∧i∈Jλi(x))⊗R(x, y) ≤ λi(x)⊗R(x, y) ≤ λi(y),∀i ∈ J . Thus (∧i∈Jλi(x))⊗
R(x, y) ≤ ∧i∈Jλi(y). Hence ∧i∈Jλi ∈ τ .
(iii) If λ is a left upper set, then for any x, y ∈ X,λ(x) ⊗ R(x, y) ≤ λ(y). Since
⊗ is order-preserving in each place, we get α ⊗ λ(x) ⊗ R(x, y) ≤ α ⊗ λ(y). Thus
α⊗ λ ∈ τ .
(iv) If λ is a left upper set, then for any x, y ∈ X,λ(x) ⊗ R(x, y) ≤ λ(y). Then
as (α ; λ(x)) ⊗ (λ(x) ; λ(y)) ≤ (α ; λ(y)) (cf., Proposition 2.4). Thus (α ;

λ(x)) ; (α; λ(y)) ≥ λ(x) ; λ(y) ≥ R(x, y). Hence α; λ is a left upper set. �

Thus the family of (left/right) upper sets of a fuzzy preordered set (X,R) forms
an Alexandrov-(left/right) fuzzy topology on X, which we shall denote by τlR and
τrR respectively. The family of (left/right) lower sets of a fuzzy preordered set also
form an Alexandrov-(left/right) fuzzy topology, which is given below.

Proposition 3.14. If (X,R) is a fuzzy preordered set then the family τ of its all
left (resp. right ) lower sets satisfies the following conditions, ∀λi ∈ τ and ∀α ∈ L:

(i) α ∈ τ ,
(ii) ∨i∈Jλi ∈ τ and ∧i∈Jλi ∈ τ ,

(iii) α⊗ λ ∈ τ (resp.λ⊗ α ∈ τ),
(iv) α; λ ∈ τ (resp.α→ λ ∈ τ).

The following gives the characterization of fuzzy relation of a fuzzy preordered set
through it’s (left/right) upper sets.

Proposition 3.15. For given a fuzzy preordered set (X,R). We have

(i) let F be the family of all left upper sets. Then R(x, y) = ∧{λ(x) ; λ(y) :
λ ∈ F},∀x, y ∈ X.

(ii) let F be the family of all right upper sets. Then R(x, y) = ∧{λ(x)→ λ(y) :
λ ∈ F},∀x, y ∈ X.
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(iii) let F′ be the family of all left upper sets. Then R(x, y) = ∧{λ(y) ; λ(x) :
λ ∈ F′},∀x, y ∈ X.

(iv) let F′ be the family of all right upper sets. Then R(x, y) = ∧{λ(y)→ λ(x) :
λ ∈ F′},∀x, y ∈ X.

Proof. We only prove here for left upper set. The others can be proved in a similar
way. Let λ be a left upper set of a fuzzy preordered set (X,R). Then for all
x, y ∈ X,λ(x)⊗R(x, y) ≤ λ(y), or that R(x, y) ≤ λ(x) ; λ(y), i.e., R(x, y) ≤
∧{λ(x) ; λ(y) : λ ∈ F}. Also for x, z ∈ X, as zR(x) is a left upper set in
(X,R),∧{zR(x) ; zR(y) : z ∈ X} ≤ R(x, x) ; R(x, y) = 1 ; R(x, y) = R(x, y)
(cf., Proposition 2.4). Thus ∧{λ(x) ; λ(y) : λ ∈ F} ≤ R(x, y). Hence R(x, y) =
∧{λ(x) ; λ(y) : λ ∈ F},∀x, y ∈ X. �

Proposition 3.16. Let (X,R) be a fuzzy preordered set and λ ∈ LX . Then

(i) if λ is a left upper set. Then for each a ∈ L, a ; λ is a left upper set of
(X,R).

(ii) if λ is a right upper set. Then for each a ∈ L, a→ λ is a right upper set of
(X,R).

Proof. We only prove here for left upper set. The others can be proved in a similar
way. Let x, y ∈ X. Then (a ; λ(x)) ⊗ (λ(x) ; λ(y)) ≤ (a → λ(y)), or that
(λ(x) ; λ(y)) ≤ (a ; λ(x)) ; (a ; λ(y)). Thus R(x, y) ≤ (a ; λ(x)) ; (a ;

λ(y)) (cf., Proposition 3.15), whereby (a ; λ(x)) ⊗ R(x, y) ≤ a ; λ(y). Hence
a; λ is a left upper set in (X,R). �

Before stating next, recall from [4] that for fuzzy relations R,S ∈ LX×X , their
composition R ◦ S is a fuzzy relation on X given by (R ◦ S)(x, y) = ∨{R(x, z) ⊗
S(z, y) : z ∈ X}.

Proposition 3.17. Given a fuzzy preordered set (X,R), λ ∈ LX is a

(i) left upper set if and only if λ is a solution to a fuzzy relational equation
χ ◦Rl = χ,

(iv) right upper set if and only if λ is a solution to a fuzzy relational equation
Rr ◦ χ = χ,

where χ ∈ LX is an unknown.

Proof. We only prove here for left upper set. The others can be proved in a similar
way. Let λ be a left upper set of a fuzzy preordered set (X,R). Then λ ◦ Rl ≤ λ.
Also, from the reflexivity of Rl, λ ≤ λ ◦Rl. Thus λ ◦Rl = λ, or that λ is a solution
of fuzzy relational equation χ ◦Rl = χ. Converse is trivial. �

Proposition 3.18. Given a fuzzy preordered set (X,R), λ ∈ LX is a

(i) left lower set if and only if λ is a solution to a fuzzy relational equation
χ ◦Rl = χ,

(iv) right lower set if and only if λ is a solution to a fuzzy relational equation
Rr ◦ χ = χ,

where χ ∈ LX is an unknown.
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Proof. Similar to that of Proposition 3.17. �

Proposition 3.19. Let (X,R) be a fuzzy preordered set and λ ∈ LX . Then

(i) if λ is a left upper set, ¬lλ is a right lower set.
(ii) if λ is a right upper set, ¬rλ is a left lower set.

(iii) if λ is a left lower set, ¬lλ is a right upper set.
(iv) if λ is a right lower set, ¬rλ is a left upper set.

Proof. We only prove here for left upper set and left lower set. The others can be
proved in a similar way.
(i) Let λ be a left upper set in a fuzzy preordered set (X,R). Then for all x, y ∈
X,λ(x) ⊗ R(x, y) ≤ λ(y), or that ¬l(λ(x) ⊗ R(x, y)) ≥ ¬lλ(y). Now, ¬l(λ(x) ⊗
R(x, y)) ≥ ¬lλ(y) ⇒ (λ(x) ⊗ R(x, y)) ; 0 ≥ ¬lλ(y) ⇒ R(x, y) ; (λ(x) ; 0) ≥
¬lλ(y) (cf., Proposition 2.4) ⇒ R(x, y) ; ¬lλ(x) ≥ ¬lλ(y) ⇒ R(x, y) ⊗ ¬lλ(y) ≤
¬lλ(x). Thus ¬lλ is a right lower set.
(iii) Let λ be a left lower set in a fuzzy preordered set (X,R). Then for all x, y ∈
X,λ(y) ⊗ R(x, y) ≤ λ(x), or that ¬l(λ(y) ⊗ R(x, y)) ≥ ¬lλ(x). Now, ¬l(λ(y) ⊗
R(x, y)) ≥ ¬lλ(x) ⇒ (λ(y) ⊗ R(x, y)) ; 0 ≥ ¬lλ(x) ⇒ R(x, y) ; (λ(y) ; 0) ≥
¬lλ(x) (cf., Proposition 2.4) ⇒ R(x, y) ; ¬lλ(y) ≥ ¬lλ(x) ⇒ R(x, y) ⊗ ¬lλ(x) ≤
¬lλ(y). Thus ¬lλ is a right upper set. �

Remark 3.20. Let ¬l (or, ¬r) be involutive. Then

(i) λ ∈ LX is a left upper set if and only if ¬lλ is a right lower set.
(ii) λ ∈ LX is a right upper set if and only if ¬rλ is a left lower set.

Definition 3.21. A map f : (X,R) −→ (Y, S) between fuzzy preordered sets is
called order preserving if R(x, y) ≤ S(f(x), f(y)),∀x, y ∈ X.

Proposition 3.22. Let the map f : (X,R) −→ (Y, S) between fuzzy preordered sets
be order preserving. Then

(i) inverse image of a left upper set of (Y, S) is a left upper set of (X,R).
(ii) inverse image of a right upper set of (Y, S) is a right upper set of (X,R).

(iii) inverse image of a left lower set of (Y, S) is a left lower set of (X,R).
(iv) inverse image of a right lower set of (Y, S) is a right lower set of (X,R).

Proof. We only prove here for left upper set and right upper set. The others can
be proved in a similar way. (i) Follows from [25].
(ii) Let x, y ∈ X and λ ∈ LY be a right upper set of (Y,R). Then R(x, y) ⊗
f−1(λ)(x) ≤ R(x, y) ⊗ λ(f(x)) ≤ S(f(x), f(y)) ⊗ λ(f(x)) ≤ λ(f(y)) ≤ f−1(λ)(y).
Thus f−1(λ) is a right upper set of (X,R). �

4. Fuzzy Topology and Fuzzy Automaton

In this section, we show that the results for fuzzy automata introduced in [4] are
easy consequences of the results shown in the previous section for fuzzy preordered
sets and fuzzy topologies. We begin with the following concept of a fuzzy automaton
introduced in [4].
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Definition 4.1. A fuzzy automaton is a triple M = (Q,X, δ), where Q is a
nonempty set (of states of M), X is a monoid (the input monoid of M) whose
identity shall be denoted as e, and δ is an L-valued subset of Q × X × Q, i.e., a
map δ : Q×X ×Q→ L such that ∀p, q ∈ Q,

δ(q, e, p) =

{
1 if q = p
0 if q 6= p

and, δ(q, xy, p) = ∨{δ(q, x, r)⊗ δ(r, y, p) : r ∈ Q},∀x, y ∈ X.

We now introduce the following concept of homomorphism between fuzzy au-
tomata.

Definition 4.2. A homomorphism from a fuzzy automaton (Q,X, δ) to a fuzzy
automaton (R, Y, λ) is a pair (f, g) of maps, where f : Q → R and g : X → Y are
functions such that

∀(q, x, p) ∈ Q×X ×Q, λ(f(q), g(x), f(p)) ≥ δ(q, x, p).
The pair (f, g) is called a strong homomorphism if

∀(q, x, p) ∈ Q×X ×Q, λ(f(q), g(x), f(p)) = ∨{δ(q, x, t) : t ∈ Q, f(t) = f(p)}.

It can be seen that the class of all fuzzy automata and their homomorphisms
forms a category FTS (under obvious composition of maps).

Definition 4.3. A reverse fuzzy automaton of a fuzzy automatonM = (Q,X, δ)
is a fuzzy automaton M̄ = (Q,X, δ̄), where δ̄ : Q×X ×Q→ L is a map such that
δ̄(p, x, q) = δ(q, x, p),∀p, q ∈ Q and ∀x ∈ X.

Definition 4.4. Let M = (Q,X, δ) be a fuzzy automaton. Then λ ∈ LQ is called

(i) a left subsystem of M if λ(p)⊗ δ(p, x, q) ≤ λ(q),∀p, q ∈ Q and ∀x ∈ X;
(ii) a right subsystem of M if δ(p, x, q)⊗λ(p) ≤ λ(q),∀p, q ∈ Q and ∀x ∈ X;

(iii) a left reverse subsystem of M if λ(q) ⊗ δ(p, x, q) ≤ λ(p),∀p, q ∈ Q and
∀x ∈ X.

(iv) a right reverse subsystem of M if δ(p, x, q)⊗λ(q) ≤ λ(p),∀p, q ∈ Q and
∀x ∈ X.

(v) a left double subsystem of M if it is both left subsystem and left reverse
subsystem of M .

(vi) a right double subsystem of M if it is both right subsystem and right
reverse subsystem of M .

Let M = (Q,X, δ) be a fuzzy automaton. Define Rδ(p, q) = ∨{δ(p, x, q) : x ∈
X}, p, q ∈ Q. Then Rδ is a fuzzy preorder on Q. Now, we have the following.

Proposition 4.5. Let M = (Q,X, δ) be a fuzzy automaton and λ ∈ LQ. Then the
following are equivalent:

(i) λ is a left (resp. right) subsystem of M .
(ii) λ is τRlδ -open (resp. τRrδ -open).

(iii) λ is a solution to a fuzzy relational equation χ◦Rlδ = χ (resp. Rrδ◦χ = χ,),
where χ ∈ LQ is an unknown.

Proof. For left subsystem, the result follows from Propositions 3.13 and 3.17. �
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Proposition 4.6. Let M = (Q,X, δ) be a fuzzy automaton and λ ∈ LQ. Then the
following are equivalent:

(i) λ is a left (resp. right) reverse subsystem of M .
(ii) λ is τRlδ -open (resp. τRrδ -open).
(iii) λ is a solution to a fuzzy relational equation χ◦Rlδ = χ (resp. Rlδ ◦χ = χ),

where χ ∈ LQ is an unknown.

Proof. For left subsystem, it follows from Propositions 3.14 and 3.18. �

Proposition 4.7. Let M = (Q,X, δ) be a fuzzy automaton and λ ∈ LQ. Then

(i) if λ is a left reverse subsystem, then ¬lλ is a right subsystem.
(ii) if λ is a right reverse subsystem, then ¬rλ is a left subsystem.
(iii) if λ is a left subsystem, then ¬lλ is a left reverse subsystem.
(iv) if λ is a right subsystem, then ¬rλ is a right reverse subsystem.

Proof. Follows from Proposition 3.19. �

Proposition 4.8. Let M = (Q,X, δ) be a fuzzy automaton and λ ∈ LQ. Then
λ is a left (resp. right) double subsystem of M if and only if λ is both τRlδ and
τRlδ -open (resp. both τRrδ and τRrδ -open).

Proof. For left subsystem, it follows from Propositions 3.13 and 3.14. �

Definition 4.9. Let M = (Q,X, δ) and N = (R, Y, λ) be fuzzy automata. Let
(f ⊗ g) : M → N be a fuzzy homomorphism and µ be a fuzzy subset of Q. Define
the fuzzy subset f(µ) of R by ∀q′ ∈ R,

f(µ)(q′) =

{
∨{µ(q) : q ∈ Q, f(q) = q′} if f−1(q′) 6= φ
0 if f−1(q′) = φ

Proposition 4.10. Let M = (Q,X, δ) and N = (R, Y, λ) be fuzzy automata. Let
f : M → N be an onto strong fuzzy homomorphism. Then if µ is a left (resp. right)
subsystem of Q, then f(µ) is a left (resp. right) subsystem of R.

Proof. We only prove for left subsystem. For which, let q′, p′ ∈ R, x ∈ X. Then
f(µ)(p′) ⊗ λ(p′, x, q′) = (∨{µ(p) : p ∈ Q, f(p) = p′}) ⊗ λ(p′, x, q′) = ∨{µ(p) ⊗
λ(p′, x, q′) : p ∈ Q, f(p) = p′}. Let p, q ∈ Q be such that f(p) = p′ and f(q) =
q′. Then µ(p) ⊗ λ(p′, x, q′) = µ(p) ⊗ λ(f(p), x, f(q)) = µ(p) ⊗ (∨{δ(p, x, r) : r ∈
Q, f(r) = f(q) = q′}) = ∨{µ(p) ⊗ δ(p, x, r) : r ∈ Q, f(r) = f(q) = q′} ≤ ∨{µ(r) :
r ∈ Q, f(r) = q′} = f(µ)(q′). Hence f(µ)(p′) ⊗ λ(p′, x, q′) ≤ ∨{f(µ)(q′) : p ∈
Q, f(p) = p′} = f(µ)(q′). Thus f(µ) is a left subsystem of R. �

It can be seen that the above proposition is valid only for left (resp. right)
subsystem but not for left (resp. right) reverse subsystem.

Remark 4.11. The following counter-example shows that the above result need
not be true if f is not onto.

Example 4.12. For the generalized residuated lattice L, consider the integral
monoid (L,⊗, e), where L = [0, 1], a ⊗ b = max(0, a + b − 1),∀a, b ∈ L and e = 1.
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Consider a fuzzy automaton (Q,X, δ), where Q = {p, q} = R,X = {x} and δ :
Q×X ×Q→ L is given by

δ(q, e, p) =

{
1 if q = p
0 if q 6= p

δ(p, x, q) = δ(q, x, p) = 1 for fixed p, q ∈ Q and for fixed x ∈ X(x 6= 0), for other
p, q ∈ Q and x ∈ X, δ(p, x, q) = 0. Then M = (Q,X, δ) is a fuzzy automaton.
Let f : Q → Q be a mapping such that f(p) = f(q) = p. Then f is not onto.
Clearly f is a strong fuzzy homomorphism. Let µ be a fuzzy subset of Q such
that µ(p) = µ(q) = 0.5 for fixed p, q ∈ Q and for other p ∈ Q,µ(p) = 0. Then
µ(q) = 0.5 = µ(p)⊗ δ(p, x, q),∀p, q ∈ Q. Thus µ is a left (resp. right) subsystem of
M . But f(µ)(p)⊗ δ(p, x, q) = ∨{µ(p)⊗ δ(p, x, q) : p ∈ Q, f(p) = p′} = {0.5⊗ 1} =
0.5 > 0 = f(µ)(q). Thus f(µ) is not a left (resp. right) subsystem of Q.

Some other results for (left/right) subsystems and (left/right) reverse subsystems
of fuzzy automata can be derived from Propositions 3.6, 3.8, 3.9, 3.10 and 3.11.

5. Conclusion

In this paper, we tried to study the concept of (left/right) upper set and (left/right)
lower set of a fuzzy preordered set. We showed that their collection form an Alexan-
drov (left/right) fuzzy topologies. Finally, we have used such concepts for the study
of fuzzy automata.
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