INTERVAL ANALYSIS-BASED HYPERBOX GRANULAR COMPUTING CLASSIFICATION ALGORITHMS

H. LIU, J. LI, H. GUO AND C. LIU

Abstract. Representation of a granule, relation and operation between two granules are mainly researched in granular computing. Hyperbox granular computing classification algorithms (HBGrC) are proposed based on interval analysis. Firstly, a granule is represented as the hyperbox which is the Cartesian product of N intervals for classification in the N-dimensional space. Secondly, the relation between two hyperbox granules is measured by the novel positive valuation function induced by the two endpoints of an interval, where the operations between two hyperbox granules are designed so as to include granules with different granularity. Thirdly, hyperbox granular computing classification algorithms are designed on the basis of the operations between two hyperbox granules, the fuzzy inclusion relation between two hyperbox granules, and the granularity threshold. We demonstrate the superior performance of the proposed algorithms compared with the traditional classification algorithms, such as, Random Forest (RF), Support Vector Machines (SVMs), and Multilayer Perceptron (MLP).

1. Introduction

Classification is a popular application in many fields including computer vision [25], data analysis [5, 6]. As a classification and clustering method, Granular Computing (GrC) involves the computational intelligence transformation between spaces with different granularity [31, 29, 14, 10]. As a fundamental data analysis method, GrC is commonly studied from the theory and application aspects, which include pattern recognition, image processing, and industrial applications [26, 16, 11]. The main issues of GrC are the representation of granule, the operation between two granules, the relation between two granules, and the granularity of a granule.

A granule is a clump or group of objects drawn together by distinguishability, similarity, proximity, or functionality [2]. More specially, a binary granule representation is proposed by a conversion from a set to a binary granule. Correspondingly, set operations are converted to binary granule computing. Besides, from a rough set framework point of view, binary granule representations are investigated by introducing Hamming distance between granules. Moreover, a concept of the granule swarm distance is defined for measuring uncertainty between two granule swarms,
which provides a more comprehensible perspective for measures in rough set theory [3].

The operators of two granules are formally expressed as a certain hypothesis testing where a null hypothesis concerns equality of medians of membership grades produced by the triangular norms [9]. V. G. Kaburlasos defined the join operator and the meet operator to induce the granules with different granularity based on the theory of lattice computing [12]. V. G. Kaburlasos defined the join operation and meet operation between two granules which composed the fuzzy inclusion measure between two granules and form the fuzzy lattice reasoning [13].

The relation between two granules is mainly used to form the association rules between inputs and outputs. The framework is a specialized version of the general framework intended for mining relational data and is defined in granular computing theory [8]. V. G Kaburlasos formed fuzzy inference system (FIS) based on the lattice theory, and a preliminary industrial application demonstrates the advantages of their proposed schemes [10]. In [19], the author proposes a new concept of granular rule-based models whose rules assume a format "if \(G(A_i) \) then \(G(f_i) \)" where \(G(\cdot) \)s are granular generalizations of the numeric conditions and conclusions of the rules.

Measurement of granularity is one of the foundational issues in granular computing. Yiyu Yao investigates a class of measures of granularity of partitions. The granularity of a set is defined by a strictly monotonic increasing transformation of the cardinality of the set. The granularity of a partition is defined as the expected granularity of all blocks of the partition with respect to the probability distribution defined by the partition [30].

The foundations of interval analysis were established and developed by Moore [17]. The capability of interval analysis to solve a wide variety of real life problems in an efficient manner enabled the extension of its concepts to the probabilistic framework. In this way, the classical concept of random variable was extended to cover the interval random variable concept, which allows not only the modeling of randomness, using the concepts of probability theory, but also the modeling of imprecision and non-specificity, using the concepts of interval analysis. The interval analysis based approach provides for the development of mathematical methods and computational tools that enable modeling data and solving optimization problems under uncertainty.

A general method for predicting future observations from any arbitrary continuous distribution is proposed in [1], and two pivotal statistics are modified to construct prediction intervals for future observations when the sample size is fixed or random.

An upper bound condition is introduced to deal with incomplete interval valued fuzzy preference relations [15].

A. Khalid and I. Beg provides a comprehensive analysis of computational problems concerning calculation of general correlation coefficients for interval data [18]. Exact algorithms solving this task have unacceptable computational complexity for larger samples. General correlation coefficients for interval data are also given by intervals. The bounds are derived as lower and upper endpoints.
By choosing the concept of event interval as the building block of the approach and by considering a variety of such intervals, problems with varying degrees of information in logs (e.g. in relation to time stamps) can be addressed in a systematic manner [28]. Interval analysis is widely used in real-world applications. Interval analysis may increase the diagnostic yield of interictal scalp electroencephalography (EEG) combined with the Fourier analysis [23].

In this work, we present hyperbox granule classification algorithms from the view of interval analysis. Firstly, a granule is represented as the hyperbox with the beginning point and the end point. Secondly, the relation between two hyperbox granules is measured by the novel positive valuation function. Thirdly, the operations between two hyperbox granules are designed so as to form the hyperbox granular computing classification algorithm. Finally, the superior performance of the proposed algorithm is demonstrated by the benchmark data sets.

2. Algebraic Lattices for Vector Space

In this section, we discuss the algebraic lattices for vector space induced N-dimensional space, including the operation between two vectors, the partial order relation between two vectors, and the algebraic lattices induced by vector space and operations between two vectors. For vector space, the theory of algebraic lattices has been presented in literature [20]. In the paper, the main definitions and theorems are shown as follows.

Definition 2.1. Suppose R is a nonempty real number set, operations \lor and \land between two elements a and b are defined as, $\forall a, b \in R, a \lor b = \max\{a, b\}$, $a \land b = \min\{a, b\}$.

$\forall a, b, c \in R$, operations \lor and \land between two elements have the following laws.

1. Commutative law, $a \lor b = b \lor a$, $a \land b = b \land a$;
2. Associate law, $a \lor (b \lor c) = (a \lor b) \lor c$, $a \land (b \land c) = (a \land b) \land c$;
3. Absorptive law, $a \lor (a \land b) = a$, $a \land (a \lor b) = a$;
4. Distributive law, $a \lor (b \land c) = (a \lor b) \lor (a \lor c)$, $a \land (b \lor c) = (a \land b) \land (a \land c)$.

Theorem 2.2. For the nonempty set R, if the binary relation induced by operations \lor and \land is $a \leq b \iff a \lor b = b$, $a \land b = a$, then the relation $a \leq b$ between a and b is the partial order relation.

Definition 2.3. Suppose (R, \leq) is an algebraic system induced by the partial order relation \leq, if there is the least upper bound and the greatest lower bound for any two elements in R, then (R, \leq) is a lattice.

Theorem 2.4. (R, \leq) and (R, \geq) are lattices, \geq is the dual relation of \leq.

Relation \leq was defined in R, the following describes extensions to R^N space, where x is a vector, x is a scalar, \leq is the partial order relation between two vectors which is defined as follows.

Definition 2.5. The partial order relation between two vectors $x=(x_1, x_2, ..., x_N)$ and $y=(y_1, y_2, ..., y_N)$ is $x \preceq y \iff (x_1 \leq y_1), (x_2 \leq y_2), ..., (x_N \leq y_N)$.
The operations between two vectors

Definition 2.6. The operations between two vectors $x = (x_1, x_2, ..., x_N)$ and $y = (y_1, y_2, ..., y_N)$ are $x \lor y = (x_1 \lor y_1, x_2 \lor y_2, ..., x_N \lor y_N)$, $x \land y = (x_1 \land y_1, x_2 \land y_2, ..., x_N \land y_N)$.

Furthermore, it follows Theorem 2.3.

Theorem 2.7. (R^N, \preceq) and (R^N, \succeq) are lattices.

3. Algebraic Lattices Induced by Interval for Granule Space

In this section, we detail granular computing from the view of interval analysis, such as the representation of a granule, the operations between two granules, the inclusion relation between two granules.

3.1. The Representation of Hyperbox Granule. For granular computing in N-dimensional space, we represent a granule as a hyperbox with the beginning point x and the end point y which satisfy the partial order relation $x \preceq y$. For any two vectors $x = (x_1, x_2, ..., x_N)$ and $y = (y_1, y_2, ..., y_N)$, the two vectors x^* and y^* are induced by

\[x^* = x \land y \]
\[y^* = x \lor y \]

Obviously, $x^* \preceq y^*$, therefore we compute the hyperbox granule $G = [x^*, y^*]$, where x^* is the beginning point, and y^* is the end point of the granule. In the following sections, we represent hyperbox granule by $G = [x, y]$ for two vectors x and y. In 2-dimensional space, the granule induced by x and y is box, and in N-dimensional space, the granule induced by x and y is hyperbox.

From the view of interval analysis, the hyperbox granule in N-dimensional space can be regarded as the Cartesian product. Namely, for x and y, the hyperbox granule can be represented as

\[G = [x, y] = [x_1, y_1] \otimes [x_2, y_2] \otimes \cdots \otimes [x_N, y_N] \]

The granularity is computed by the L_2 distance between the beginning point and the end point. For example, in R^2 space, $(0, 1, 0.2) \preceq (0.4, 0.6)$, the hyperbox granule shown in Figure 1 is $G = [0.1, 0.2, 0.4, 0.6] = [0.1, 0.4] \otimes [0.2, 0.6]$ with the beginning point $(0.1, 0.2)$ and the end point $(0.4, 0.6)$, its granularity is 0.5.

3.2. The Operations Between Two Hyperbox Granules. For two hyperbox granules $G_1 = [x_1, y_1]$ and $G_2 = [x_2, y_2]$, the join hyperbox granule is the following form by the join operation

\[G_1 \lor G_2 = [x_1 \land x_2, y_1 \lor y_2] \]

where

\[x_1 \land x_2 = (x_{11} \land x_{21}, x_{12} \land x_{22}, ..., x_{1N} \land x_{2N}) \]
\[y_1 \lor y_2 = (y_{11} \lor y_{21}, y_{12} \lor y_{22}, ..., y_{1N} \lor y_{2N}) \]
\[x_i = (x_{1i}, x_{2i}, ..., x_{Ni}) \]
\[y_i = (y_{1i}, y_{2i}, ..., y_{Ni}) \]
The join hyperbox granule has greater granularity than the original hyperbox granules. The original hyperbox granules and the join hyperbox granule have the following relations

\[G_1 \subseteq G_1 \lor G_2 \]
\[G_2 \subseteq G_1 \lor G_2 \]

The meet hyperbox granule has the following form by the meet operation

\[G_1 \land G_2 = \begin{cases} [x_1 \lor x_2, y_1 \land y_2] & \text{if } x_1 \lor x_2 \preceq y_1 \land y_2 \\ \emptyset & \text{otherwise} \end{cases} \]

The meet hyperbox granule has smaller granularity than the original hyperbox granules. The meet hyperbox granule and the original hyperbox granules have the following relations,

\[G_1 \land G_2 \subseteq G_1 \]
\[G_1 \land G_2 \subseteq G_2 \]

3.3. The Inclusion Relation Between Two Hyperbox Granules. For hyperbox granular computing, the inclusion relation between two granules is discussed in literature [21]. In the paper, according to the definitions and theorems, the comments are shown as follows.

Definition 3.1. The inclusion relation between two hyperbox granules \(G_1 = [x_1, y_1] \) and \(G_2 = [x_2, y_2] \) is defined as

\[G_1 \subseteq G_2 \iff x_2 \preceq x_1, y_1 \preceq y_2 \]

Theorem 3.2. The inclusion relation between two hyperbox granules is the partial order relation.
For the granularity space induced N-dimensional space, the relation between two hyperbox granules can be measured by the partial order relation between two vectors with $2N$ length.

For two hyperbox granules $G_1 = [x_1, y_1]$ and $G_2 = [x_2, y_2]$, if $G_1 \subseteq G_2$, then $x_2 \preceq x_1$ and $y_1 \preceq y_2$, namely $G_1 \subseteq G_2 \iff x_{21} \leq x_{11}, \ldots, x_{2N} \leq x_{1N}, y_{11} \leq y_{21}, \ldots, y_{1N} \leq y_{2N}$ \hfill (3)

For two vectors (x_1, y_1) and (x_2, y_2) with $2N$ length, the partial order relation between these two vectors is

$$(x_1, y_1) \preceq (x_2, y_2) \iff x_{11} \leq x_{21}, \ldots, x_{1N} \leq x_{2N}, y_{11} \leq y_{21}, \ldots, y_{1N} \leq y_{2N}$$ \hfill (4)

Compared with formula (3), formula (4) and formula (3) are not consistent if we consider the hyperbox granule as the vector with $2N$ length. The order preserving function is introduced to eliminate the inconsistency.

Definition 3.3. For hyperbox granule $G = [x, y]$, $\theta(G) = [\theta(x), y]$ is the order preserving function which satisfies $G_1 \subseteq G_2 \iff \theta(G_1) \preceq \theta(G_2)$.

Owing to the dual property of \preceq and \succeq, if $x_1 \succeq x_2$, $\theta(x_1) \succeq \theta(x_2)$. Namely, $\theta(\cdot)$ is the somorphic mapping between lattice (\mathbb{R}^N, \preceq) and its dual lattice (\mathbb{R}^N, \succeq).

If $\theta(G)$ is a decreasing function, then partial order relation (3) and (4) induced by $\theta(\cdot)$ are consistent. Considering the operations (1) and (2) between two hyperbox granules, the inclusion relation between two hyperbox granules can be transformed into the operation between two hyperbox granules

$$G_1 \subseteq G_2 \iff G_1 = G_1 \land G_2, G_2 = G_1 \lor G_2$$ \hfill (5)

For the classification problem S in \mathbb{R}^N space, GS is the hyperbox granule set, the inclusion relation induces the following lattice.

Theorem 3.4. (GS, \subseteq) is lattice.

For N-dimensional space, we represent the hyperbox granule as the vector with $2N$ length induced by the beginning point and the end point, and the hyperbox granule is the Cartesian product of N intervals, so we discuss the hyperbox granular computing from the view of interval analysis.

4. Fuzzy Lattice for Granule Space

For a classification problem, the inclusion relation between two hyperbox granules is fuzzy, and different from the traditional crisp inclusion relation. We discuss the fuzzy inclusion relation which is compounded of the valuation functions.

Definition 4.1. The fuzzy inclusion relation is defined as the following mapping for GS

$$\sigma : GS \times GS \to [0, 1]$$

In Figure 2, the inclusion relation between two hyperbox granules is fuzzy, the granularities of hyperbox granules do not change between Figure 2(a) and Figure 2(b). Nevertheless, the inclusion measure $\sigma(G_2, G_1)$ in Figure 2(b) between G_1 and G_2 is greater than the inclusion measure $\sigma(G_2, G_1)$ in Figure 2(a).
The fuzzy inclusion function between two hyperbox granules satisfies the following properties [13].

\[G_1 \subseteq G_2 \Rightarrow \sigma(G_1, G_2) = 1 \] \hspace{1cm} (6)

\[G_1 \subseteq G_2 \Rightarrow \sigma(G, G_1) \leq \sigma(G, G_2) \] \hspace{1cm} (7)

For \(N \)-dimensional space, the hyperbox granule is considered in \(R^{2N} \) space, and the fuzzy inclusion relation between two hyperbox granules belongs to \(R \) space. So the mapping function between the granule space and the \(R \) space must be used to form the above mentioned fuzzy inclusion relation in terms of the hyperbox granules and their granularities. The linear and nonlinear positive valuation functions are used to realise the mapping between hyperbox granule space and \(R \) space.

A positive valuation function \(f: R \rightarrow R \) has to be a strictly increasing function. The linear positive valuation function is

\[v(x) = \sum_{i=1}^{N} x_i \] \hspace{1cm} (8)

For the order preserving function and the nonlinear positive valuation function, the former is used to eliminate the inconsistent of the partial order relation between vectors and the inclusion relation between two hyperbox granules, and the latter transforms \(R \) space and \(R^N \) space into the normalized the suitable interval and preserve the order of elements in the transformed interval, such as the interval \((0,1)\) for \(R \) space, and \((0,1)^N\) for \(N \)-dimensonial space. Namely, if \(v(x) \in (0,1) \), then \(\theta(x) \in (0,1) \) for \(R \) space.

According to the monotone properties of the order preserving function and the linear positive valuation function, we can define the following nonlinear positive valuation function.
For R space, we define the nonlinear positive valuation function as follows

$$v(x) = \frac{1}{2} \left(\frac{e^x - e^{-x}}{e^x + e^{-x}} + 1 \right)$$

(9)

The nonlinear positive valuation function maps the R space into $(0,1)$.

Theorem 4.2. The nonlinear positive valuation function

$$v(x) = \frac{1}{2} \left(\frac{e^x - e^{-x}}{e^x + e^{-x}} + 1 \right)$$

is the positive valuation for R space.

For R^N space

$$v(x) = \sum_{i=1}^{N} v(x_i)$$

(10)

Which maps the R^N space into $(0,1)^N$ space. Similarly, the following theorem is achieved.

Theorem 4.3. $v(x) = \sum_{i=1}^{N} v(x_i)$ is the positive valuation for R^N space.

For one-to-one mapping between $(0,1)$ and R space, R^N and $(0,1)^N$ are isomorphism, and both $((0,1), \geq)$ and $((0,1)^N, \preceq)$ are lattices.

Suppose $(G((0,1), \subseteq))$ is the induced hyperbox granule space by the Cartesian product of intervals $(0,1)$ and $(0,1)$, we discuss the preserving function and the positive valuation function in hyperbox granule space from the view of interval analysis.

Theorem 4.4. If $\theta(x) = 1 - x$ is the isomorphism mapping from lattice $((0,1), \geq)$ to its dual lattice $((0,1), \leq)$, then

$$v([a, b]) = v(\theta(a)) + v(b)$$

(11)

is the positive valuation function.

In Theorem, we discuss the partial order relation for the hyperbox granule space induced by 1-dimensional space, such as R space, and the elimination method of inconsistency of partial order relations for the induced hyperbox granule space and the 2-dimensional space. The partial order relation for the hyperbox granule space and the elimination method can be extended to N-dimensional space and used to form the classification algorithm and clustering algorithm in N-dimensional space by the following fuzzy lattice.

Theorem 4.5. $(G(R), k)$ and $(G(R), s)$ are fuzzy lattice, where R is real number, where

$$k([a, b], [c, d]) = \frac{v([c, d])}{v([a, b] \cup [c, d])}$$

(12)

$$s([a, b], [c, d]) = \frac{v([a, b] \cap [c, d])}{v([a, b])}$$

(13)

are the fuzzy inclusion relation between two hyperbox granules.
The above discussion highlights the fuzzy lattice induced by R space from the view of interval analysis which can be extended to R^N space and achieves the following theorem.

Theorem 4.6. For classification problem S in R^N space, $(G(R^N), k)$ and $(G(R^N), s)$ are fuzzy lattice, where

$$k(G_1, G_2) = \frac{v(G_2)}{v(G_1 \lor G_2)} , s(G_1, G_2) = \frac{v(G_1 \land G_2)}{v(G_1)}$$ \hspace{1cm} (14)

5. **Hyperbox Granular Computing Classification Algorithms**

As mentioned above, the operations between two hyperbox granules and the fuzzy inclusion relations between two hyperbox granules can be used for decision-making by a classification algorithm. We design the classification algorithms by the join operation and the granularity threshold.

5.1. **The Conditional Join Process Between Two Hyperbox Granules.**

Fuzzy inclusion relation measures the inclusion relation between two hyperbox granules and guides the join process of two hyperbox granules. For hyperbox granule G_1, any one hyperbox granule G in the hyperbox granule space has the fuzzy inclusion relation with G_1, the hyperbox granule with the maximal fuzzy inclusion relation is selected to perform the join process, moreover the granularity of the join hyperbox granule also controls the join process.

For example, $G_1 = [0.05, 0.15, 0.48, 0.68]$, $G_2 = [0.1, 0.2, 0.5, 0.7]$, and $G_3 = [0.7, 0.8, 0.7, 0.8]$ shown in Figure 3 are induced by R^2 space. One of G_2 and G_3 is selected to join with G_1.

$k(G_2, G_1) = \frac{v((1-0.05)+v(0.48)+v(1-0.15)+v(0.68))}{v(1-0.05)+v(0.5)+v(1-0.15)+v(0.7)} = 0.9956$, for $G_1 \lor G_2 = [0.05, 0.15, 0.5, 0.7]$ and granularity is 0.7106.

$k(G_3, G_1) = \frac{v((1-0.05)+v(0.48)+v(1-0.15)+v(0.68))}{v(1-0.05)+v(0.7)+v(1-0.15)+v(0.8)} = 0.9656$, for $G_1 \lor G_3 = [0.05, 0.15, 0.7, 0.8]$ and granularity is 0.9192. If the granularity threshold is set to 0.8, G_1 is replaced by $G_1 \lor G_2$ because $k(G_2, G_1) > k(G_3, G_1)$.

5.2. **Interval Analysis-based Granular Computing Classification Algorithms.** Based on the above discussion, we propose the following hyperbox granular computing algorithms, the training phase is described as algorithm1, and the testing phase is described as algorithm2.

The task of the test phase is to predict the class of the unknown datum on the basis of the trained hyperbox granule set HB and the corresponding class labels Lab. The testing phase is described as follows.

We explain the training phase in 2-dimensional space, suppose the trained temporary hyperbox granule set HB and the corresponding class label Lab are

$$HB = \begin{pmatrix} 0.1 & 0.5 & 0.3 & 0.6 \\ 0.2 & 0.3 & 0.3 & 0.4 \\ 0.3 & 0.1 & 0.4 & 0.2 \\ 0.6 & 0.2 & 0.7 & 0.4 \end{pmatrix} , Lab = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 3 \end{pmatrix}$$
Algorithm 5.1. Hyperbox granular computing training algorithm
Input: training set S, the threshold ρ of granularity
Output: hyperbox granule set HB, and the corresponding class label Lab

1. initialize $HB = \emptyset$;
2. $i = 1$;
3. extract the samples with class label i from data set S, and form X;
4. initialize the temporary hyperbox granule set $HBt = \{[x_1, x_1]\}$ where $x_1 \in X$, and remove x_1 from X;
5. if $X = \emptyset$, $HB = HB \cup HBt$ and $Lab = Lab \cup \{i\}$, otherwise;
6. extract the jth sample from X at random, and form the atomic hyperbox granule $HB_0 = [x_j, x_j]$;
7. $s = 1$;
8. compute the fuzzy inclusion relation between the atomic hyperbox granule HB_0 and the sth hyperbox granule $HBt(s; :)$ by formula $k(HB_0, HBt(s; :))$;
9. $s = s + 1$;
10. find the maximal $k(\cdot, \cdot)$, namely $id = \arg \max_i k(\cdot, \cdot)$;
11. join the HB_0 with $HBt(id; :)$, namely $HB_0 \lor HBt(id; :)$;
12. if the granularity of join hyperbox granule is less than or equal to ρ, the idth hyperbox granule $HBt(id; :)$ is updated by $HB^* = HB_0 \lor HBt(id; :)$, otherwise $HBt = HBt \cup \{HB_0\}$ and remove x_j from X;
13. $i = i + 1$.

Algorithm 5.2. Hyperbox granular computing testing algorithm
Input: hyperbox granule set HB, and the class labels Lab, the testing datum x.
Output: the class label of datum x.

1. form the atomic hyperbox granule $HB_x = [x, x]$;
2. $i = 1$;
3. computing the inclusion measure $\sigma_i = k(HB_x, HB(i; :))$ between HB_x and $HB(i; :)$;
4. $i = i + 1$;
5. find the id of the hyperbox granule with the maximal inclusion measure in HB, namely $id = \arg \max_i \sigma_i$;
6. the class label of datum x is $Lab(id)$.
which are shown in Figure 4 marked as G_1, G_2, G_3, G_4, and the last column is the class labels. For the sample $(0.45, 0.5)$ with the class label 1 in training set S. According to algorithm 1, we compute the fuzzy inclusion measure between the atomic hyperbox granule $G_0 = [0.45, 0.5, 0.45, 0.5]$ induced by the sample and the hyperbox granules with the class labels 1 in HB, $k(G_0, G_1) = 0.9703, k(G_0, G_2) = 0.9516, k(G_0, G_1) > k(G_0, G_2)$, and the granularity of the join hyperbox granule of G_0 and G_1 is 0.3640, which is less than the user-defined threshold $\rho = 0.40$, so G_0 and G_1 are joined, and the hyperbox granule G_1 is replaced by $G_0 \lor G_1 = [0.45, 0.5, 0.45, 0.6]$, and the hyperbox granule set HB and the corresponding class label Lab are

$$HB = \begin{pmatrix} 0.1 & 0.5 & 0.45 & 0.6 \\ 0.2 & 0.3 & 0.3 & 0.4 \\ 0.3 & 0.1 & 0.4 & 0.2 \\ 0.6 & 0.2 & 0.7 & 0.4 \end{pmatrix}, \quad Lab = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 3 \end{pmatrix}$$

The join hyperbox granule is shown in Figure 4.

If the threshold of granularity is set to 0.3, G_0 is add to the hyperbox granule set, and the hyperbox granule set HB and the corresponding class label Lab are

$$HB = \begin{pmatrix} 0.1 & 0.5 & 0.3 & 0.6 \\ 0.2 & 0.3 & 0.3 & 0.4 \\ 0.3 & 0.1 & 0.4 & 0.2 \\ 0.6 & 0.2 & 0.7 & 0.4 \\ 0.45 & 0.5 & 0.45 & 0.5 \end{pmatrix}, \quad Lab = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 3 \\ 1 \end{pmatrix}$$

So, the size of hyperbox granule set and the size of corresponding class label Lab are determined by the user-defined threshold ρ.

Figure 3. Join Between Two Granules

Figure 4. Join Between Two Granules
For the testing phase of the user-defined threshold \(\rho = 0.4 \) in the training phase, suppose the testing datum is \(x = [0.5, 0.5] \), the inclusion measures between the hyperbox granule \(HB_x = [0.5, 0.5, 0.5, 0.5] \) formed by datum \(x \) and the hyperbox granules in hyperbox granule set \(HB \) trained by algorithm1 are 0.9615, 0.9430, 0.9235, and 0.9644. The 4th hyperbox granule in the hyperbox granule set includes the hyperbox granule \(HB_x \) maximally, the class label of the testing datum is 3.

![Figure 4. Explain of HBGrC in 2-dimensional Space](image)

6. Experiments

The effectiveness of the HBGrC is evaluated with a series of empirical studies including the classification problems in 2-dimensional space and classification problems in \(N \)-dimensional space. We compare HBGrC with classification algorithms, such as random forests (RF), support vector machines (SVMs), and evaluate the performance of classification algorithms by training accuracy (TAC) and testing accuracy (AC).

Random forest (RF) is a notion of the general technique of random decision forests that are an ensemble learning method for classification, regression and other tasks, that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes (classification) or mean prediction (regression) of the individual trees. Random decision forests correct for decision trees’ habit of overfitting to their training set [7].

Support vector machines (SVMs, also support vector networks) are supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis [4].

A multilayer perceptron (MLP) is a feedforward artificial neural network model that maps sets of input data onto a set of appropriate outputs. An MLP consists of multiple layers of nodes in a directed graph, with each layer fully connected to the next one. Except for the input nodes, each node is a neuron (or processing element) with a nonlinear activation function. MLP utilizes a supervised learning technique.
called backpropagation for training the network [22]. MLP is a modification of the standard linear perceptron and can distinguish data that are not linearly separable.

For the parameters, HBGrC includes the threshold of granularity \(\rho \), RF includes the parameter \(N_{\text{tr}} \) (nodes of tree), SVMs include the parameter kernel functions, such as \(\text{polyd} \) (polynomial kernel with the order \(d \)) and \(\text{RBF} \sigma \) (Radial basis function with the width \(\sigma \)), MLP includes the number of hidden layers, iterations, momentum, and learning rate.

6.1. Classification Problems in 2-dimensional Space

In the first benchmark study, two spiral curve classification problem [27], Ripley classification problem [27], and sensor2 classification problem (wall-following robot navigation data in website http://archive.ics.uci.edu/ml/) which were created in two dimensions, and used to assess efficacy of classification algorithms and visualize the boundary of classification. The details of the data sets and classification performance are summarized in Table 1, and \(Tr \) represents the number of training data, \(Ts \) represents the number of testing data, TA represents the testing accuracy. Compared with RF and SVMs, the HBGrC has higher or comparable testing accuracies. For data set spiral, the testing accuracy of MLP is much lower than that of HBGrC, RF, and SVMs because the classification boundary by MLP is formed by the sigmoid function.

For the data set Ripley, Figure 5 shows comparison of the boundary by HBGrC and the boundaries by RF, SVMs, and MLP. In Figure 5(a), each area is composed by the hyperbox granules with the same class labels in the trained hyperbox granule set, in Figure 5(b), each area is determined the data points classified by RF which predicts the class labels from the root node to the leaf nodes, in Figure 5(c), each area is determined by the data which are mapped into high-dimensional space and have the same class labels predicted by SVMs in high-dimensional space, and in Figure 5(d), each area is composed of the data points with the same class labels predicted by the trained sigmoid function.

<table>
<thead>
<tr>
<th>Data sets</th>
<th>Tr</th>
<th>Ts</th>
<th>Algorithms</th>
<th>Parameter</th>
<th>TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spiral</td>
<td>970</td>
<td>194</td>
<td>HBGrC</td>
<td>0.08</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RF</td>
<td>ntree=500</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SVMs</td>
<td>RBF=0.1</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MLP</td>
<td>100,500,0.1</td>
<td>51.5464</td>
</tr>
<tr>
<td>Ripley</td>
<td>250</td>
<td>1000</td>
<td>HBGrC</td>
<td>0.27</td>
<td>90.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RF</td>
<td>ntree=500</td>
<td>89.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SVMs</td>
<td>RBF=0.1</td>
<td>82.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MLP</td>
<td>100,500,0.1</td>
<td>90</td>
</tr>
<tr>
<td>Sensor2</td>
<td>4887</td>
<td>569</td>
<td>HBGrC</td>
<td>0.2</td>
<td>99.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RF</td>
<td>ntree=500</td>
<td>99.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SVMs</td>
<td>RBF=0.1</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MLP</td>
<td>100,500,0.1</td>
<td>96.31</td>
</tr>
</tbody>
</table>

Table 1. The Classification Problems and Their Performances in 2-dimensional Space
6.2. Classification Problems in N-dimensional Space. In this section, we verify the performance of the proposed classification algorithms which are extended to N-dimensional space compared with the other state-of-art classification algorithms, such as RF, SVMs, and MLP, by the selected benchmark data sets from the website (http://archive.ics.uci.edu/ml/). These data sets are the most popular data sets since 2007, and the characters and the performance of the data sets are listed in Table 2. In order to facilitate the selection of parameters of thresholds of granularities, the R^N space is normalized into the $[0, 1]^N$ space, the granularity parameters are set to from 0.2 to 0.1 with step 0.005 for the n-class classification problems performed by HBGrC.

10-fold cross validation is used to evaluate the extension of algorithms. The performances of classification algorithms include the maximal testing accuracies, the mean testing accuracies, the minimal testing accuracies, and the standard deviation of testing accuracies. The superiority of algorithms is evaluated by the mean testing accuracies, the stability of algorithms is verified by the standard deviation which are shown in Table 3.

The testing accuracies are the main evaluation indexes for the classification algorithms, the t-test values shown in Table 4 are used to verify the testing accuracies by
Table 2. The Classification Problems in N-dimensional Space

<table>
<thead>
<tr>
<th>Data sets</th>
<th>N outputs</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>iris</td>
<td>4, 3</td>
<td>150</td>
</tr>
<tr>
<td>phoneme</td>
<td>5, 2</td>
<td>5404</td>
</tr>
<tr>
<td>Sensor4</td>
<td>4, 4</td>
<td>5456</td>
</tr>
<tr>
<td>Cancer</td>
<td>30, 2</td>
<td>532</td>
</tr>
</tbody>
</table>

Table 3. The Performances of Classification Problems in N-dimensional Space

<table>
<thead>
<tr>
<th>Data sets</th>
<th>Algorithms</th>
<th>max AC</th>
<th>mean AC</th>
<th>min AC</th>
<th>std AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>iris</td>
<td>HBGrC</td>
<td>100.00</td>
<td>99.3333</td>
<td>93.3333</td>
<td>2.1082</td>
</tr>
<tr>
<td></td>
<td>RF</td>
<td>100.00</td>
<td>96.6667</td>
<td>93.3333</td>
<td>3.5136</td>
</tr>
<tr>
<td></td>
<td>SVMs</td>
<td>100.00</td>
<td>98.00</td>
<td>86.67</td>
<td>4.50</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>100.00</td>
<td>91.3333</td>
<td>66.6667</td>
<td>14.4188</td>
</tr>
<tr>
<td>phoneme</td>
<td>HBGrC</td>
<td>92.5788</td>
<td>90.8783</td>
<td>88.3117</td>
<td>1.2052</td>
</tr>
<tr>
<td></td>
<td>RF</td>
<td>94.2486</td>
<td>91.3445</td>
<td>89.4249</td>
<td>1.7909</td>
</tr>
<tr>
<td></td>
<td>SVMs</td>
<td>84.2301</td>
<td>81.5150</td>
<td>79.4063</td>
<td>1.6294</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>89.0538</td>
<td>87.9012</td>
<td>86.6184</td>
<td>0.9242</td>
</tr>
<tr>
<td>Sensor4</td>
<td>HBGrC</td>
<td>100.0000</td>
<td>98.3325</td>
<td>95.9484</td>
<td>1.2434</td>
</tr>
<tr>
<td></td>
<td>RF</td>
<td>100.0000</td>
<td>99.7606</td>
<td>98.1584</td>
<td>0.5891</td>
</tr>
<tr>
<td></td>
<td>SVMs</td>
<td>97.6059</td>
<td>95.1968</td>
<td>90.0552</td>
<td>2.5216</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>98.3425</td>
<td>95.6932</td>
<td>89.3186</td>
<td>2.7510</td>
</tr>
<tr>
<td>Cancer</td>
<td>HBGrC</td>
<td>100.0000</td>
<td>97.2236</td>
<td>94.2308</td>
<td>1.9334</td>
</tr>
<tr>
<td></td>
<td>RF</td>
<td>100.0000</td>
<td>96.2620</td>
<td>90.3846</td>
<td>3.0849</td>
</tr>
<tr>
<td></td>
<td>SVMs</td>
<td>100.0000</td>
<td>95.6851</td>
<td>92.3077</td>
<td>2.5316</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>67.3077</td>
<td>58.0889</td>
<td>36.5385</td>
<td>11.6020</td>
</tr>
</tbody>
</table>

classification algorithms statistically. If $h = 0$, then the achieved testing accuracies by classification algorithms have no significant difference statistically, especially, although $h = 0$, but p is relatively small, close to 0.05, we regard the achieved testing accuracies have significant difference. If $h = 1$, then the achieved testing accuracies by classification algorithms have significant difference, and we can illustrate the superiority of the algorithm by the mean testing accuracy, especially, although $h = 1$, but p is relatively small, close to 0.05, we regard the achieved testing accuracies have no significant difference.

For data sets Iris, $h = 0$ shown in Table 4. Statistically, the testing accuracies by HBGrC, RF, SVMs, and MLP have no significant difference from the h values of t-test listed in Table 4, and the testing accuracies of HBGrC is slightly higher than those of RF, SVMs, and MLP in terms of maximal testing accuracies, mean testing accuracies, and the minimal testing accuracies listed in Table 3.

For the data sets Phoneme, $h = 0$ for HBGrC and RF, $h = 1$ for HBGrC and SVMs, HBGrC and MLP, HBGrC is superior to SVMs and MLP because the mean
testing accuracies of HBGrC are greater than those of SVMs and MLP (see Table 3), and HBGrC and RF are comparable because \(h = 0 \) for HBGrC and RF.

For the data sets Sensor4, \(h = 1 \) means HBGrC and the traditional classification algorithms have the significant difference from the view of testing accuracies, and we can select the optimal classification algorithm by the mean testing accuracies. RF is superior to HBGrC because the mean testing accuracy of RF is greater than that of HBGrC, HBGrC is superior to SVMs and MLP because the mean testing accuracies of SVMs and MLP is less than those of HBGrC.

For the data sets Cancer, HBGrC and RF have no significant difference and HBGrC and SVMs have no significant difference because \(h = 0 \), and HBGrC is superior to MLP obviously for the meaning testing accuracies shown in table 3 and \(h = 1 \) shown in Table 4.

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>Iris</th>
<th>Phoneme</th>
<th>Sensor4</th>
<th>Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBGrC-RF</td>
<td>0.0544</td>
<td>0.5034</td>
<td>0.0025</td>
<td>0.4146</td>
</tr>
<tr>
<td>HBGrC-SVMs</td>
<td>0.4073</td>
<td>0.0000</td>
<td>0.0080</td>
<td>0.1441</td>
</tr>
<tr>
<td>HBGrC-MLP</td>
<td>0.0996</td>
<td>0.0000</td>
<td>0.0342</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Table 4. The \(t \)-test Values of Comparison of HBGrC and Other Algorithms

7. Conclusions

In the article, we present the hyperbox granular computing classification algorithms from the view of interval analysis, and demonstrate the feasibility and superiority of HBGrC compared with the traditional classification algorithms, such as RF, SVMs, and MLP, for the benchmark data sets. As an improved granular computing algorithm for classification problems, there are some improvements, such as the adaptive selection of granularity threshold.

Acknowledgment. Authors would like to express their sincere thanks to the anonymous referees and the Editor-in-Chief for their valuable comments. This work was supported in part by the Natural Science Foundation of China (Grant Nos. 61170202 and 61202287) and the Teacher Education Curriculum Reform Project of Henan Province in China (2016-JSJYJD-027).

References

Hongbing Liu*, Center of Computing, Xinyang Normal University, Xinyang 464000, P. R. China
E-mail address: liuhbing@126.com

Jin Li, Center of Computing, Xinyang Normal University, Xinyang 464000, P. R. China
E-mail address: lijin@xynu.edu.cn

Huaping Guo, School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, P. R. China
E-mail address: hpguo-cm@163.com

Chunhua Liu, School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, P. R. China
E-mail address: zzdxliuch@163.com

*Corresponding author