• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Iranian Journal of Fuzzy Systems
Articles in Press
Current Issue
Journal Archive
Volume Volume 15 (2018)
Volume Volume 14 (2017)
Issue Issue 6
Issue Issue 5
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 13 (2016)
Volume Volume 12 (2015)
Volume Volume 11 (2014)
Volume Volume 10 (2013)
Volume Volume 9 (2012)
Volume Volume 8 (2011)
Volume Volume 7 (2010)
Volume Volume 6 (2009)
Volume Volume 5 (2008)
Volume Volume 4 (2007)
Volume Volume 3 (2006)
Volume Volume 2 (2005)
Volume Volume 1 (2004)
Dombi, J., Szepe, T. (2017). ARITHMETIC-BASED FUZZY CONTROL. Iranian Journal of Fuzzy Systems, 14(4), 51-66. doi: 10.22111/ijfs.2017.3325
Jozsef Dombi; Tamas Szepe. "ARITHMETIC-BASED FUZZY CONTROL". Iranian Journal of Fuzzy Systems, 14, 4, 2017, 51-66. doi: 10.22111/ijfs.2017.3325
Dombi, J., Szepe, T. (2017). 'ARITHMETIC-BASED FUZZY CONTROL', Iranian Journal of Fuzzy Systems, 14(4), pp. 51-66. doi: 10.22111/ijfs.2017.3325
Dombi, J., Szepe, T. ARITHMETIC-BASED FUZZY CONTROL. Iranian Journal of Fuzzy Systems, 2017; 14(4): 51-66. doi: 10.22111/ijfs.2017.3325

ARITHMETIC-BASED FUZZY CONTROL

Article 4, Volume 14, Issue 4, July and August 2017, Page 51-66  XML PDF (503 K)
Document Type: Research Paper
DOI: 10.22111/ijfs.2017.3325
Authors
Jozsef Dombi1; Tamas Szepe* 2
1Institute of Informatics, University of Szeged, Szeged, Hungary
2Department of Technical Informatics, University of Szeged, Szeged, Hungary
Abstract
Fuzzy control is one of the most important parts of fuzzy theory for which several approaches exist. Mamdani uses $\alpha$-cuts and builds the union of the membership functions which is called the aggregated consequence function. The resulting function is the starting point of the defuzzification process. In this article, we define a more natural way to calculate the aggregated consequence function via arithmetical operators. Defuzzification is the optimum value of the resultant membership function. The left and right hand sides of the membership function will be handled separately. Here, we present a new ABFC (Arithmetic Based Fuzzy Control) algorithm based on arithmetic operations which use a new defuzzification approach. The solution is much smoother, more accurate, and much faster than the classical Mamdani controller.
Keywords
Fuzzy controller; Mamdani controller; Defuzzification; Fuzzy arithmetic
References
[1] S. Assilian, Arti cial intelligence in the control of real dynamical systems, Ph.D. Thesis,
London University, Great Britain, 1974.
[2] J. Dombi, Pliant arithmetics and pliant arithmetic operations, Acta Polytechnica Hungarica,
6(5) (2009), 19{49.
[3] D. Driankov, H. Hellendoorn and M. Reinfrank, An introduction to fuzzy control, Springer
Science & Business Media, Berlin, 2013.
[4] D. Dubois and H. Prade, Operations on fuzzy numbers, Int. J. Systems Science, 9 (1978),
613{626.
[5] D. Dubois and H. Prade, Fuzzy members: An overview, Analysis of Fuzzy Information, Vol.
I., CRC Press, Boca Raton, FL, (1987), 3{39.
[6] D. Dubois and H. Prade, Special issue on fuzzy numbers, Fuzzy Sets and System, 24 (3),
1987.
[7] D. Filev and R.Yager, A generalized defuzzi cation method via BAD distributions, Internat.
J. Intell. Systems, 6 (1991), 689{697.
[8] R. Fuller and R. Mesiar, Special issue on fuzzy arithmetic, Fuzzy Sets and System, 91(2)
(1997).
[9] R. Jain, Tolerance analysis using fuzzy sets, International Journal of Systems Science, 7(12)
(1976), 1393{1401.

[10] T. Jiang and Y. Li, Generalized defuzzi cation strategies and their parameter learning pro-
cedures, IEEE Trans. Fuzzy Systems, 4 (1996), 64{71.
[11] A. Kaufmann and M. M. Gupta, Introduction to fuzzy arithmetic: theory and applications,
Van Nostrand Reinhold, New York, 1985.
[12] A. Kaufmann and M. M. Gupta, Fuzzy mathematical models in engineering and management
science, North-Holland, Amsterdam, 1988.
[13] E. Mamdani, Application of fuzzy algorithms for control of simple dynamic plant, Proc. IEE,
121 (1974), 1585{1588, .
[14] M. Mares, Computation over fuzzy quantities, CRC Press, Boca Raton, FL, 1994.
[15] M. Mizumoto and K. Tanaka, The four operations of arithmetic on fuzzy numbers, Systems
Comput. Controls, 7(5) (1976), 73{81.
[16] M. Mizumoto and K. Tanaka, Algebraic properties of fuzzy numbers, Proc. Int. Conf. On
Cybernetics and Society, Washington, DC, (1976), 559{563.
[17] S. Nahmias, Fuzy variables, Fuzzy Sets and System, 1 (1978), 97{110.
[18] H. T. Nguyen, A note on the extension principle for fuzzy sets, J. Math. Anal. Appl., 64
(1978), 369{380.
[19] A. Patel and B. Mohan, Some numerical aspects of center of area defuzzi cation method,
Fuzzy Sets and Systems, 132 (2002), 401{409.
[20] S. Roychowdhury and B.-H.Wang, Cooperative neighbors in defuzzi cation, Fuzzy Sets and
Systems,78 (1996), 37{49.
[21] S. Roychowdhury and W. Pedrycz, A survey of defuzzi cation strategies, Internat. J. Intell.
Systems, 16 (2001), 679{695.
[22] A. Sakly and M. Benrejeb, Activation of trapezoidal fuzzy subsets with di erent inference
methods, International Fuzzy Systems Association World Congress, Springer Berlin Heidel-
berg, (2003), 450{457.
[23] Q. Song and R. Leland, Adaptive learning defuzzi cation techniques and applications, Fuzzy
Sets and Systems, 81 (1996), 321{329.
[24] M. Sugeno, Industrial Applications of Fuzzy Control, Elsevier Science Publishers, New York,
1985.
[25] E. Van Broekhoven and B. De Baets, Fast and accurate centre of gravity defuzzi cation of
fuzzy system outputs de ned on trapezoidal fuzzy partitions, Fuzzy Sets and Systems, 157
(2006), 904{918.
[26] W. Van Leekwijck and E. Kerre, Defuzzi cation: criteria and classi cation, Fuzzy Sets and
Systems, 108 (1999), 159{178.
[27] R. Yager and D. Filev, SLIDE: a simple adaptive defuzzi cation method, IEEE Trans. Fuzzy
Systems, 1 (1993), 69{78.
[28] R. C. Young, The algebra of many-valued quantities, Math. Ann., 104 (1931), 260{290.
[29] L. A. Zadeh, The concept of a linquistic variable and its application to approximate reasoning,
Information Sciences, 1(8) (1975), 199{249.

Statistics
Article View: 770
PDF Download: 470
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.