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K-FLAT PROJECTIVE FUZZY QUANTALES

J. LU, K. WANG AND B. ZHAO

Abstract. In this paper, we introduce the notion of K-flat projective fuzzy

quantales, and give an elementary characterization in terms of a fuzzy binary

relation on the fuzzy quantale. Moreover, we prove that K-flat projective fuzzy
quantales are precisely the coalgebras for a certain comonad on the category

of fuzzy quantales. Finally, we present two special cases of K as examples.

1. Introduction

Quantales were introduced by Mulvey in order to provide a lattice-theoretic set-
ting for studying non-commutative C∗-algebra, as well as constructive foundations
for quantum mechanics [13, 14]. The study that analyzed partially ordered alge-
braic structure goes back to a series of papers by Ward and Dilworth [4, 20, 22] in
the 1930s. Since the theory of quantales provides a powerful tool in studying non-
commutative structures, following Mulvey, various types and aspects of quantales
have been considered by many researchers [9, 16].

Since Zadeh introduced fuzzy sets to model the uncertainty associated with the
concept of imprecision [27], several extensions of fuzzy sets have been introduced. In
order to establish a fuzzy counterpart of the Isbell-adjunction between topological
spaces and locales [8], based on a frame L, Yao [25, 26] introduced an L-frame as an
L-ordered set equipped with some further conditions and proved that the categories
of Zhang-Liu-L-frames, Yao-L-frames and L-algebras are isomorphic. Based on the
work of Yao, for a unital commutative quantale Q, Wang and Zhao [18] defined a
Q-quantale as a Q-ordered semigroup equipped with some further conditions, and
they also showed that the category of Q-quantales is isomorphic to the category
of Q-algebras [17, 21]. The study of injectivity and projectivity in quantales was
initiated by Li, Zhou and Li [11]. Banaschewski [2] established both the internal
and the external characterization of “projective” objects in the category of frames.
Moreover, Paseka [15] proposed a general view of projective quantales in the spirit
of Banaschewski. Following this viewpoint, we shall present a general view with
respect to the projectivity notion in the category of Q-quantales.

The content of the paper is organized as follows. Section 2 lists some prelimi-
nary notions and results about fuzzy posets. In Section 3, we discuss the relations
between Q-Quant-morphisms and K-morphisms. In Section 4, we give an ele-
mentary characterization of a K-flat projective Q-quantale in terms of a Q-binary
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relation on the Q-quantale. We also prove that the K-flat projective Q-quantales
are precisely the coalgebras for a certain comonad on the category of Q-quantales.
In Section 5, we consider two special cases of K.

2. Preliminaries

We refer to [16] for quantale theory, to [1, 7] for category theory, to [6, 8] for
lattice theory and to [3, 5, 10, 23, 24, 28] for fuzzy orders.

Definition 2.1. [16] A quantale is a complete lattice Q with an associative binary
operation & satisfying

a&
(∨
i∈I

bi

)
=
∨
i∈I

(a&bi) and
(∨
i∈I

bi

)
&a =

∨
i∈I

(bi&a)

for all a ∈ Q and {bi}i∈I ⊆ Q.

A quantale Q is said to be unital provided that there exists an element 1 ∈ Q
such that a&1 = 1&a = a for all a ∈ Q. Q is said to be commutative provided that
a&b = b&a for all a, b ∈ Q. From now on, unless otherwise stated, Q always denotes
a unital commutative quantale. Since the map a&− preserves arbitrary sups, it has
right adjoint, which we shall denote by a →−. Thus, a&c ≤ b iff c ≤ a → b for all
a, b, c ∈ Q.

Definition 2.2. [3, 5] Let X be a set. A map e : X ×X −→ Q is called a fuzzy
order (or, Q-order) on X if for all x, y, z ∈ X,

(E1) e(x, x) ≥ 1 (reflexivity);
(E2) e(x, y)&e(y, z) ≤ e(x, z) (transitivity);
(E3) e(x, y) ≥ 1, e(y, x) ≥ 1 imply x = y (antisymmetry).

The pair (X, e) is called a Q-ordered set.
Let (X,≤) be a classical poset. Then (X, e≤) is a Q-ordered set, where e≤ is

defined as follows:

e≤(x, y) =

{
1, x ≤ y,
0, otherwise.

For a Q-ordered set (X, e), ≤e= {(x, y) | e(x, y) ≥ 1} is a crisp partial order
on X. Unless otherwise stated, throughout the paper, whenever a partial order
is mentioned in the context of a Q-ordered set (X, e), it is to be interpreted with
respect to the crisp partial order on X. We often denote the crisp partial order on
(X, e) by ≤ if there would be no confusion.

Let X be a set. QX denotes the set of all Q-subsets of X. For all A,B ∈ QX ,
the subsethood degree of A in B is defined by subX(A,B) =

∧
x∈X(A(x)→ B(x)).

Then (QX , subX) is a Q-ordered set.
A map f : (X, eX) −→ (Y, eY ) betweenQ-ordered sets is calledQ-order-preserving

if eX(x1, x2) ≤ eY (f(x1), f(x2)) for all x1, x2 ∈ X.
Definition 2.3. [28] Let (X, eX) be a Q-ordered set, x ∈ X and A ∈ QX . The
element x0 is called a join (resp., meet) of A, in symbols x0 = tA (resp., x0 = uA),
if
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(1) For all x ∈ X, A(x) ≤ eX(x, x0) (resp., A(x) ≤ eX(x0, x));
(2) For all y ∈ X,

∧
x∈X(A(x) → eX(x, y)) ≤ eX(x0, y) (resp.,

∧
x∈X(A(x) →

eX(y, x)) ≤ eX(y, x0)).

Proposition 2.4. [23] Let (X, eX) be a Q-ordered set, x0, x1 ∈ X and A ∈ QX .
(1) x0 = tA iff for all y ∈ X, eX(x0, y) =

∧
x∈X(A(x)→ eX(x, y));

(2) x1 = uA iff for all y ∈ X, eX(y, x1) =
∧
x∈X(A(x)→ eX(y, x)).

Definition 2.5. [28] Let (X, eX) be a Q-ordered set, and A ∈ QX . A is called a
lower Q-subset of X if eX(x, y)&A(y) ≤ A(x) for all x, y ∈ X. Let D(X) denote
the collection of all lower Q-subsets of X.

Definition 2.6. [28] A Q-ordered set (X, eX) is called a complete Q-lattice if tA
and uA exist for all A ∈ QX .

Remark 2.7. Let (X, eX) be a complete Q-lattice. Then (X,≤eX ) is a complete
lattice.

Proposition 2.8. [23] Let (X, eX) be a Q-ordered set. The following statements
are equivalent:

(1) (X, eX) is a complete Q-lattice;
(2) For all A ∈ QX , tA exists;
(3) For all A ∈ QX , uA exists.

Definition 2.9. [23] Let (X, eX), (Y, eY ) be two Q-ordered sets and f : X −→ Y ,
g : Y −→ X two Q-order-preserving maps. The pair (f, g) is called a Q-adjunction
between X and Y if for all x ∈ X, y ∈ Y , eY (f(x), y) = eX(x, g(y)). In this case,
f is called the left adjoint and dually g is called the right adjoint.

Lemma 2.10. Let (X, eX), (Y, eY ) be two Q-ordered sets and f : X −→ Y , g :
Y −→ X two Q-order-preserving maps. If f ◦ g = idY and idX ≤ g ◦ f , then (f, g)
is a Q-adjunction.

Proof. For all x ∈ X and y ∈ Y , we have that eY (f(x), y) ≤ eX(g(f(x)), g(y))&1 ≤
eX(g(f(x)), g(y))&eX(x, g(f(x))) ≤ eX(x, g(y)) ≤ eY (f(x), f(g(y))) = eY (f(x), y).
Then eY (f(x), y) = eX(x, g(y)), and thus (f, g) is a Q-adjunction. �

Let X, Y be sets and f : X −→ Y be a map. Then the Zadeh forward power
set operator f→Q : QX −→ QY and the Zadeh backward power set operator f←Q :

QY −→ QX are defined, respectively, by f→Q (A)(y) =
∨
f(x)=y A(x), f←Q (B) = B ◦f

for all A ∈ QX , y ∈ Y, B ∈ QY . It can be easily seen (see [23]) that (f→Q , f←Q ) is a

Q-adjunction between (QX , subX) and (QY , subY ).

Definition 2.11. [18, 19] A complete Q-lattice (X, e) with an associative binary
operation ⊗ is called a fuzzy quantale (or simply, Q-quantale) if for all a ∈ X,
a⊗− : X −→ X and − ⊗ a : X −→ X preserve joins of every Q-subset of X, that
is, for all A ∈ QX , a⊗ (tA) = t(a⊗−)→Q (A), (tA)⊗ a = t(−⊗a)→Q (A).

Let X be a Q-quantale. S ⊆ X is called a sub-Q-quantale of X provided that
S is closed under joins of every Q-subset of S and ⊗. Let S denote the set of all
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sub-Q-quantales of X. For A ⊆ X,
⋂
{S ∈ S|A ⊆ S} is a sub-Q-quantale of X,

called the sub-Q-quantale generated by A, denoted by 〈A〉.

Since a⊗− and − ⊗ a preserve joins of every Q-subset of X, they have right
adjoint (see [23]), which we shall denote by a →r−, a →l− respectively. A map
f : (X,⊗X , eX) −→ (Y,⊗Y , eY ) between two Q-quantales is called a Q-quantale
homomorphism if f(a ⊗X b) = f(a) ⊗Y f(b) and f(tA) = tf→Q (A) for all a, b ∈
X, A ∈ QX . Let Q-Quant denote the category of Q-quantales with Q-quantale
homomorphisms.

Remark 2.12. Any Q-quantale (resp., sub-Q-quantale) is a quantale (resp., sub-
quantale) with respect to the crisp partial order. Similarly, any Q-quantale homo-
morphism is a quantale homomorphism.

Let (X, e) be a Q-quantale. If S ⊆ X is a sub-Q-quantale of X, and i : S −→ X
is defined as follows:

∀ x ∈ S, i(x) = x,

then i is a Q-quantale homomorphism. We call i an identical sub-Q-quantale em-
bedding.

Definition 2.13. [10, 24] Let (X, e) be a Q-ordered set and D ∈ QX . D is called
a Q-directed subset of X if

(1)
∨
x∈X D(x) ≥ 1;

(2) D(x)&D(y) ≤
∨
z∈X(D(z)&e(x, z)&e(y, z)) for all x, y ∈ X.

Let D(X) denote the collection of all Q-directed subsets of X.

Definition 2.14. [24] A Q-ordered set (X, e) is called a fuzzy dcpo if tA exists
for all A ∈ D(X).

3. The Relations Between Q-Quant-morphisms and K-morphisms

A Q-ordered set (X, eX) with an associative binary operation ? is called a Q-
ordered semigroup if eX(a, b) ≤ eX(a ? c, b ? c) and eX(a, b) ≤ eX(c ? a, c ? b)
for all a, b, c ∈ X. A Q-order-preserving map f : (X, eX , ?X) −→ (Y, eY , ?Y )
between Q-ordered semigroups is called a Q-ordered semigroup homomorphism if
f(a ?X b) = f(a) ?Y f(b) for all a, b ∈ X. Let Q-OSgr denote the category of Q-
ordered semigroups with Q-ordered semigroup homomorphisms. Clearly, Q-Quant
is a subcategory of Q-OSgr (see [19]). Now we consider the category K, which is a
subcategory of Q-OSgr. Moreover, K contains the category Q-Quant reflectively,
subject to the following condition:

(C) For any φ : A −→ L in K where L is a Q-quantale and A arbitrary, the
corestriction of φ to any sub-Q-quantale of L containing the image of φ also belongs
to K.

Remark 3.1. For any object A in K, we have a universal map ηA : A −→ FA
in K. In particular, for any Q-quantale L, there exists a unique Q-quantale homo-
morphism εL : FL −→ L, such that εL ◦ ηL = idL.
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Proposition 3.2. Let A be an object in K. Then FA is generated by the image
ImηA of A.

Proof. Let M ⊆ FA be the sub-Q-quantale generated by ImηA, φ : A −→ M be
the corestriction of ηA : A −→ FA, and i : M −→ FA be the identical sub-Q-
quantale embedding. Then by (C) we have a unique Q-quantale homomorphism
h : FA −→ M such that h ◦ ηA = φ. Hence i ◦ h ◦ ηA = ηA. By the universal
property of ηA we get i is onto. Thus M = FA. �

Corollary 3.3. Let A be an object in K and b ∈ FA. Define a map kb : FA −→ Q
as follows:

∀ y ∈ FA, kb(y) =

{
eFA(y, b), y ∈ ImηA,
0, otherwise.

Then b = tkb.

Proof. Let A = {tB | B ∈ QImηA}. For all B1, B2 ∈ QImηA , we define a map
B1 ⊕B2 : ImηA −→ Q as follows:

∀ y ∈ ImηA, (B1 ⊕B2)(y) =
∨

a⊗FLb=y,a,b∈ImηA

(B1(a)&B2(b)).

We can check that (tB1)⊗FL (tB1) = t(B1 ⊕B2). For any B ∈ QA, z ∈ FA, we
have that∧

x∈FA

(
B(x)→ eFA(x, z)

)
=
∧
x∈A

(B(x)→ eFA(x, z))

=
∧
tB∈A

(B(tB)→ eFA(tB, z))

=
∧
tB∈A

(
B(tB)→

( ∧
a∈ImηA

(B(a)→ eFA(a, z))
))

=
∧
tB∈A

∧
a∈ImηA

((B(tB)&B(a))→ eFA(a, z))

=
∧

a∈ImηA

(( ∨
B∈QImηA

B(tB)&B(a)
)
→ eFA(a, z)

)
= eFA(t(

∨
B∈QImηA

B(tB)&B), z).

Then tB = t(
∨

B∈QImηA
B(tB)&B), and thus A is a sub-Q-quantale. For any

y ∈ ImηA, we define a map χ{y} : ImηA −→ Q as follows:

∀ x ∈ ImηA, χ{y}(x) =

{
1, x = y,

0, otherwise.

It follows that tχ{y} = y. This shows that ImηA ⊆ A. Let Y be a sub-Q-quantale

of FA with ImηA ⊆ Y , and B ∈ QImηA . Define a map C : Y −→ Q as follows:

∀ y ∈ Y, C(y) =

{
B(y), y ∈ ImηA,
0, otherwise.
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Then tB = tC, and thus A ⊆ Y . This means 〈ImηA〉 = A. By Proposition 3.2, we
have that FA = A. For every b ∈ FA, there exists B ∈ QImηA such that b = tB.
For all y ∈ ImηA, B(y) ≤ kb(y). Then tB ≤ tkb ≤ b, and thus tkb = b. �

Proposition 3.4. Let L be a Q-quantale. Then idFL ≤ ηL ◦ εL.

Proof. Assume that b ∈ FL. By Corollary 3.3, b = tkb. Now, for all y ∈ ImηL,
there exists a ∈ L such that y = ηL(a). Thus (ηL ◦ εL)(y) = (ηL ◦ εL)(ηL(a)) =
ηL(εL(ηL(a))) = ηL(a) = y. Since ηL ◦ εL is Q-order-preserving, we have
eFL(b, (ηL ◦ εL)(b))

= eFL(tkb, (ηL ◦ εL)(b))

=
∧

y∈FL
(kb(y)→ eFL(y, (ηL ◦ εL)(b)))

=
∧

y∈ImηL

(eFL(y, b)→ eFL(y, (ηL ◦ εL)(b)))

≥
∧

y∈ImηL

(eFL((ηL ◦ εL)(y), (ηL ◦ εL)(b))→ eFL(y, (ηL ◦ εL)(b)))

=
∧

y∈ImηL

(eFL(y, (ηL ◦ εL)(b))→ eFL(y, (ηL ◦ εL)(b)))

≥ 1,

consequently, idFL ≤ ηL ◦ εL. �

Corollary 3.5. Let L be a Q-quantale. Then (εL, ηL) is a Q-adjunction between
FL and L.

Proposition 3.6. Let L be a Q-quantale, A an object in K, and f, g : FA −→ L
Q-quantale homomorphisms. Then f ◦ ηA ≤ g ◦ ηA implies f ≤ g.

Proof. Since f ◦ ηA ≤ g ◦ ηA, eL((f ◦ ηA)(d), (g ◦ ηA)(d)) ≥ 1 for all d ∈ A. For all
b ∈ FA, we have b = tkb, f(b) = f(tkb) = tf→Q (kb), g(b) = g(tkb) = tg→Q (kb).
Thus

eL(f(b), g(b)) = eL(tf→Q (kb), g(b))

=
∧
x∈L

(( ∨
f(a)=x

kb(a)
)
→ eL(x, g(b))

)
=

∧
a∈FA

(kb(a)→ eL(f(a), g(b)))

=
∧

a∈ImηA

(eFA(a, b)→ eL(f(a), g(b)))

≥
∧

a∈ImηA

((eL(g(a), g(b))&eL(f(a), g(a)))→ eL(f(a), g(b)))

=
∧

a∈ImηA

(eL(g(a), g(b))→ (eL(f(a), g(a))→ eL(f(a), g(b))))

≥
∧

a∈ImηA

(eL(g(a), g(b))→ eL(g(a), g(b)))

≥ 1.

That is, f ≤ g. �
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Proposition 3.7. Let L be a Q-quantale and h : L −→ FL be a right inverse of
εL : FL −→ L. Then h ◦ εL ≤ idFL.

Proof. For all x ∈ L, since eFL((h◦εL)(ηL(x)), ηL(x)) = eFL((h◦(εL◦ηL))(x), ηL(x))
= eFL(h(x), ηL(x)) = eFL(h(x), (ηL ◦ (εL ◦ h))(x)) = eFL(h(x), (ηL ◦ εL)(h(x))) ≥
1, we have that eFL((h ◦ εL)(a), a) ≥ 1 for all a ∈ ImηL. For all b ∈ FL,
eFL((h ◦ εL)(b), b)

= eFL((h ◦ εL)(tkb), b)
= eFL(t(h ◦ εL)→Q (kb), b)

=
∧
y∈FL

((h ◦ εL)→Q (kb)(y)→ eFL(y, b))

=
∧
y∈FL

(( ∨
(h◦εL)(a)=y

kb(a)
)
→ eFL(y, b)

)
=

∧
a∈ImηA

(eFL(a, b)→ eFL((h ◦ εL)(a), b))

≥
∧

a∈ImηA

((eFL(a, b)&eFL((h ◦ εL)(a), a))→ eFL((h ◦ εL)(a), b))

=
∧

a∈ImηA

(eFL(a, b)→ (eFL((h ◦ εL)(a), a)→ eFL((h ◦ εL)(a), b)))

≥
∧

a∈ImηA

(eFL(a, b)→ eFL(a, b))

≥ 1.

Thus h ◦ εL ≤ idFL. �

Proposition 3.8. Let A,B be objects in K and g : A −→ B be a K-morphism.
Suppose L,P are Q-quantales and f : L −→ P is a Q-quantale homomorphism.
Then the following statements hold:

(1) Fg ◦ ηA = ηB ◦ g;
(2) f ◦ εL = εP ◦ Ff ;
(3) If φ, ϕ : A −→ B are K-morphisms and φ ≤ ϕ, then Fφ ≤ Fϕ;
(4) (FηA, εFA) is a Q-adjunction between FA and FFA.

Proof. (1) The statement is straightforward since K contains the category Q-
Quant reflectively.

(2) Since ηP ◦ f = Ff ◦ ηL, εP ◦ ηP ◦ f = εP ◦ Ff ◦ ηL, f = εP ◦ Ff ◦ ηL,
f ◦ εL ◦ ηL = εP ◦ Ff ◦ ηL, therefore f ◦ εL = εP ◦ Ff by the universal property of
ηL.

(3) Let φ ≤ ϕ. For a ∈ A. By (1), we have that eFB((Fφ◦ηA)(a), (ηB◦φ)(a)) ≥ 1,
and eFB((ηB ◦ ϕ)(a), (Fϕ ◦ ηA)(a)) ≥ 1. Thus, by transitivity of eFB and the fact
that ηB(φ(a)) ≤ ηB(ϕ(a)), eFB(Fφ(ηA(a)), Fϕ(ηA(a))) ≥ 1. By Proposition 3.6,
we have that Fφ ≤ Fϕ.
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(4) Since idFA ◦ ηA = εFA ◦ ηFA ◦ ηA = εFA ◦ FηA ◦ ηA, we have that idFA =
εFA ◦FηA. By Proposition 3.7, we have that (FηA, εFA) is a Q-adjunction between
FA and FFA. �

4. K-flat Projective Q-quantales

Definition 4.1. A Q-quantale L is said to be projective if for any Q-quantale
homomorphism f : L −→M and an epimorphism g : N −→M in Q-Quant, there
exists a Q-quantale homomorphism h : L −→ N such that f = g ◦ h.

Definition 4.2. A Q-quantale L is called K-flat projective if L is projective in
Q-Quant relative to the onto Q-quantale homomorphism h : N −→ M for which
the right adjoint h∗ : M −→ N belongs to K.

Remark 4.3. A Q-quantale L is a K-flat projective Q-quantale if L is a projective
Q-quantale.

Definition 4.4. Let L be a Q-quantale and a ∈ L. Define a map ⇓ a : L −→ Q as
follows:

∀ x ∈ L,⇓ a(x) =
∧
b∈FL

(eL(a, εL(b))→ eFL(ηL(x), b)).

We call ⇓ : L× L −→ Q a Q-binary relation on the Q-quantale L.

Lemma 4.5. Let L,P be Q-quantales. Then for all a, x, y, u, v ∈ L,
(1) ⇓ a ≤↓ a;
(2) eL(x, y)& ⇓ u(y)&eL(u, v) ≤⇓ v(x).

Proof. (1) For all m ∈ L, we have that

⇓ a(m) =
∧
b∈FL

(eL(a, εL(b))→ eFL(ηL(m), b))

≤ eL(a, εL(ηL(a)))→ eFL(ηL(m), ηL(a))

= eL(a, a)→ eFL(ηL(m), ηL(a))

≤ eL(εL(ηL(m)), εL(ηL(a)))

=↓ a(m).

Thus ⇓ a ≤↓ a.

(2) For all b ∈ FL, we have that eL(x, y)&eL(u, v)&(eL(u, εL(b))→ eFL(ηL(y), b))
&eL(v, εL(b)) ≤ eL(x, y)&eFL(ηL(y), b) ≤ eFL(ηL(x), ηL(y))&eFL(ηL(y), b) ≤ eFL(
ηL(x), b). Then eL(x, y)&eL(u, v)&(eL(u, εL(b))→ eFL(ηL(y), b)) ≤ eL(v, εL(b))→
eFL(ηL(x), b). So we can conclude that eL(x, y)&eL(u, v)&

∧
b∈FL

(eL(u, εL(b)) →

eFL(ηL(y), b)) ≤
∧

b∈FL
(eL(v, εL(b))→ eFL(ηL(x), b)) =⇓ v(x). �

Theorem 4.6. Let L be a Q-quantale. Then the following statements are equiva-
lent:

(1) L is K-flat projective;
(2) εL has a right inverse;
(3) There exists an object A in K such that L is a retraction of FA;
(4) a = t ⇓ a and ⇓ a(x)& ⇓ b(y) ≤⇓ (a⊗L b)(x⊗L y) for all a, b, x, y ∈ L.
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Proof. (1)⇒(2) Since εL ◦ ηL = idL, we have that εL is an onto Q-quantale ho-
momorphism. By Corollary 3.5, we have that εL has a right adjoint ηL, which
belongs to K. Since L is K-flat projective, there exists a Q-quantale homomor-
phism h : L −→ FL such that εL ◦ h = idL.

(2)⇒(3) Let A = L. Then A is an object in K. By (2), we have that L is a
retract of FL.

(3)⇒(1) By (3), there exist two Q-quantale homomorphisms n : FA −→ L,
j : L −→ FA such that n ◦ j = idL. Firstly, let P, T be Q-quantales and the
onto Q−quantale homomorphism h : P −→ T for which the right adjoint h∗ :
T −→ P belongs to K, f : FA −→ T be a Q-quantale homomorphism. Then
h∗ ◦ f ◦ ηA belongs to K, there exists a unique Q-quantale homomorphism g such
that h∗ ◦ f ◦ ηA = g ◦ ηA, h ◦ h∗ ◦ f ◦ ηA = h ◦ g ◦ ηA. By the universal of ηA, we
have f = h ◦ g. Thus FA is K-flat projective. Moreover, let m : L −→ T be a
Q-quantale homomorphism, then m◦n : FA −→ T is a Q-quantale homomorphism,
so there exists a Q-quantale homomorphism p : FA −→ P such that h ◦ p = m ◦ n,
(h ◦ p) ◦ j = (m ◦ n) ◦ j, h ◦ (p ◦ j) = m ◦ (n ◦ j) = m ◦ idL = m. Thus L is K-flat
projective.

(2)⇒(4) Let h be a right inverse of εL. For all a, x ∈ L, we have

⇓ a(x) =
∧
b∈FL

(eL(a, εL(b))→ eFL(ηL(x), b))

≤ eL(a, εL(h(a)))→ eFL(ηL(x), h(a))

= eL(a, a)→ eFL(ηL(x), h(a))

≤ 1→ eFL(ηL(x), h(a))

≤ eFL(ηL(x), h(a)).

For all b ∈ FL, by Proposition 3.7, we can conclude that

eFL(ηL(x), h(a))&eL(a, εL(b)) ≤ eFL(ηL(x), h(a))&eFL(h(a), h(εL(b)))

≤ eFL(ηL(x), h(εL(b)))&eFL(h(εL(b)), b)

≤ eFL(ηL(x), b).

Then eFL(ηL(x), h(a)) ≤
∧

b∈FL
(eL(a, εL(b)) → eFL(ηL(x), b)) =⇓ a(x), and thus

⇓ a(x) = eFL(ηL(x), h(a)). Since h(a) = tkh(a) and εL ◦ h = idL, we have that
a = (εL ◦ h)(a) = εL(tkh(a)) = t(εL)→Q (kh(a)). For all y ∈ L,

eL(a, y) =
∧
d∈L

((εL)→Q (kh(a))(d)→ eL(d, y))

=
∧
d∈L

∧
εL(p)=d

(kh(a)(p)→ eL(d, y))

=
∧

p∈FL
(kh(a)(p)→ eL(εL(p), y))

=
∧

p∈ImηL

(eFL(p, h(a))→ eL(εL(p), y))

=
∧
d∈L

(eFL(ηL(d), h(a))→ eL(d, y))

=
∧
d∈L

(⇓ a(d)→ eL(d, y)).
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This means that a = t ⇓ a.

⇓ a(x)& ⇓ b(y) = eFL(ηL(x), h(a))&eFL(ηL(y), h(b))

≤ eFL(ηL(x)⊗FL ηL(y), h(a)⊗FL h(b))

= e(ηL(x⊗L y), h(a⊗L b))
=⇓ (a⊗L b)(x⊗L y).

(4)⇒(2) Define a map hL : L −→ FL as follows:

∀ a ∈ L, hL(a) = tAa,

where Aa : FL −→ Q is defined by

∀ b ∈ FL, Aa(b) =
∨
x∈L

(⇓ a(x)&eFL(b, ηL(x))).

We shall prove that hL is a right inverse of εL. Firstly, for all a ∈ L, we have that
(εL ◦ hL)(a) = εL(tAa) = t(εL)→Q (Aa). For all t ∈ L, we have∧
x∈L

((εL)→Q (Aa)(x)→ eL(x, t)) =
∧
x∈L

∧
εL(b)=x

(Aa(b)→ eL(x, t))

=
∧
b∈FL

(Aa(b)→ eL(εL(b), t))

=
∧
b∈FL

∧
z∈L

((⇓ a(z)&eFL(b, ηL(z)))→ eL(εL(b), t)

=
∧
b∈FL

∧
z∈L

(⇓ a(z)→ (eFL(b, ηL(z))→ eL(εL(b), t)))

=
∧
z∈L

(⇓ a(z)→ eL(z, t))

= eL(t ⇓ a, t)
= eL(a, t).

This means that (εL ◦ hL)(a) = t(εL)→Q (Aa) = a. So εL ◦ hL = idL.

Moreover, for all b ∈ FL, (hL ◦ εL)(b) = tAεL(b),

eFL((hL ◦ εL)(b), b) = eFL(tAεL(b), b)

=
∧
c∈FL

(AεL(b)(c)→ eFL(c, b))

=
∧
c∈FL

(( ∨
z∈L
⇓ εL(b)(z)&eFL(c, ηL(z))

)
→ eFL(c, b)

)
≥
∧
c∈FL

∧
z∈L

(eFL(c, b)→ eFL(c, b))

≥ 1.

Then hL ◦ εL ≤ idFL, so (hL, εL) is a Q-adjunction between L and FL, hence hL
preserves joins. Since
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eFL(hL(a)⊗FL hL(b), hL(a⊗L b)) = eFL(tAa ⊗FL tAb,tAa⊗Lb)
= eFL(t(tAa⊗FL−)→Q (Ab),tAa⊗Lb)

=
∧
c∈FL

(( ∨
tAa⊗FLd=c

Ab(d)
)
→ eFL(c,tAa⊗Lb)

)
=

∧
d∈FL

(Ab(d)→ eFL(tAa ⊗FL d,tAa⊗Lb))

=
∧

d∈FL

∧
z∈FL

(Ab(d)&(−⊗FLd)→Q (Aa)(z)→ eFL(z,tAa⊗Lb))

=
∧

d∈FL

∧
z∈FL

∧
l⊗FLd=z

(Ab(d)&Aa(l)→ eFL(z,tAa⊗Lb))

=
∧

d∈FL

∧
l∈FL

(Ab(d)&Aa(l)→ eFL(l ⊗FL d,tAa⊗Lb))

≥ 1,

we have that hL(a)⊗FL hL(b) ≤ hL(a⊗L b). Moreover, one can conclude that

hL(a⊗L b) = hL((εL ◦ hL)(a)⊗FL (εL ◦ hL)(b))

= (hL ◦ εL)(hL(a)⊗FL hL(b))

≤ hL(a)⊗FL hL(b).

Then hL(a⊗L b) = hL(a)⊗FL hL(b), and thus hL is a right inverse of εL. �

The comonad determined by F (viewed as an endofunctor of Q-Quant) is
(F, ε, Fη), and its coalgebras are pairs (L, gL), where the structure map gL : L −→
FL satisfies the conditions as follows:

(U) εL ◦ gL = idL; (A) (FgL) ◦ gL = (FηL) ◦ gL.

Proposition 4.7. Let L be a Q-quantale. Then L is K-flat projective iff it has a
coalgebra structure for the (F, ε, Fη).

Proof. We only have to show necessity. For all b ∈ FL,

eFFL(FηL(b), ηFL(b)) = eFFL(FηL(tkb), ηFL(b))

= eFFL(t(FηL)→Q (kb), ηFL(b))

=
∧

c∈FFL
((FηL)→Q (kb)(c)→ eFFL(c, ηFL(b)))

=
∧

c∈FFL

∧
FηL(y)=c

(kb(y)→ eFFL(c, ηFL(b)))

=
∧

y∈FL
(kb(y)→ eFFL(FηL(y), ηFL(b)))

=
∧

y∈ImηL

(eFL(y, b)→ eFFL(FηL(y), ηFL(b)))

=
∧
a∈L

(eFL(ηL(a), b)→ eFFL(FηL(ηL(a)), ηFL(b)))

=
∧
a∈L

(eFL(ηL(a), b)→ eFFL(ηFL(ηL(a)), ηFL(b)))

≥ 1.

Then eFFL(FηL(b), ηFL(b)) ≥ 1. By Theorem 4.6, there exists a Q-quantale
homomorphism hL : L −→ FL such that εL ◦ hL = idL. Next, we shall prove that
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FhL ◦ hL = FηL ◦ hL. For all b ∈ FL, eFL(b, (ηL ◦ εL)(b)) ≥ 1. Then for all a ∈ L,
eFL(hL(a), ηL(a)) = eFL(hL(a), (ηL ◦ εL)(hL(a))) ≥ 1, By Proposition 3.8(3), we
have that eFFL(FhL(hL(a)), FηL(hL(a))) ≥ 1. Moreover, since a = t ⇓ a, we have
that eFFL(FηL(hL(a)), FhL(hL(a)))

= eFFL(FηL(t(hL)→Q (⇓ a)), FhL(hL(a)))

= eFFL(t(FηL ◦ hL)→Q (⇓ a), FhL(hL(a)))

=
∧

y∈FFL
((FηL ◦ hL)→Q (⇓ a)(y)→ eFFL(y, FhL(hL(a))))

=
∧

y∈FFL

∧
FηL◦hL(x)=y

(⇓ a(x)→ eFFL(y, FhL(hL(a))))

≥
∧
x∈L

(eFL(ηL(x), hL(a))→ eFFL(FηL(hL(x)), FhL(hL(a))))

≥
∧
x∈L

(eFL(ηL(x), hL(a))→ eFFL(ηFL(hL(x)), FhL(hL(a))))

=
∧
x∈L

(eFL(ηL(x), hL(a))→ eFFL(FhL(ηL(x)), FhL(hL(a))))

≥ 1.

Therefore FhL ◦ hL = FηL ◦ hL. �

5. Examples

Example 5.1. It is proved in [19] that Q-Quant is a reflective subcategory of
Q-OSgr. When K=Q-OSgr, we can prove that a Q-OSgr-flat projective fuzzy
quantale L is exactly the fuzzy weakly ⊗-stable completely distributive lattice (see
[12]).

Definition 5.2. A fuzzy dcpo (A, eA) with an associative binary operator ⊗ is
called a pre-Q-quantale if for all a ∈ A, a⊗− : A −→ A and − ⊗ a : A −→ A
preserve joins of every Q-directed subset of A.

Remark 5.3. Clearly, for Q = 2, a pre-Q-quantale is just a pre-quantale [15].

A map f : (X,⊗X , eX) −→ (Y,⊗Y , eY ) between two pre-Q-quantales is called a
pre-Q-quantale homomorphism if f(a⊗X b) = f(a)⊗Y f(b) and f(tS) = tf→Q (S)

for all a, b ∈ X, S ∈ D(X). Let PQ-Quant denote the category of pre-Q-quantales
with pre-Q-quantale homomorphisms. Clearly, PQ-Quant is a subcategory of Q-
OSgr.

Definition 5.4. Let (L,⊗, eL) be a Q-quantale. A Q-order-preserving map j :
L −→ L is called a pre-Q-nucleus if it satisfies the following conditions:

(1) eL(x, j(x)) ≥ 1 for all x ∈ L;
(2) eL(a⊗ j(b), j(a⊗ b)) ≥ 1, eL(j(a)⊗ b, j(a⊗ b)) ≥ 1 for all a, b ∈ L.

Definition 5.5. [19] Let (L,⊗, eL) be a Q-quantale. A Q-order-preserving map
j : L −→ L is called a Q-nucleus if it satisfies the following conditions:



K-flat Projective Fuzzy Quantales 77

(1) eL(x, j(x)) ≥ 1 for all x ∈ L;
(1) eL(j(j(x)), j(x)) ≥ 1 for all x ∈ L;
(2) eL(j(a)⊗ j(b), j(a⊗ b)) ≥ 1 for all a, b ∈ L.

Definition 5.6. [19] Let (L,⊗, eL) be a Q-quantale. A subset S ⊆ L is called a
quotient Q-quantale of L if there exists a Q-nucleus j on L such that Imj = S.

Lemma 5.7. [19] Let (L,⊗, eL) be a Q-quantale, S ⊆ L. Then S is closed under
Q-inf and for all a ∈ L, s ∈ S, a→r s, a→l s ∈ S iff S is a quotient Q-quantale of
L.

Proposition 5.8. Let (L,⊗, eL) be a Q-quantale and j be a pre-Q-nucleus. Then
the set of fixed points Fix(j) of j is a quotient Q-quantale of L.

Proof. Let i : Fix(j) −→ L be the inclusion map. For all A ∈ QFix(j), since

eL(j(ui→Q (A)),ui→Q (A)) =
∧
a∈L

(i→Q (A)(a)→ eL(j(ui→Q (A)), a))

=
∧
a∈L

∧
i(x)=a

(A(x)→ eL(j(ui→Q (A)), a))

=
∧

x∈Fix(j)

(A(x)→ eL(j(ui→Q (A)), i(x)))

≥
∧

x∈Fix(j)

(A(x)→ eL(ui→Q (A), x))

≥
∧

x∈Fix(j)

(A(x)→ i→Q (A)(x))

=
∧

x∈Fix(j)

(A(x)→ A(x))

≥ 1,

and eL(ui→Q (A), j(ui→Q (A))) ≥ 1, j(ui→Q (A)) = ui→Q (A).

Moreover, for all a ∈ L, s ∈ Fix(j), since

eL(j(a→r s), a→r s) = eL(j(a→r s), a→r j(s))

= eL(a⊗ j(a→r s), j(s))

≥ eL(a⊗ (a→r s), s)

= eL(a→r s, a→r s)

≥ 1,

and eL(a →r s, j(a →r s)) ≥ 1. Therefore, a →r s = j(a →r s). Similarly, we can
prove a→l s = j(a→l s). Hence, Fix(j) is a quotient Q-quantale of L. �

Theorem 5.9. Q-Quant is a reflective subcategory of PQ-Quant.

Proof. Let (A, ·, eA) be a pre-Q-quantale and Υ(A) = {U ∈ D(A) | for all S ∈ D(A),
subA(S,U) ≤ U(tS)}.
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(1) We define a map j : D(A) −→ D(A) as follows:

∀ U ∈ D(A), j(U) = kU ,

where kU : A −→ Q is defined by

∀ x ∈ A, kU (x) = U(x) ∨
( ∨
S∈D(A)

subA(S,U)&eA(x,tS)
)
.

Then j is a pre-Q-nucleus and Υ(A) = Fix(j). Thus Υ(A) is a Q-quantale.
(2) Now, we define a map δA : A −→ Υ(A) as follows:

∀ a ∈ A, δA(a) =↓ a.

We can easily prove that δA(x) ⊗j δA(y) = j(↓ (x · y)) =↓ (x · y) = δA(x · y). It
remains to show that δA(tX) = t(δA)→Q (X) for all X ∈ D(A).

For all X ∈ D(A), U ∈ Υ(A). If U =↓ a for some a ∈ A, then subA(↓ a, ↓
(tX)) = eA(a,tX). Hence X(a) ≤ subA(↓ a, ↓ (tX)). Thus (δA)→Q (X)(U) =∨
δA(z)=U X(z) ≤ subA(U, ↓ (tX)). For all Y ∈ Υ(A), y ∈ A, Y (tX)&eA(y,tX) ≤

Y (y), so we have Y (tX) ≤ eA(y,tX) → Y (y), then Y (tX) ≤
∧
y∈A

(eA(y,tX) →

Y (y)) = subA(↓ tX,Y ). Since∧
U∈Υ(A)

(
(δA)→Q (X)(U)→ subA(U, Y )

)
=

∧
U∈Υ(A)

(( ∨
δA(a)=U

X(a)
)
→ subA(U, Y )

)
=
∧
a∈A

(X(a)→ subA(↓ a, Y ))

=
∧
a∈A

(
X(a)→

( ∧
y∈A

(↓ a(y)→ Y (y))
))

=
∧

a,y∈A
(X(a)&eA(y, a)→ Y (y))

=
∧
y∈A

(( ∨
a∈A

X(a)&eA(y, a)
)
→ Y (y)

)
≤
∧
y∈A

(X(y)→ Y (y))

≤ Y (tX).

Then
∧

U∈Υ(A)

((δA)→Q (U) → subA(U, Y )) ≤ subA(↓ tX,Y ), and thus δA(tX) =

t(δA)→Q (X). Thus δA is a pre-Q-quantale homomorphism.

(3) Let X be a Q-quantale and g : A −→ X be a pre-Q-quantale homomorphism.
Define a map h : D(A) −→ X as follows:

∀ U ∈ D(A), h(U) = tg→Q (U).

It is easily proved that h is a Q-quantale homomorphism and h ◦ j = h. Define a
map f : Υ(A) −→ X as follows:

∀ U ∈ Υ(A), f(U) = h(U).
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For all B ∈ QΥ(A), we have that f(tΥ(A)B) = h(tΥ(A)B) = h(j(ti→Q (B))) =

h(ti→Q (B)) = th→Q (i→Q (B)) = t(h ◦ i)→Q (B) = th→Q (B) = tf→Q (B). For all B, C ∈
Υ(A), f(B ⊗j C) = h(j(B ⊗ C)) = h(B ⊗ C) = h(B)⊗ h(C) = f(B)⊗ f(C). For
all x ∈ A, y ∈ X,∧

a∈A
(g→Q (↓ x)(a)→ eX(a, y)) =

∧
a∈A

(( ∨
g(z)=a

↓ x(z)
)
→ eX(a, y)

)
=
∧
z∈A

(eA(z, x)→ eX(g(z), y))

≤ eA(x, x)→ eX(g(x), y)

= eX(g(x), y).

Then eX(g(x), y)&eA(z, x) ≤ eX(g(x), y)&eX(g(z), g(x)) ≤ eX(g(z), y) for all z ∈
A. Hence eX(g(x), y) ≤

∧
z∈A

(eA(z, x)→ eX(g(z), y)) =
∧
a∈A

(g→Q (↓ x)(a)→ eX(a, y)).

Thus f(↓ x) = g(x).
(4) Suppose there exists a Q-quantale homomorphism l such that l ◦ δA = g.

For all X ∈ Υ(A), we have X = t(δA)→Q (X). Then l(X) = l(t(δA)→Q (X)) =

tl→Q ((δA)→Q )(X)) = t(l ◦ δA)→Q (X) = tg→Q (X) = f(X), l = f . �

Remark 5.10. Let (A, ·, e) be a pre-Q-quantale. Then Υ(A) is PQ-Quant-flat
projective. Moreover, by Theorem 5.9, we know that PQ-Quant is an special case
of K. In this case, suppose L is a Q-quantale. Then ⇓ a(x) =

∧
U∈Υ(A)(eL(a,tU)→

U(x)) for all a, x ∈ L. Thus L is PQ-Quant-flat projective iff a = t ⇓ a and
⇓ a(x)& ⇓ b(y) ≤⇓ (a⊗L b)(x⊗L y).

6. Conclusions

In this paper, we obtain some characterizations of the K-flat projective fuzzy
quantales. Especially, we prove that a Q-quantale L is K-flat projective iff it has
a coalgebra structure for the (F, ε, Fη). Furthermore, we present two examples for
special cases of K. In further work, we can pursue to characterize projective Q-
quantales. That is, we hope to find a satisfactory sufficient and necessary condition
for a Q-quantale to be projective.
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