Document Type: Research Paper


1 Department of Mathematics, University of the Punjab, New Campus, Lahore, Pakistan

2 Faculty of Pure and Applied Mathematics, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland


In this research paper, we present a novel frame work for handling $m$-polar information by combining the theory of $m-$polar fuzzy  sets with graphs. We introduce certain types of edge regular $m-$polar fuzzy graphs and edge irregular $m-$polar fuzzy graphs. We describe some useful properties of edge regular, strongly edge irregular and strongly edge totally irregular $m-$polar fuzzy graphs. We discuss the relationship between degree of a vertex and degree of an edge in an $m-$polar fuzzy graph. We investigate edge irregularity on a path on $2n$ vertices and barbell graph $B_{n,n}.$
We also present an application of $m-$polar fuzzy graph to decision making.


[1] M. Akram, Bipolar fuzzy graphs, Information Sciences, 181 (2011), 5548-5564.
[2] M. Akram and A. Adeel, m-polar fuzzy labeling graphs with application, Math. Computer
Sci., 10 (2016), 387-402.
[3] M. Akram and W. A. Dudek, Regular bipolar fuzzy graphs, Neural Computing & Applications,
21 (2012), 197-205.
[4] M. Akram and H. R. Younas, Certain types of irregular m-polar fuzzy graphs, J. Appl. Math.
Computing, 53(1) (2017), 365-382.
[5] M. Akram and N. Waseem, Certain metrics in m-polar fuzzy graphs, New Math. Natural
Computation, 12 (2016), 135-155.
[6] P. Bhattacharya, Some remarks on fuzzy graphs, Pattern Recognition Letter, 6 (1987), 297-
[7] J. Chen, S. G. Li, S. Ma and X. Wang, m-polar fuzzy sets, The Scienti c World Journal,
Article ID 416530, 2014 (2014), 8 pages.

[8] A. Kau man, Introduction to la Theorie des Sous-emsembles Flous, Masson et Cie, 1 (1973).
[9] S. Mathew and M. S. Sunitha, Types of arcs in a fuzzy graph, Information Sciences, 179
(2009), 1760-1768.
[10] N. R. S. Maheswari and C. Sekar, On strongly edge irregular fuzzy graphs, Kragujevac J.
Math., 40 (2016), 125-135.
[11] J. N. Mordeson and P. S. Nair, Fuzzy graphs and fuzzy hypergraphs, Physica Verlag, Heidel-
berg, 2nd Edition, 2001.
[12] S. P. Nandhini and E. Nandhini, Strongly irregular fuzzy graphs, Internat. J. Math. Archive,
5 (2014), 110-114.
[13] A. Nagoorgani and K. Radha, Regular property of fuzzy graphs, Bull. Pure Appl. Sci., 27E
(2008), 411-419.
[14] K. Radha and N. Kumaravel, On edge regular fuzzy graphs, Internat. J. Math. Archive, 5(9)
(2014), 100-112.
[15] A. Rosenfeld, Fuzzy graphs, Fuzzy Sets and Their Applications, Academic Press, New York,
(1975), 77-95.
[16] P. K. Singh and Ch. A. Kumar, Bipolar fuzzy graph representation of concept lattice, Infor-
mation Sciences, 288 (2014), 437-448.
[17] H. L. Yang, S. G. Li, W. H. Yang and Y. Lu, Notes on bipolar fuzzy graphs, Information
Sciences, 242 (2013), 113-121.
[18] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
[19] L. A. Zadeh, Similarity relations and fuzzy orderings, Information Sciences, 3 (1971), 177-
[20] W. R. Zhang, Bipolar fuzzy sets and relations: a computational framework forcognitive mod-
eling and multiagent decision analysis, Proc. of IEEE conf., (1994), 305-309.