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SOME COMPUTATIONAL RESULTS FOR THE FUZZY

RANDOM VALUE OF LIFE ACTUARIAL LIABILITIES

J. DE ANDRÉS-SÁNCHEZ AND L. GONZÁLEZ-VILA PUCHADES

Abstract. The concept of fuzzy random variable has been applied in seve-

ral papers to model the present value of life insurance liabilities. It allows
the fuzzy uncertainty of the interest rate and the probabilistic behaviour of

mortality to be used throughout the valuation process without any loss of in-

formation. Using this framework, and considering a triangular interest rate,
this paper develops closed expressions for the expected present value and its

defuzzified value, the variance and the distribution function of several well-

known actuarial liabilities structures, namely life insurances, endowments and
life annuities.

1. Introduction

One extended use of fuzzy set theory (FST) in insurance financial pricing consists
of modelling uncertain parameters such as interest rates, salary growth rates or
claim amounts with fuzzy numbers (see [18], [22] and [5]) in the life insurance
context, and [10] and [11] in property liability insurance). Following the arguments
depicted in these papers, we also assume that the fuzzy uncertainty only arises from
the interest rate used for valuing and that it can be modelled with fuzzy numbers.

The common approach in insurance fuzzy pricing is based on introducing the
fuzzy interest rate over the classic equivalence principle. It reduces the probabili-
ties of insured events to deterministic rates of occurrence. Thus, insurance fuzzy
pricing becomes non-stochastic and can be calculated using the financial mathe-
matics with fuzzy parameters developed in [6] and [19]. However, with this model,
the information that provides the complete statistical description of the insured
events is lost.

To avoid this drawback, [2], [3] and [4] developed an approach in a life-insurance
context that combines the stochastic approach to life-insurance (see [13] under de-
terministic interest rates) and the quantification of interest rates with fuzzy num-
bers. In those papers, fuzzy random variables and measures of solvency in portfo-
lios of policies are used to develop a general formulation for determining the fair
value and risk of individual contracts. However, no shape for fuzzy interest rates
is assumed a priori and consequently no closed expression for these magnitudes
is developed. This paper extends those results by regarding the average interest
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rate throughout the pricing horizon of the liabilities as a triangular fuzzy number
(TFN). Notice that TFNs are extensively used in practical applications (see the
aforementioned papers in the actuarial field).

Firstly, this paper develops closed expressions for the mathematical expectation
of the present value of insured life contingencies and its defuzzified value by means
of the β-average value of a fuzzy number introduced by [8]. Following [20] this
defuzzifying method has interesting properties in fuzzy-random decision-making
environments because fundamentals of fuzzy utility function can be established by
means of an axiomatic development in the fuzzy expected utility approach.

We also develop the closed expression of the variance measure by [12] for the
present value of those life-insurance structures. Likewise, we obtain a distribution
function of the present value of payments that could be useful when simulating the
liabilities of life-insurance portfolios.

This paper is organized as follows: in section 2 we describe the concepts of FST
used to develop our paper. In section 3 we introduce the fuzzy discount factor
induced by a triangular discount rate. Finally, sections 4, 5 and 6 demonstrate how
our fuzzy random approach can be used to price life insurance, endowments and
life annuities, respectively.

2. Basic Concepts of Fuzzy Set Theory

2.1. Fuzzy Numbers.

A fuzzy set Ã is a subset defined over a reference set X for which the level of

membership of an element x ∈ X to Ã accepts values other than 0 or 1. So, Ã can

therefore be defined as Ã =
{(
x, µÃ (x)

)
|x ∈ X

}
, where µÃ(x) is the membership

function and it is a mapping µÃ: X → [0, 1]. Alternatively, a fuzzy set Ã can be

represented by its level sets α or α-cuts. For a fuzzy set Ã, we will name an α-cut
with Aα, its mathematical expression being Aα =

{
x ∈ X|µÃ (x) ≥ α

}
, 0 ≤α ≤ 1.

Ã is said to be normal if sup
x∈X

µÃ (x) = 1. Ã is convex if its α-cuts are closed and

bounded intervals for 0 < α≤ 1. In our paper we will use fuzzy numbers that are a
particular case of convex and normal fuzzy sets where the referential set X is the
set of real numbers <.

A fuzzy number (FN) Ã is a normal and convex fuzzy set defined over real num-
bers <. It is the main instrument used in FST for quantifying uncertain quantities.

The convexity of Ã implies that the α-cuts of Ã are confidence intervals where the
lower and upper extremes are increasing (decreasing) functions respect to α. So,
∀α ∈ (0, 1]:

Aα =
[
Aα, Aα

]
=

[
inf
x∈X

{
µÃ (x) ≥ α

}
, sup
x∈X

{
µÃ (x) ≥ α

}]
(1)

with the convention that Aα=0 is the smallest closed interval containing the support

of Ã, where the support of Ã comprises all x ∈ < that µÃ (x) > 0. From an intuitive
point of view, a FN can be interpreted as a fuzzy quantity approximately equal to
the real number for which the membership function takes the value 1.
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Triangular fuzzy numbers (TFNs) are widely used in practical applications and,
of course, in actuarial problems, as we have shown in the aforementioned litera-

ture. We will symbolize a TFN Ã as Ã = (al, ac, au), where ac is the core of Ã,

i.e. µÃ (ac) = 1, and al, au are the lower and upper values of the support of Ã.
Analytically a TFN is characterized by its α-cuts, Aα, as:

Aα =
[
Aα, Aα

]
= [al + (ac − al)α, au − (au − ac)α] ,∀α ∈ [0, 1] (2)

It is very common in real insurance situations to estimate magnitudes as appro-
ximate quantities, for example, by means of a sentence like “the claim provisions
must be around 9, 000 monetary units”. Clearly, FNs can be used to represent these
magnitudes. However, these values often need to be quantified with crisp values or
intervals as well. For example, in our context, this will occur whenever the defini-
tive amount of claim provisions needs to be specified in financial statements. This
paper proposes using the concept of the expected interval of a FN by [14] and the
expected value of a FN by [8].

For a FN Ã, the expected interval will be symbolised as eI

(
Ã
)

where:

eI

(
Ã
)

=

[∫ 1

0

Aαdα,

∫ 1

0

Aαdα

]
(3a)

Notice that for a linear combination of FNs,
∑n
i=1 kiÃi, ki ∈ <:

eI

(
n∑
i=1

kiÃi

)
=

n∑
i=1

kieI

(
Ãi

)
(3b)

From the expected interval of a FN we can obtain the β-expected value of the

FN Ã. Given a fixed risk aversion coefficient β, 0 ≤ β ≤ 1, the β-expected value of

Ã, eV

(
Ã;β

)
, is:

eV

(
Ã;β

)
= (1− β)

∫ 1

0

Aαdα+ β

∫ 1

0

Āαdα (4a)

Again, if we consider a linear combination of FNs, it follows that:

eV

(
n∑
i=1

kiÃi;β

)
=

n∑
i=1

kieV

(
Ãi;β

)
(4b)

Let Ã1, . . . , Ãn be n FNs. Let f(·) be a continuous function of n variables. Using

Zadeh’s extension principle ([28]) allows us to define a FN B̃ induced by the FNs

Ã1, . . . , Ãn through f as B̃ = f
(
Ã1, Ã2, . . . , Ãn

)
. Although it is often impossible

to obtain a closed expression for the membership function of B̃, in many cases
it is possible to obtain its α-cuts, Bα, from A1α , A2α , . . . , Anα . Specifically, [21]
demonstrates that:

Bα = {y = f (x1, x2, . . . , xn) , xi ∈ Aiα , i = 1, 2, . . . , n} (5)



4 J. de Andrés-Sánchez and L. González-Vila Puchades

In actuarial mathematics, many functional relationships are continuously in-
creasing or decreasing with respect to all the variables involved, in such a way that

it is easy to evaluate the α-cuts of B̃. If the function f(·) that induces B̃ increases
with respect to the first m variables, where m≤n, and decreases with respect to
the last n−m variables, [7] demonstrate that Bα is:

Bα =
[
Bα, Bα

]
=

=
[
f
(
A1α

, . . . , Amα, Am+1α, . . . , Anα
)
, f
(
A1α, . . . , Amα, Am+1α

, . . . , Anα

)]
(6)

2.2. Fuzzy Random Variables.

In real situations, the uncertainty comes from different sources: randomness,
hazard, vagueness, inaccuracy, imprecision, etc. So, following [27], stochastic vari-
ability is described with probability theory, but other relevant types of uncertainty
such as imprecision can be captured by fuzzy sets. The concept of fuzzy random
variable (FRV) combines both random and fuzzy uncertainty and has been deve-
loped in several papers (see e.g. [16], [17], [24] and [29]), although there is no single
definition of it. This paper uses the concept of FRV introduced in [24] because
it highly suits our purposes given that the outcomes of the present value of life
insurances, endowments and life annuities are FNs rather than real values due to
the fuzzy nature of interest rates.

Let {Ω,A} be a measurable space, {<,B} the Borel measurable space and F (<)

denote the set of FNs. Consider the fuzzy set valued mapping X̃:

X̃ : Ω → F (<)

∀ω ∈ Ω → X̃ (ω) =
{(
z, µX̃(ω) (z)

)}
∈ F (<) (7)

So, (7) is called a fuzzy random variable if:

∀B ∈ B,∀α ∈ [0, 1] , {ω ∈ Ω| X (ω)α ∩B 6= ∅} ∈ A (8)

where X (ω)α =
{
z ∈ <|µX̃(ω) (z) ≥ α

}
=
[
X (ω)

α
, X (ω)α

]
are the α−level sets

of the FN X̃ (ω). Of course, in (7) z is a real number.
A FRV can be interpreted as a RV whose realizations are not real numbers but

FNs.
It can be demonstrated that any FRV X̃ defines, ∀α ∈ [0, 1], an infima random

variable (RV) Xα and a suprema RV Xα whose realizations are, respectively, the

lower and upper extremes of the α-cuts of X̃ (ω) , ∀ω ∈ Ω, X (ω)
α
, X (ω)α.

Let {Ω,A, P} be a probability space. Given that in our paper we will price
discrete life-insurances, the following definitions refer to discrete FRVs that come
from the set of elemental outcomes Ω = {ωi}i=1,...,n with P (ωi) = pi, ∀i = 1, . . . , n.

Let X̃ be a discrete FRV on {Ω,A, P}, with FXα
and FXα

, ∀α ∈ [0, 1], the

distribution functions of the RVs Xα and Xα being obtained from X̃. Then, ∀α,
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we define the couple of the distribution functions of the RVs infima and suprema

for that membership level FX̃ (x)α=
{
FX̃ (x)

α
, FX̃ (x)

α

}
as:

FX̃ (x)
α

= P
(
Xα ≤ x

)
= FXα

(x) (9a)

FX̃ (x)
α

= P (Xα ≤ x) = FXα
(x) (9b)

Given the probability space {Ω,A, P} with Ω = {ωi}i=1,...,n and P (ωi) =
pi, ∀i = 1, . . . , n, the mathematical expectation of a discrete ordinary RV is a func-
tion of its crisp realizations {x1, x2,...,xn}. So, the mathematical expectation of a
RV, X, E (X), is a real valued function of n real variables E (X) (x1, x2, . . . , xn) =∑n
i=1 xipi. If we consider, as mentioned above, that a FRV can be interpreted as

a RV whose realizations are the FNs X̃(ω1), X̃(ω2), . . ., X̃(ωn), the mathematical
expectation of a FRV can be obtained by using Zadeh’s extension principle.

Let X̃ be a discrete FRV on {Ω,A, P} whose realizations are the FNs X̃(ω1),

X̃(ω2), . . ., X̃(ωn). Let E (X) be the real valued mapping:

E (X) : <n → <
∀ (x1, . . . , xn) ∈ <n → E (X) (x1, x2, . . . , xn) =

∑n
i=1 xipi ∈ < (10)

The mathematical expectation of X̃, Ẽ
(
X̃
)

, is the FN induced by the FNs

X̃(ω1), X̃(ω2), . . . , X̃(ωn) through E (X).

Notice that in (10) E (X) is an increasing function of the outcomes x1, x2,...,xn.
So, we can use (6) to compute the extremes of the α-cuts of the fuzzy mathematical

expectation of X̃ , E
(
X̃
)
α

, ∀α ∈ [0, 1], as:

E
(
X̃
)
α

=

[
E
(
X̃
)
α

, E
(
X̃
)
α

]
=

[
n∑
i=1

X (ωi)
α
pi,

n∑
i=1

X (ωi)αpi

]
=
[
E (Xα) , E

(
Xα

)] (11a)

The expected interval of Ẽ
(
X̃
)

is, from (3a):

eI

(
Ẽ
(
X̃
))

=

[∫ 1

0

E (Xα) dα,

∫ 1

0

E
(
Xα

)
dα

]
(11b)

Of course, the β-expected value of Ẽ
(
X̃
)

, eV

(
Ẽ
(
X̃
)

;β
)

is, from (4a):

eV (Ẽ
(
X̃
)

;β) = (1− β)

∫ 1

0

E (Xα) dα+ β

∫ 1

0

E
(
Xα

)
dα (11c)

Regarding the variance of FRVs, some authors propose fuzzy definitions, as it is
the case in mathematical expectation; however, other authors such as [15] and [12]
propose using scalar (crisp) values for the variance since it is a dispersion measure.
This dichotomy in the definition means that one definition has to be chosen (for a
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more detailed discussion of this topic see [9]). In a life-insurance context [2] propose
using the concept of crisp variance by [12] that is built up from the variance of the

infima and suprema RVs Xα and Xα of X̃.

Let X̃ be a discrete FRV on {Ω,A, P} with infima and suprema discrete RVs

Xα and Xα, ∀α ∈ [0, 1], the variance of X̃,V
(
X̃
)

, is the real number:

V
(
X̃
)

=
1

2

∫ 1

0

(
V (Xα) + V

(
Xα

))
dα (12)

Of course, from this definition of the variance of a FRV we can derive a crisp

standard deviation as D
(
X̃
)

=

√
V
(
X̃
)

.

Notice that we use the superscript “∼” to symbolise fuzzy magnitudes and we
write RVs with bold letters. So, the symbols corresponding to FRVs will be in bold
and contain the superscript “∼” .

3. Fuzzy Discount Factor

In [2] the authors expose several ways to obtain actuarial discount rates with
FNs: estimating a mean interest rate through the pricing horizon, using variable
interest rates that come from a fuzzy term structure of interest rates, etc. As we
have indicated above, this paper uses the first way. This is a very common way
to estimate technical interest rates in actuarial practice and it is based on Fisher’s
relationship between the nominal interest rate, real interest rate and anticipated
inflation. [18] uses a fuzzy interest rate ĩ in this manner. Other authors like [10]

or [11] consider that ĩ is a prediction based on the expected profit of the insurer’s
asset portfolio.

Let the discount rate be a FN, ĩ, whose α-cuts are iα =
[
iα, iα

]
. From ĩ we

can define the discount factor for 1 monetary unit (m.u.) payable in t years as

d̃t =
(
1 + ĩ

)−t
. Given the arithmetic of FNs and that the discount factor is a

decreasing function of the interest rate, the α-cuts of d̃t are, ∀α ∈ [0, 1]:

dtα =
[
dtα, dtα

]
=
[ (

1 + iα
)−t

, (1 + iα)
−t
]

(13)

So, if the mean interest rate is fixed as a TFN ĩ = (il, ic, iu), the α-cut represen-
tation of the discount factor is now:

dtα =
[
dtα, dtα

]
=
[
(1 + iu − (iu − ic)α)

−t
, (1 + il + (ic − il)α)

−t
]

(14)

For the purpose of this paper it will be useful to obtain the expected interval
and the expected value of the discount factor to subsequently fit a crisp value for
the value of life contingency liabilities. So:

eI

(
d̃t

)
=

[∫ 1

0

dtαdα,

∫ 1

0

dtαdα

]
=
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=

[∫ 1

0

(1 + iu − (iu − ic)α)
−t

dα,

∫ 1

0

(1 + il + (ic − il)α)
−t

dα

]
(15a)

where, for t = 1

eI

(
d̃t

)
=

[
ln (1 + iu)− ln (1 + ic)

iu − ic
,

ln (1 + ic)− ln (1 + il)

ic − il

]
(15b)

and for t 6= 1:

eI

(
d̃t

)
=

[
(1 + ic)

−t+1 − (1 + iu)
−t+1

(t− 1) (iu − ic)
,

(1 + il)
−t+1 − (1 + ic)

−t+1

(t− 1) (ic − il)

]
(15c)

Of course, from (15) it comes immediately that:

eV

(
d̃t;β

)
= (1− β)

∫ 1

0

dtαdα+ β

∫ 1

0

dtαdα (16)

Notice that the β-expected value can be very useful in our context since the
insurer can introduce the risk aversion with the value β intuitively. Given that
actuarial evaluations must be cautious, it seems logical to state that in practical
calculations 0.5 <β ≤1, i.e., the crisp quantification of life contingencies (e.g. to
account for them in financial statements) must overestimate them.

4. Fuzzy Random Value of Life Insurances

Let us consider an n-year term life insurance. The insured party aged x will
receive 1 m.u. at the end of the year of his death if this occurs within the next n
years. Otherwise he does not receive any quantity. Notice that our definition also
includes whole life insurances for n=$−x+1 where $ is the maximum attainable
age in the considered mortality table. The space of events is Ω={ω0, ω1,..., ωn−1,
ωn} where ω0= “the insured survives n years (and so perceives no amount of the
insurance)” and ωj= “the insured dies within the jth year (and so perceives the
m.u. at the end of this year)”, j = 1, 2, . . . ,n.

From the discount function d̃t, we can obtain the FRV present value of an n-year

life insurance for a person aged x years nÃx. The outcomes of the present value
of the life insurance are random because they depend on the insurer’s death age
but are also fuzzy because they are calculated with discount rates that are FNs.
So, following [3], this FRV adopts the following general values, with respective
probabilities P :

outcomes P

d̃r r−1|qx

0 npx

, r = 1, . . . , n

The FRV nÃx defines, ∀α ∈ [0, 1], the infima and suprema RVs nAxα
and

nAxα, r = 1, . . . , n, as:
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nAxα

outcomes P

drα r−1|qx

0 npx

nAxα

outcomes P

drα r−1|qx

0 npx

where r|qx is the probability that the insured aged x dies within the rth year and

npx is the probability that the insured survives n years. Based on the concepts
defined in section 2, we can determine the following magnitudes.

a) Mathematical expectation of nÃx

In the aforementioned paper [3], the authors state:

E
(
nÃx

)
α

=

[
E
(
nÃx

)
α

, E
(
nÃx

)
α

]
,∀α ∈ [0, 1]

with:

E
(
nÃx

)
α

= E
(
nAxα

)
=

n∑
r=1

drαr−1|qx (17a)

E
(
nÃx

)
α

= E
(
nAxα

)
=

n∑
r=1

drαr−1|qx (17b)

In our paper, we defuzzify (17a)-(17b) with the expected interval of a FN. So,
from (3) it follows that:

eI

(
Ẽ
(
nÃx

))
=

[∫ 1

0

E
(
nÃx

)
α

dα,

∫ 1

0

E
(
nÃx

)
α

dα

]
=

=

[∫ 1

0

(
n∑
r=1

drαr−1|qx

)
dα,

∫ 1

0

(
n∑
r=1

drαr−1|qx

)
dα

]
=

=

[
n∑
r=1

r−1|qx

∫ 1

0

drαdα,

n∑
r=1

r−1|qx

∫ 1

0

drαdα

]
(18a)

And therefore, from (3b), it is straightforward to check that (18a) is also:

eI

(
Ẽ
(
nÃx

))
=

n∑
r=1

r−1|qx eI

(
d̃r

)
(18b)

From this expected interval, and for a fixed risk aversion 0 ≤ β ≤ 1, the β-
expected value of the mathematical expectation is:

eV

(
Ẽ
(
nÃx

)
;β
)

= (1− β)

n∑
r=1

r−1|qx

∫ 1

0

drαdα+ β

n∑
r=1

r−1|qx

∫ 1

0

drαdα
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Furthermore, given that in our paper the discount rate is fixed as the TFN ĩ =
(il, ic, iu), considering (14) and (15b)-(15c), the above expressions are transformed
as:

E
(
nÃx

)
α

=

[
n∑
r=1

(1 + iu − (iu − ic)α)−r r−1|qx ,
n∑
r=1

(1 + il + (ic − il)α)−r r−1|qx

]
(19)

and:

- If n = 1:

eI

(
Ẽ
(
nÃx

))
=

[
ln (1 + iu)− ln (1 + ic)

iu − ic 0|qx,
ln (1 + ic)− ln (1 + il)

ic − il 0|qx

]
(20a)

- If n 6= 1:

eI

(
Ẽ
(
nÃx

))
=

=

[
ln (1 + iu)− ln (1 + ic)

iu − ic 0|qx +

n∑
r=2

(1 + ic)
−r+1 − (1 + iu)

−r+1

(r − 1) (iu − ic) r−1|qx ,

ln (1 + ic)− ln (1 + il)

ic − il 0|qx +

n∑
r=2

(1 + il)
−r+1 − (1 + ic)

−r+1

(r − 1) (ic − il) r−1|qx

]
(20b)

b) Variance of nÃx

Following the previously cited paper [3] we must consider the variances of the
infima and suprema RVs nAxα

and nAxα:

V
(

nAxα

)
=

n∑
r=1

(
drα
)2

r−1|qx −

(
n∑
r=1

drαr−1|qx

)2

(21a)

V
(
nAxα

)
=

n∑
r=1

(
drα
)2

r−1|qx −

(
n∑
r=1

drαr−1|qx

)2

(21b)

In our case, given that we use ĩ = (il, ic, iu) and by considering (14), (21a)-(21b)
become:

V
(
nAxα

)
=

n∑
r=1

(1 + iu − (iu − ic)α)−2r
r−1|qx −

[
n∑
r=1

(1 + iu − (iu − ic)α)−r r−1|qx

]2

V
(
nAxα

)
=

n∑
r=1

(1 + il + (ic − il)α)−2r
r−1|qx −

[
n∑
r=1

(1 + il + (ic − il)α)−r r−1|qx

]2
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Then, taking into account:

V
(
nÃx

)
=

1

2

∫ 1

0

[
V
(

nAxα

)
+ V

(
nAxα

)]
dα

The use of a triangular interest rate leads us to obtain:

V
(
nÃx

)
=

=
1

2

{
n∑
r=1

(
(1 + ic)

−2r+1 − (1 + iu)
−2r+1

iu − ic
+

(1 + il)
−2r+1 − (1 + ic)

−2r+1

ic − il

)
r−1|qx

2r − 1
−

−
n∑
r=1

[
n∑
t=1

(
(1 + ic)

−r−t+1 − (1 + iu)
−r−t+1

iu − ic
+

(1 + il)
−r−t+1 − (1 + ic)

−r−t+1

ic − il

)
r−1|qxt−1|qx

r + t− 1

]}

(22)

c) The couple of distribution functions of nÃx

Following [3], F
nÃx

(y)
α

(
F

nÃx
(y)

α

)
can be obtained from the distribution

function of the RV nAxα

(
nAxα

)
. So, in our developments, for r = 0, . . . , n − 2,

given that ĩ = (il, ic, iu), ∀α ∈ [0, 1], F
nÃx

(y)α=
{
F

nÃx
(y)

α
, F

nÃx
(y)

α

}
where:

F
nÃx

(y)
α

=

=


0 if y < 0

npx if 0 ≤ y < (1 + il + (ic − il)α)−n

npx +
r∑
s=0

n−(s+1)|qx if (1 + il + (ic − il)α)−n+r ≤ y < (1 + il + (ic − il)α)−n+r+1

1 if y ≥ (1 + il + (ic − il)α)−1

(23a)

and:

F
nÃx

(y)
α

=

=


0 if y < 0

npx if 0 ≤ y < (1 + iu − (iu − ic)α)−n

npx +
r∑
s=0

n−(s+1)|qx if (1 + iu − (iu − ic)α)−n+r ≤ y < (1 + iu − (iu − ic)α)−n+r+1

1 if y ≥ (1 + iu − (iu − ic)α)−1

(23b)

5. Fuzzy Random Value of Endowments

5.1. Pure Endowments.

Let us consider the case of an n-year pure endowment for a person aged x. In
this case the insured individual will receive 1 u.m. if he survives n years and no
amount otherwise. The space of events is Ω={ω0, ω1} where ω0 = “the insured
individual survives n years (and so perceives 1 u.m.)” and ω1= “the insured dies
within the next n years (and so he does not receive the insured amount)”. In [4]
it is formulated the FRV present value of the pure endowment associated with a
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person aged x years Ã
x:

1
n|

. This FRV adopts as general values the following FNs,

with respective probabilities P :

outcomes P

0 1− npx

d̃n npx

The FRV defines,∀α ∈ [0, 1], the infima and suprema RVs A
x:

1
n|
α

and A
x:

1
n|α

whose realizations are, respectively, the lower and upper extremes of the α-cuts of
the FNs that this FRV takes as values:

A
x:

1
n|
α

outcomes P

0 1− npx

dnα npx

A
x:

1
n|α

outcomes P

0 1− npx

dnα npx

From these infima and suprema RVs the following magnitudes are obtained.

a) Mathematical expectation of Ã
x:

1
n|

In [4] the authors state:

E

(
Ã

x:
1
n|

)
α

=

[
E

(
Ã

x:
1
n|

)
α

, E

(
Ã

x:
1
n|

)
α

]
,∀α ∈ [0, 1]

with:

E

(
Ã

x:
1
n|

)
α

= E

A
x:

1
n|
α

 = dnαnpx (24a)

and

E

(
Ã

x:
1
n|

)
α

= E

(
A

x:
1
n|
α

)
= dnαnpx (24b)

So, using the concept of expected interval described in section 2.1, the expected
interval linked to this kind of life contingency liability is, from (3):

eI

(
Ẽ

(
Ã

x:
1
n|

))
=

[∫ 1

0

E

(
Ã

x:
1
n|

)
α

dα,

∫ 1

0

E

(
Ã

x:
1
n|

)
α

dα

]
=

=

[∫ 1

0

dnαnpxdα,

∫ 1

0

dnαnpxdα

]
=

[
npx

∫ 1

0

dnαdα, npx

∫ 1

0

dnαdα

]
(25)
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That is, following (3b), it is easy to check that (25) is also:

eI

(
Ẽ

(
Ã

x:
1
n|

))
= npxeI

(
d̃n

)
From this expected interval and using (4), the β-expected value of the mathe-

matical expectation can be easily obtained.
Under he hypothesis of the mean annual interest rate fixed as the TFN ĩ =

(il, ic, iu), and considering (14), the mathematical expectation is transformed into:

E

(
Ã

x:
1
n|

)
α

=
[
(1 + iu − (iu − ic)α)

−n
npx , (1 + il + (ic − il)α)

−n
npx

]
(26)

So, by using (15b)-(15c), the expected interval of (26) is:

- If n = 1:

eI

(
Ẽ

(
Ã

x:
1
n|

))
=

[
ln (1 + iu)− ln (1 + ic)

iu − ic
px,

ln (1 + ic)− ln (1 + il)

ic − il
px

]
(27a)

- If n 6= 1:

eI

(
Ẽ

(
Ã

x:
1
n|

))
=

=

[
(1 + ic)

−n+1 − (1 + iu)−n+1

(n− 1) (iu − ic)
npx,

(1 + il)
−n+1 − (1 + ic)

−n+1

(n− 1) (ic − il)
npx

]
(27b)

b) Variance of Ã
x:

1
n|

In [4] it is stated:

V

(
Ã

x:
1
n|

)
=

1

2

∫ 1

0

[
V

(
A

x:
1
n|
α

)
+ V

(
A

x:
1
n|α

)]
dα

with:

V

(
A

x:
1
n|
α

)
=
(
dnα

)2
npx −

(
dnαnpx

)2
=
(
dnα

)2
npx (1− npx) (28a)

V

(
A

x:
1
n|α

)
=
(
dnα

)2
npx −

(
dnαnpx

)2
=
(
dnα

)2
npx (1− npx) (28b)

So, in our case where ĩ = (il, ic, iu) and by considering (14), (28a)-(28b) become:

V

(
A

x:
1
n|
α

)
= (1 + iu − (iu − ic)α)−2n

npx (1− npx)

V

(
A

x:
1
n|α

)
= (1 + il + (ic − il)α)

−2n
npx (1− npx)
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and then:

V

(
Ã

x:
1
n|

)
=

=
1

2
npx (1− npx)

∫ 1

0

[
(1 + iu − (iu − ic)α)−2n + (1 + il + (ic − il)α)−2n] dα =

=
npx (1− npx)

2 (2n− 1)

(
(1 + ic)

−2n+1 − (1 + iu)
−2n+1

iu − ic
+

(1 + il)
−2n+1 − (1 + ic)

−2n+1

ic − il

)
(29)

c) The couple of distribution functions of Ã
x:

1
n|

The paper [4] justifies that FÃ
x:

1
n|

(y)

α

(
FÃ

x:
1
n|

(y)
α

)
can be obtained from the

distribution function of the RV A
x:

1
n|α

(
A

x:
1
n|
α

)
. So, in the present study, given

that ĩ = (il, ic, iu), ∀α ∈ [0, 1], FÃ
x:

1
n|

(y)α =

{
FÃ

x:
1
n|

(y)

α

, FÃ
x:

1
n|

(y)
α

}
with:

FÃ
x:

1
n|

(y)

α

=


0 if y < 0

1−n px if 0 ≤ y < (1 + il + (ic − il)α)
−n

1 if y ≥ (1 + il + (ic − il)α)
−n (30a)

and:

FÃ
x:

1
n|

(y)
α

=


0 if y < 0

1−n px if 0 ≤ y < (1 + iu − (iu − ic)α)
−n

1 if y ≥ (1 + iu − (iu − ic)α)
−n (30b)

5.2. Endowment Insurances.

An endowment insurance is simply the addition of a n-term life insurance and
a pure endowment. That is, the insured aged x will receive 1 m.u. at the end of
the year of his death if this happens within the next n years. Moreover he will
receive 1 m.u. if he survives n years. The space of events is Ω={ω0, ω1,...,,ωn−1,
ωn} where ω0= “the insured survives n years (and so perceives 1 u.m. in n years)”
and ωj= “the insured dies within the j th year (and so perceives the m.u. at the
end of this year)”, j=1,2,...,n. We want to emphasize that, in this case, necessarily
n > 1 because, otherwise, if n = 1 the m.u. is always satisfied at this maturity.

Following [4] from d̃t, we built up the FRV present value of the endowment

insurance associated with a person aged x years Ãx:n| which adopts the following
FNs as values, with respective probabilities P :

outcomes P

d̃r r−1|qx

d̃n npx

, r = 1, . . . , n
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The FRV Ãx:n| defines, ∀α ∈ [0, 1], the infima and suprema RVs Ax:n|
α

and

Ax:n|α, r = 1, . . . , n, as:

Ax:n|
α

outcomes P

drα r−1|qx

dnα npx

Ax:n|α

outcomes P

drα r−1|qx

dnα npx

Following a similar process used for the pure endowment, we can determine the
next magnitudes.

a) Mathematical expectation of Ãx:n|

From [4]:

E
(
Ãx:n|

)
α

=

[
E
(
Ãx:n|

)
α

, E
(
Ãx:n|

)
α

]
,∀α ∈ [0, 1]

where:

E
(
Ãx:n|

)
α

= E
(
Ax:n|

α

)
=

n∑
r=1

drαr−1|qx + dnαnpx (31a)

E
(
Ãx:n|

)
α

= E
(
Ax:n|α

)
=

n∑
r=1

drαr−1|qx + dnαnpx (31b)

Again, from (3) we obtain the expected interval of the FN defined with (31a)-
(31b):

eI

(
Ẽ
(
Ãx:n|

))
=

[∫ 1

0

E
(
Ãx:n|

)
α

dα,

∫ 1

0

E
(
Ãx:n|

)
α

dα

]
=

=

[∫ 1

0

(
n∑
r=1

drαr−1|qx + dnαnpx

)
dα,

∫ 1

0

(
n∑
r=1

drαr−1|qx + dnαnpx

)
dα

]
=

=

[
n∑
r=1

r−1|qx

∫ 1

0

drαdα+ npx

∫ 1

0

dnαdα,

n∑
r=1

r−1|qx

∫ 1

0

drαdα+ npx

∫ 1

0

dnαdα

]
(32a)

Since this type of life contingency payment structure is the result of the addition
of a life insurance and a pure endowment, (32a) can be rewritten as:

eI

(
Ẽ
(
Ãx:n|

))
=

n∑
r=1

r−1|qx eI

(
d̃r

)
+ npx eI

(
d̃n

)
(32b)
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From this expected interval and using (4), the β-expected value of the mathe-
matical expectation is straightforward to obtain.

Given that in this paper the mean annual interest rate is ĩ = (il, ic, iu), and
considering (14), (31a)-(31b) result in:

E
(
Ãx:n|

)
α

=

[
n∑
r=1

(1 + iu − (iu − ic)α)
−r

r−1|qx + (1 + iu − (iu − ic)α)
−n

npx ,

n∑
r=1

(1 + il + (ic − il)α)
−r

r−1|qx + (1 + il + (ic − il)α)
−n

npx

]
(33)

So, by using (15b)-(15c), we obtain:

eI

(
Ẽ
(
Ãx:n|

))
=

=

[
ln (1 + iu)− ln (1 + ic)

iu − ic
0|qx +

n∑
r=2

(1 + ic)
−r+1 − (1 + iu)

−r+1

(r − 1) (iu − ic)
r−1|qx +

(1 + ic)
−n+1 − (1 + iu)

−n+1

(n− 1) (iu − ic)
npx,

ln (1 + ic)− ln (1 + il)

ic − il
0|qx +

n∑
r=2

(1 + il)
−r+1 − (1 + ic)

−r+1

(r − 1) (ic − il)
r−1|qx +

(1 + il)
−n+1 − (1 + ic)

−n+1

(n− 1) (ic − il)
npx

]

(34)

b) Variance of Ãx:n|

In the general formulation of [4]:

V
(
Ãx:n|

)
=

1

2

∫ 1

0

[
V
(
Ax:n|

α

)
+ V

(
Ax:n|α

)]
dα

where the variances of the RVs Ax:n|
α

and Ax:n|α are:

V
(
Ax:n|

α

)
=

n∑
r=1

(
drα

)2
r−1|qx +

(
dnα

)2
npx −

(
n∑
r=1

drαr−1|qx + dnαnpx

)2

(35a)

V
(
Ax:n|α

)
=

n∑
r=1

(
drα

)2
r−1|qx +

(
dnα

)2
npx −

(
n∑
r=1

drαr−1|qx + dnαnpx

)2

(35b)

So, in the case where the discount rate is ĩ = (il, ic, iu), and bearing in mind
(14), (35a)-(35b) become:

V
(
Ax:n|

α

)
=

n∑
r=1

(1 + iu − (iu − ic)α)−2r
r−1|qx + (1 + iu − (iu − ic)α)−2n

npx−

−
[
n∑
r=1

(1 + iu − (iu − ic)α)−r r−1|qx + (1 + iu − (iu − ic)α)−n npx

]2

V
(
Ax:n|α

)
=

n∑
r=1

(1 + il + (ic − il)α)−2r
r−1|qx + (1 + il + (ic − il)α)−2n

npx−
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−
[
n∑
r=1

(1 + il + (ic − il)α)−r r−1|qx + (1 + il + (ic − il)α)−n npx

]2

And so, we obtain the following closed formulation for Feng’s variance:

V
(
Ãx:n|

)
=

1

2

{
n∑
r=1

(
(1 + ic)

−2r+1 − (1 + iu)
−2r+1

iu − ic
+

(1 + il)
−2r+1 − (1 + ic)

−2r+1

ic − il

)
r−1|qx

2r − 1
+

+

(
(1 + ic)

−2n+1 − (1 + iu)
−2n+1

iu − ic
+

(1 + il)
−2n+1 − (1 + ic)

−2n+1

ic − il

)
npx

2n− 1
−

−
n∑
r=1

[
n∑
t=1

(
(1 + ic)

−r−t+1 − (1 + iu)
−r−t+1

iu − ic
+

(1 + il)
−r−t+1 − (1 + ic)

−r−t+1

ic − il

)
r−1|qxt−1|qx

r + t− 1

]
−

−2
n∑
r=1

(
(1 + ic)

−r−n+1 − (1 + iu)
−r−n+1

iu − ic
+

(1 + il)
−r−n+1 − (1 + ic)

−r−n+1

ic − il

)
r−1|qxnpx

r + n− 1

}
(36)

Notice that the mathematical expectation of the endowment insurance can be
obtained by adding the mathematical expectation of the n-term life insurance and
the pure endowment. However, this does not follow for the variance since the n-year
life insurance and the pure endowment are dependent payment structures.

c) The couple of distribution functions of Ãx:n|

In [4], the couple of the distribution functions of Ãx:n|, i.e. FÃx:n|
(y)α ={

FÃx:n|
(y)

α
, FÃx:n|

(y)
α

}
, ∀α ∈ [0, 1], is obtained from the RVs Ax:n|α and Ax:n|

α
,

respectively. Since in the present study the fuzzy mean interest rate is given by the
TFN ĩ = (il, ic, iu), it follows that, for r = 0, . . . , n− 2:

FÃx:n|
(y)

α
=

=


0 if y < (1 + il + (ic − il)α)−n

n−1px if (1 + il + (ic − il)α)−n ≤ y < (1 + il + (ic − il)α)−n+1

n−1px +
r∑
s=1

n−(s+1)|qx if (1 + il + (ic − il)α)−n+r ≤ y < (1 + il + (ic − il)α)−n+r+1

1 if y ≥ (1 + il + (ic − il)α)−1

(37a)

FÃx:n|
(y)

α
=

=


0 if y < (1 + iu − (iu − ic)α)−n

n−1px if (1 + iu − (iu − ic)α)−n ≤ y < (1 + iu − (iu − ic)α)−n+1

n−1px +
r∑
s=1

n−(s+1)|qx if (1 + iu − (iu − ic)α)−n+r ≤ y < (1 + iu − (iu − ic)α)−n+r+1

1 if y ≥ (1 + iu − (iu − ic)α)−1

(37b)
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Numerical application

We will analyze several endowment insurances where x = 45, 55, 65, 75, 85 and
n = 5. Like in [4]1 (p. 169), we use the mortality table2 GRM-80 and a discount
rate ĩ = (0.02, 0.03, 0.045). So, ∀α ∈ [0, 1]:

iα = [0.02 + 0.01α, 0.045− 0.015α]

dtα =
[
(1.045− 0.015α)

−t
, (1.02 + 0.01α)

−t
]

In Table 1 we indicate Ãx:5| outcomes with their α-cuts, expected intervals and
probabilities.

outcomes α-cuts of the outcomes expected interval P

d̃1

[
(1.045− 0.015α)−1 , (1.02 + 0.01α)−1] [0.96387, 0.97562] 0|qx

d̃2

[
(1.045− 0.015α)−2 , (1.02 + 0.01α)−2] [0.92907, 0.95184] 1|qx

d̃3

[
(1.045− 0.015α)−3 , (1.02 + 0.01α)−3] [0.89553, 0.92864] 2|qx

d̃4

[
(1.045− 0.015α)−4 , (1.02 + 0.01α)−4] [0.86322, 0.90602] 3|qx

d̃5

[
(1.045− 0.015α)−5 , (1.02 + 0.01α)−5] [0,83210, 0,88396] 4|qx

d̃5

[
(1.045− 0.015α)−5 , (1.02 + 0.01α)−5] [0,83210, 0,88396] 5px

Table 1. FRV Present Value of the Endowment Insurance Ãx:5|

where ĩ = (0.02, 0.03, 0.045)

Table 2 shows the 1-cut, the 0-cut, the expected interval and the β-expected

value, β = 0.5, 0.75, 1, of the mathematical expectation for the FRV Ãx:5|. The
standard deviations are also shown in this table.

x E
(
Ãx:5|

)
1

E
(
Ãx:5|

)
0

eI

(
Ẽ(Ãx:5|)

)
eV

(
Ẽ
(
Ãx:5|

)
;β
)

D(Ãx:5|)

β=0.5 β=0.75 β=1

45 0.8635 [0.8038, 0.9064] [0.8332,0.884] 0.8590 0.8719 0.8847 0.0089

55 0.8647 [0.8054, 0.9072] [0.8347, 0.8858] 0.8602 0.8730 0.8858 0.0134

65 0.8673 [0.8091,0.9090] [0.8378, 0.8879] 0.8628 0.8754 0.8879 0.0196

75 0.8742 [0.8189, 0.9138] [0,8462,0.8938] 0.8700 0.8819 0.8938 0.0296

85 0.8905 [0.8420, 0.9251] [0.8660, 0.9077] 0.8868 0.8972 0.9077 0.0408

Table 2. Mathematical Expectation of the Present Value and Its
Expected Interval and β-expected Value and Standard Deviation
of Priced Endowment Insurances

1[4] only develops the case where x=75 years.
2Mortality tables of the Swiss male population “Grundzahlen Renten Männer”, 1980. Those

tables can be obtained from Table Manager 3.0 available at http://mort.soa.org/.
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Notice that 0-cuts inform us about all the possible values of the fuzzy ex-
pected present value (for example, for a person aged 45 years, the extreme op-
timistic/pessimistic scenarios of the fair value may be 0.8038/0.9064), but 1-cut
quantifies the fair price of the endowment in the most feasible scenario (0.8635).
Of course, it is possible to obtain intermediate scenarios considering a discrete scale
for the values of α. However, this procedure increases the computational cost and
complicates the decision maker’s interpretation of the fuzzy present value given
that it is not a TFN. Following [25], we consider that a FN must be reduced to a
crisp interval before its final defuzzification. Thus, we get a compromise between
simplification and not losing a great amount of information. In this regard, the
concept of the expected interval gives an estimate of the possible values of the fair
price by considering all possible scenarios. In the case of a person aged 45, the rea-
sonable scenarios for the fair premium (in a new contract) or the net mathematical
reserve (in other cases) involve quantifying these magnitudes in a value that may
oscillate between 0.8332 and 0.884. Nevertheless, neither the fuzzy expectation nor
the expected interval can be considered as the final value of the policy; that is,
to determine the final pure premium or the net mathematical reserve for financial
statements, these magnitudes must be finally crisp. The β-expected value allows
introducing insurer’s risk aversion when fitting a final crisp quantification for the
fuzzy price of insured life contingencies. For example, when β= 1 (complete risk
aversion) the final net premium for a person aged 45 must be 0.8847.

The standard deviation is a useful indicator for quantifying the mortality risk
and therefore for including a value for risk surplus in the premiums or solvency
margins in the reserves. In practice, it is common to take these magnitudes as k
times the standard deviation. So, if we take k= 2 as the solvency margin to compute
in financial statements, for an endowment where x= 45 years, that margin must be
2 · 0.0089 = 0.0178.

6. Fuzzy Random Value of Life Annuities

Now let us consider a deferred m year life annuity due of 1 m.u. with n terms for
an insured party aged x. Notice that our definition also includes whole life annuities.
In fact, for whole life annuities, n=$−m+1 where $ is the maximum attainable age
in the mortality table considered. The space of events is Ω={ω0, ω1, ..., ωn−1, ωn}
where ω0=“the insured dies within the next m years (and so receives no term of the
annuity)”; ωj= “the insured dies within the (m+ j)th year of the annuity (and so
receives the first j terms of the annuity)”, j =, . . . 1, 2, n−1 and ωn= “the insured
survives m+n-1 years (and so receives all the terms of the annuity)”.

Following [2], and considering the discount function d̃t, the FRV present value

of the life annuity, m|n˜̈ax, can be obtained:

outcomes P

0 mqx
m+r−1∑
t=m

d̃t m+r−1|qx

m+n−1∑
t=m

d̃t m+n−1px

, r = 1, . . . , n− 1
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where mqx = 1− mpx.

m|n˜̈ax defines,∀α ∈ [0, 1], the infima and suprema RVs m|näx
α

and m|näxα
:

m|näx
α

outcomes P

0 mqx
m+r−1∑
t=m

dtα m+r−1|qx

m+n−1∑
t=m

dtα m+n−1px

m|näxα

outcomes P

0 mqx
m+r−1∑
t=m

dtα m+r−1|qx

m+n−1∑
t=m

dtα m+n−1px

r = 1, . . . , n− 1

For this FRV, we have the following magnitudes.

a) Mathematical expectation of m|n˜̈ax

In the generic formulation of [2]:

E
(
m|n˜̈ax

)
α

=
[
E
(
m|n˜̈ax

)
α
, E
(
m|n˜̈ax

)
α

]
,∀α ∈ [0, 1]

being:

E
(
m|n˜̈ax

)
α = E

(
m|näx

α

)
=

=

m+n−2∑
s=m

s∑
t=m

dtαs|qx +

m+n−1∑
t=m

dtαm+n−1px =

m+n−1∑
t=m

dtαtpx (38a)

E
(
m|n˜̈ax

)
α

= E
(
m|näxα

)
=

=
m+n−2∑
s=m

s∑
t=m

dtαs|qx +

m+n−1∑
t=m

dtαm+n−1px =
m+n−1∑
t=m

dtαtpx (38b)

In the present paper, considering that the interest rate is the TFN ĩ = (il, ic, iu),
it can be obtained from (14):

E
(
m|n˜̈ax

)
α
=

[
m+n−1∑
t=m

(1 + iu − (iu − ic)α)−t tpx,
m+n−1∑
t=m

(1 + il + (ic − il)α)−t tpx

]
(39)

So, with (3a) we obtain the expected interval from (38a)-(38b) as:

eI

(
Ẽ
(
m|n˜̈ax

))
=

[
m+n−1∑
t=m

tpx

∫ 1

0

dtαdα,

m+n−1∑
t=m

tpx

∫ 1

0

dtαdα

]
(40)
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or, alternatively, from (3b), eI

(
Ẽ
(
m|n˜̈ax

))
=
∑m+n−1
t=m tpx eI

(
d̃t

)
. Using (15b)-

(15c) in (40), the above expressions results in:

- If m = 0

eI

(
Ẽ
(
m|n˜̈ax

))
=

=

[
1 +

ln (1 + iu)− ln (1 + ic)

iu − ic
px +

n−1∑
t=2

(1 + ic)
−t+1 − (1 + iu)

−t+1

(t− 1) (iu − ic)
tpx ,

1 +
ln (1 + ic)− ln (1 + il)

ic − il
px +

n−1∑
t=2

(1 + il)
−t+1 − (1 + ic)

−t+1

(t− 1) (ic − il)
tpx

]
(41a)

- If m = 1:

eI

(
Ẽ
(
m|n˜̈ax

))
=

=

[
ln (1 + iu)− ln (1 + ic)

iu − ic
px +

n∑
t=2

(1 + ic)
−t+1 − (1 + iu)

−t+1

(t− 1) (iu − ic)
tpx ,

ln (1 + ic)− ln (1 + il)

ic − il
px +

n∑
t=2

(1 + il)
−t+1 − (1 + ic)

−t+1

(t− 1) (ic − il)
tpx

]
(41b)

- If m ≥ 2:

eI

(
Ẽ
(
m|n˜̈ax

))
=

[
m+n−1∑
t=m

(1 + ic)
−t+1 − (1 + iu)

−t+1

(t− 1) (iu − ic)
tpx ,

m+n−1∑
t=m

(1 + il)
−t+1 − (1 + ic)

−t+1

(t− 1) (ic − il)
tpx

]
(41c)

b) Variance of m|n˜̈ax

From [2]:

V
(
m|n˜̈ax

)
=

1

2

∫ 1

0

[
V
(
m|näx

α

)
+ V

(
m|näxα

)]
dα

The variances of the RVs m|näx
α

and m|näxα
are:

V
(

m|näx
α

)
=

m+n−2∑
s=m

[
s∑

t=m

dtα

]2

s|qx +

[
m+n−1∑
t=m

dtα

]2

m+n−1px−

−

[
m+n−1∑
t=m

dtαtpx

]2

(42a)
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V
(
m|näxα

)
=

m+n−2∑
s=m

[
s∑

t=m

dtα

]2

s|qx +

[
m+n−1∑
t=m

dtα

]2

m+n−1px−

−

[
m+n−1∑
t=m

dtαtpx

]2

(42b)

So, with the fuzzy mean annual interest rate ĩ = (il, ic, iu) and taking into
account (14), the expressions in (42) are transformed into:

V
(

m|näx
α

)
=

m+n−2∑
s=m

[
s∑

t=m

(1 + iu − (iu − ic)α)
−t

]2

s|qx+

+

[
m+n−1∑
t=m

(1 + iu − (iu − ic)α)
−t

]2

m+n−1px−

[
m+n−1∑
t=m

(1 + iu − (iu − ic)α)
−t

tpx

]2

V
(
m|näxα

)
=

m+n−2∑
s=m

[
s∑

t=m

(1 + il + (ic − il)α)
−t

]2

s|qx+

+

[
m+n−1∑
t=m

(1 + il + (ic − il)α)
−t

]2

m+n−1px−

[
m+n−1∑
t=m

(1 + il + (ic − il)α)
−t

tpx

]2

For the final expression of the variance we distinguish two cases:

- If m = 0 or m = 1:

V
(
m|n

˜̈ax
)

=
1

2

{(
ln (1 + iu)− ln (1 + ic)

iu − ic
+

ln (1 + ic)− ln (1 + il)

ic − il

)
1px1qx+

+

n−1∑
t=2

(
(1 + ic)

−2t+1 − (1 + iu)
−2t+1

iu − il
+

(1 + il)
−2t+1 − (1 + ic)

−2t+1

ic − il

)
tpxtqx

2t− 1
+

+ 2

n−1∑
t=2

t−1∑
j=1

(
(1 + ic)

−t−j+1 − (1 + iu)
−t−j+1

iu − ic
+

(1 + il)
−t−j+1 − (1 + ic)

−t−j+1

ic − il

)
tpxjqx

t + j − 1


(43a)

- If m ≥ 2:

V
(
m|n

˜̈ax
)

=
1

2


m+n−1∑
t=m

(
(1 + ic)

−2t+1 − (1 + iu)
−2t+1

iu − ic
+

(1 + il)
−2t+1 − (1 + ic)

−2t+1

ic − il

)
tpxtqx

2t− 1
+

+2

m+n−1∑
t=m+1

t−1∑
j=m

(
(1 + ic)

−t−j+1 − (1 + iu)
−t−j+1

iu − ic
+

(1 + il)
−t−j+1 − (1 + ic)

−t−j+1

ic − il

)
tpxjqx

t + j − 1


(43b)
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c) The couple of distribution functions of m|n˜̈ax

Taking into account the developments of [2], and following the same process that
has been described in the previous sections, it is easy to check that when the mean
interest rate is the TFN ĩ = (il, ic, iu) the couple of the distribution functions of

m|n˜̈ax, F
m|n ˜̈ax

(y) =

{
F

m|n ˜̈ax
(y)

α
, F

m|n ˜̈ax
(y)

α

}
,∀α ∈ [0, 1] , is for r = 0, ...,n-1:

F
m|n ˜̈ax

(y)
α

=

=



0 if y < 0

mqx if 0 ≤ y < (1 + il + (ic − il)α)−m

mqx +
m+r−1∑
s=m

s|qx if
m+r−1∑
t=m

(1 + il + (ic − il)α)−t ≤ y <
m+r∑
t=m

(1 + il + (ic − il)α)−t

1 if y ≥
m+n−1∑
t=m

(1 + il + (ic − il)α)−t

(44a)

and:

F
m|n ˜̈ax

(y)
α

=

=



0 if y < 0

mqx if 0 ≤ y < (1 + iu − (iu − ic)α)−m

mqx +
m+r−1∑
s=m

s|qx if
m+r−1∑
t=m

(1 + iu − (iu − ic)α)−t ≤ y <
m+r∑
t=m

(1 + iu − (iu − ic)α)−t

1 if y ≥
m+n−1∑
t=m

(1 + iu − (iu − ic)α)−t

(44b)

Numerical application

We will analyze several temporal annuities where x = 57, 62, 67, 72, m = 3 and
n = 10. Like in [2]3 (p. 34), we use the mortality table GRM-80 and the discount
rate ĩ = (0.03, 0.05, 0.055).

Table 3 shows 3|10˜̈ax outcomes with their α-cuts and probabilities.
With these outcomes, the α-cuts of the mathematical expectation of the FRV

present value of the annuity are, from (39):

E
(
3|10˜̈ax

)
α
=

[
12∑
t=3

(1.055− 0.005α)−t tpx,

12∑
t=3

(1.03 + 0.02α)−t tpx

]
whereas the expected interval is, from (41c):

eI
(
Ẽ
(
3|10˜̈ax

))
=

[
12∑
t=3

1.05−t+1 − 1.055−t+1

(t− 1) 0.005
tpx,

12∑
t=3

1.03−t+1 − 1.05−t+1

(t− 1) 0.02
tpx

]

Table 4 shows the 1-cut, the 0-cut, the expected interval and the β-expected
value, β = 0.5, 0.75, 1, of the mathematical expectation for the FRVs present value
of the annuities. It also shows the standard deviations.

3[4] only develops the case where x = 62 years.
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outcomes α-cuts of the outcomes P

0 [0, 0] 3qx

d̃3

[
(1.055− 0.005α)

−3
, (1.03 + 0.02α)

−3
]

3|qx

4∑
t=3

d̃t

[
4∑
t=3

(1.055− 0.005α)
−t
,

4∑
t=3

(1.03 + 0.02α)
−t
]

4|qx

. . . . . . . . .

11∑
t=3

d̃t

[
11∑
t=3

(1.055− 0.005α)
−t
,

11∑
t=3

(1.03 + 0.02α)
−t
]

11|qx

12∑
t=3

d̃t

[
12∑
t=3

(1.055− 0.005α)
−t
,

12∑
t=3

(1.03 + 0.02α)
−t
]

12px

Table 3. FRV Present Value of the Annuity 3|10˜̈ax with ĩ = (0.03, 0.05, 0.055)

x E
(
3|10˜̈ax

)
1

E
(
3|10˜̈ax

)
0

eI

(
Ẽ
(
3|10˜̈ax

))
eV

(
Ẽ
(
3|10˜̈ax

)
;β
)

D
(
3|10˜̈ax

)
β=0.5 β=0.75 β=1

57 6.896 [6.238, 7.385] [6.560,7.137] 6.848 6.992 7.137 1.688

62 6.600 [5.977, 7.063] [6.282, 6.828] 6.555 6.691 6.828 1.994

67 6.132 [5.562,6.555] [5.841, 6.340] 6.091 6.215 6.340 2.338

72 5.435 [4.944, 5.800] [5.184,5.615] 5.400 5.507 5.615 2.654

Table 4. Mathematical Expectation of the Present Value and Its
Expected Interval and β-expected Value and Standard Deviation
of Priced Annuities

In this case, the interpretation of the expected interval for an annuity with x = 57
lead us to fix a fair price for a new contract of this kind (or a net mathematical
reserve in other cases) of between 6.560 and 7.137. By using the β-expected value,
we find that the net premium (or net reserves, depending on the situation) must
be 6.992 for a moderate risk aversion (β= 0.75). The solvency margin that comes
by using the standard deviation may be fixed in k times as 1.688.

7. Conclusions and Extensions

This paper extends the results of [2], [3] and [4] to triangular fuzzy technical
interest rates (which are very common in the literature) for several types of life
insurance payments. Firstly, it develops closed formulas for the defuzzified value of
the fuzzy present values, i.e. their expected intervals and their expected values. In
our opinion, those values can be very useful for the actuary when a concrete value of
net provisions, pure premiums, etc. must be defined. We opt to use the defuzzifying
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method of [8] in the light of the results in [20], who point out the desirable properties
of that defuzzifying method for decision making in a fuzzy-random context.

Likewise, this paper also develops analytical expressions for the variances in the
present insurance values, which may be of interest when quantifying stabilizing
reserves or premium recharges.

Furthermore, we have obtained the distribution functions of the life-insurance
structures, which may be useful when simulating the value of a life-insurance port-
folio in a similar way to [23] or [1] but by using fuzzy interest rates, as in [2], [3]
and [4].

Finally, a possible extension of our paper would be to consider the possibility
of periodical premiums. Another continuation of this research would be to use
variable discount rates in insurance pricing, which may come, for example, from a
non-flat temporal structure of interest rates. Lastly, introducing fuzzy uncertainty
in the fitted probabilities of death, in the way suggested by [26], is also a natural
continuation of our paper.

Acknowledgements. The authors acknowledge the valuable comments of anony-
mous referees.
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[3] J. Andrés-Sánchez and L. González-Vila Puchades, A fuzzy random variable approach to life

insurance pricing, In A. Gil-Lafuente; J. Gil-Lafuente and J.M. Merigó (Eds.), Studies in
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