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ON TOPOLOGICAL EQ-ALGEBRAS

J. YANG, X.L. XIN AND P.F. HE

Abstract. In this paper, by using a special family of filters F on an EQ-

algebra E, we construct a topology TF on E and show that (E, TF ) is a

topological EQ-algebra. First of all, we give some properties of topological
EQ-algebras and investigate the interaction of topological EQ-algebras and

quotient topological EQ-algebras. Then we obtain the form of closure of each

subset and show that (E, TF ) is a zero-dimensional space. Finally, we introduce
the concept of convergence of sequences on topological EQ-algebras and give

a condition under which the limit of a sequence is unique.

1. Introduction

Fuzzy logic is a logic to deal with uncertainty and approximate reasoning [22].
The well-known fuzzy logics include  Lukasiewicz logic [3], BL-logic [12], MTL-logic
[9] and R0-logic [24], etc. The corresponding algebraic semantics are MV-algebras,
BL-algebras, MTL-algebras and R0-algebras, respectively. Note that the typical
operations on these algebras are multiplication � and implication → which are
closely tied by adjointness property. EQ-algebras were proposed by Novák and
De Baets [21] with the intent to develop an algebraic structure of truth values a
higher-order fuzzy logic (a fuzzy type theory, FTT). EQ-algebras have three basic
binary operations (meet, multiplication and fuzzy equality) and a top element.
The motivation stems from the fact that until now, the truth values in FTT were
assumed to form either an IMTL-algebra, a BL-algebra, or an MV-algebra, all
of them are special kinds of residuated lattices in which the basic operations are
the monoidal operation (multiplication) and its residuum. The latter is a natural
interpretation of implication in fuzzy logic and the equivalence is then interpreted
by the biresiduum, a derived operation. From the algebraic point of view, the class
of EQ-algebras generalizes, in a certain sense, the class of residuated lattices and so
they may become an interesting class of algebraic structures as such. There exists
a list of references related to EQ-algebras, for instance [7, 14, 15, 16].

In the past ten years, many mathematicians have studied properties of algebras
endowed with topologies. Di Nola and Leustean[6] defined BL-sheaf spaces and BL-
algebras of global sections, and studied completely regular and compact BL-sheaf
spaces. Ciungu [4] investigated some concepts of convergence in the class of perfect
BL-algebras, Mi Ko and Kim [17] studied relationships between closure operators
and BL-algebras and Haveshki et al. [11] applied filters to construct topologies on
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BL-algebras. They studied the properties of these topologies such as compactness
regarding different filters. In [2] and [1], Borzooei et al. studied metrizability on
(semi)topological BL-algebras and the relationship between separation axioms and
(semi)topological quotient BL-algebras. In [13], Hoo introduced topological MV-
algebras and studied some of its topological properties. Hoo’s work reveals that
the essential ingredients are the existence of an adjoint pair of operations and the
fact that ideals of MV-algebras correspond to its congruences. Nganou [20] gener-
alized Hoo’s work in a more general context where similar ingredients are available,
namely FLew-algebras. Recently, Najafi et al. [19] studied (para, quasi)topological
MV-algebras and discussed the relationship among semitopological MV-algebras,
paratopological MV-algebras, quasitopological MV-algebras and topological MV-
algebras. Zahiri and Borzooei [23] used a special family of filters on a BL-algebra L
to construct a topology τ such that all operations of L are continuous with respect
to τ , that is, the pair (L, τ) is a topological BL-algebra. Also, some interesting re-
sults of (L, τ) were investigated, in particular, they introduced complete BL-algebra
and constructed a complete BL-algebra from L.

It is well known that the logic background of EQ-algebras is different from other
logic algebras mentioned above. We know that the current research of topological
logic algebras was mainly based on filters. Given a prefilter F on an EQ-algebra E,
as usual, we define a relation ≈F on E by a ≈F b if and only if a ∼ b ∈ F , then ≈F
is an equivalence relation, but it is not a congruence (see [7, Remark 1]). Based on
the about reason Novák[21] defined the filter on E to add a condition, that is, if
a→ b ∈ F , then a⊗ c→ b⊗ c ∈ F for any c ∈ E, his main purpose is to make the
equivalence relation becomes a congruence. As is well-known, there is a one-to-one
correspondence between the set of all filters and the set of all congruences on the
logic algebras based on residuated lattices, however, this property is not true in EQ-
algebras. In fact, if F is a filter of a residuated lattice L, we define a relation θF on
L by (x, y) ∈ θF if and only if x→ y ∈ F and y → x ∈ F , then θF is a congruence.
Conversely, let θ be a congruence on L. Then the congruence class of an element 1
with respect to θ, namely [1]θ is a filter of L. However, we shall give an example to
show that this property is generally incorrect in EQ-algebras (see Example 2.7.).
For this reason, studying topological EQ-algebras is different from other topological
logical algebras based on residuated lattices. From the algebraic point of view, EQ-
algebras slightly generalize residuated lattices[21]. Indeed, in a residuated lattice
L = (L,∧,∨,⊗,→, 0, 1) when we define a biresiduation operation ↔ by x ↔ y :=
(x → y) ∧ (y → x), then (L,∧,⊗,↔, 1) is an EQ-algebra. Meanwhile, we observe
that topological EQ-algebras (which are EQ-algebras with topologies such that
all operations are continuous with respect to these topologies), in a certain sense,
generalize topological residuated lattices. More explicitly, if (L, τ) is a topological
residuated lattice, then (L′, τ) is a topological EQ-algebra, where L = (L,∧,∨,⊗,→
, 0, 1) and L′ = (L,∧,⊗,↔, 1). It is sufficient to show that ↔ is continuous for τ .
For this, we prove that the map h : L× L→ L defined by h(x, y) = x↔ y for any
x, y ∈ L is continuous. For a ∈ L, we define maps fa : L→ L and k : L×L→ L by
fa(x) = a→ x and k(x, y) = x∧ y for any x, y ∈ L. It is easy to verify that maps k
and fa×fb are continuous where fa×fb is defined by fa×fb(x, y) = (a→ x, b→ y).



On Topological EQ-algebras 49

Since h(x, y) = (k ◦ (fy × fx))(x, y) for any x, y ∈ L, it follows that h is continuous.
For detailed about topological residuated lattices we refer to[10]. Therefore, it is
interesting to study topological EQ-algebras.

In this paper, we focus on a special type of topology induced by system of filters
on an EQ-algebra. This paper is organized as follows: In Section 2, we review
some facts about EQ-algebras and topologies, used in the sequel. In Section 3,
we use a system of filters F = {Fi | i ∈ Λ} of an EQ-algebra E to construct a
topology TF , prove that (E, TF ) is a topological EQ-algebra, and find the form of
closure of each subset in this topological space. Then we study a special class of
topological EQ-algebras, namely quotient topological EQ-algebras and show that
the topological EQ-algebra (E, TF ) is a zero-dimensional space. Also, we show that
in separated EQ-algebras the topology TF induced by F is Hausdorff if and only
if
⋂
F = {1}, and give an example to show that separability is necessary. Finally,

the convergence of sequences on topological EQ-algebras is investigated.

2. Preliminaries

In this section, we summarize some definitions and results about EQ-algebras
and topologies, which will be used in the following sections.

Definition 2.1. [15, 21] An EQ-algebra is an algebra E = (E,∧,⊗,∼, 1) of type
(2,2,2,0) satisfying the following axioms: for any x, y, z, t ∈ E,

(E1) (E,∧, 1) is a ∧-semilattice with top element 1. We put x ≤ y if and only if
x ∧ y = x;

(E2) (E,⊗, 1) is a commutative monoid and ⊗ is isotone with respect to ≤;
(E3) x ∼ x = 1 ( reflexivity axiom );
(E4) ((x ∧ y) ∼ z)⊗ (t ∼ x) ≤ z ∼ (t ∧ y) (substitution axiom);
(E5) (x ∼ y)⊗ (z ∼ t) ≤ (x ∼ z) ∼ (y ∼ t) (congruence axiom);
(E6) (x ∧ y ∧ z) ∼ x ≤ (x ∧ y) ∼ x (monotonicity axiom);
(E7) x⊗ y ≤ x ∼ y (boundedness axiom).

We also put x→ y = (x ∧ y) ∼ x and x̃ = x ∼ 1 for all x, y ∈ E.
In the following, we simply write an EQ-algebra E instead of (E,∧,⊗,∼, 1) when

there is no chance for confusion.

Proposition 2.2. [8, 21] Let E be an EQ-algebra. Then the following properties
hold: for any x, y, z ∈ E,

(i) x⊗ y ≤ x ∧ y ≤ x, y;
(ii) z ⊗ (x ∧ y) ≤ (z ⊗ x) ∧ (z ⊗ y);

(iii) x ∼ y ≤ x→ y;
(iv) (x ∼ y)⊗ (y ∼ z) ≤ x ∼ z;
(v) (x→ y)⊗ (y → z) ≤ x→ z;

(vi) x ≤ x̃, 1̃ = 1;
(vii) x⊗ (x ∼ y) ≤ ỹ;

(xiii) (x→ y)⊗ (y → x) ≤ x ∼ y.

Definition 2.3. [8, 21] Let E be an EQ-algebra. We say that it is
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(i) separated if for all a, b ∈ E, a ∼ b = 1 implies a = b;
(ii) good if for all a ∈ E, a ∼ 1 = a.

Definition 2.4. [8, 21] Let E be an EQ-algebra. A subset F of E is called an
EQ-filter (filter for short) of E if for all a, b, c ∈ E it holds that

(i) 1 ∈ F ;
(ii) if a, a→ b ∈ F , then b ∈ F ;
(iii) if a→ b ∈ F, then a⊗ c→ b⊗ c ∈ F .

Lemma 2.5. [21] Let F be a filter of an EQ-algebra E. For all a, b, a′, b′ ∈ F such
that a ∼ b and a′ ∼ b′ ∈ F it holds that

(a) (a ∧ a′) ∼ (b ∧ b′) ∈ F ;
(b) (a⊗ c) ∼ (b⊗ c) ∈ F ;
(c) (a ∼ a′) ∼ (b ∼ b′) ∈ F .

Let F be a filter of an EQ-algebra E. Define a binary relation ≈F on E by

a ≈F b if and only if a ∼ b ∈ F.

Theorem 2.6. [21] Let F be a filter of an EQ-algebra E. The relation ≈F is a
congruence on E.

If F is a filter of an EQ-algebra E, the quotient EQ-algebra induced by the
congruence ≈F will be denoted by E/F . In addition, the congruence class of an
element a ∈ E with respect to ≈F is often denoted by a/F , and PF denotes the
natural projection E → E/F .

In general, the congruence class of an element 1 in an EQ-algebra is not a filter.

Example 2.7. Consider E = {0, a, b, c, d, 1} with a ∧-semilattice structure defined
by following Hasse diagram. The multiplication ⊗ and fuzzy equality ∼ are defined
as follows:
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c
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@@
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0

a

cb

d

1

Then < E,∧,⊗,∼, 1 > is an EQ-algebra[21]. It is easily checked that θ = {(0, 0),
(a, a), (b, b), (c, c), (d, d), (1, 1)} is a congruence on E. Clearly, [1]θ = {1} is not a
filter of E, because 1, 1→ d = (1∧d) ∼ 1 = 1 ∈ [1]θ but d /∈ [1]θ, which contradicts
Definition 2.4 (ii).

Definition 2.8. [5] A poset (D,≤) is called an upward directed set if for any
x, y ∈ D there exists z ∈ D such that x ≤ z and y ≤ z. Dually, (D,≤) is called a
down-directed set if for any x, y ∈ D there exists z ∈ D such that z ≤ x and z ≤ y.
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⊗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 0 a
b 0 0 a a a b
c 0 0 a 0 a c
d 0 0 a a a d
1 0 a b c d 1

∼ 0 a b c d 1
0 1 0 0 0 0 0
a 0 1 d d d d
b 0 d 1 d d d
c 0 d d 1 d d
d 0 d d d 1 1
1 0 d d d 1 1

Let τ and τ ′ be two topologies on a set X. If τ ⊆ τ ′, then we say that τ ′ is finer
than τ .

Lemma 2.9. [18] Let β and β′ be two bases for topologies τ and τ ′ on X, respec-
tively. Then τ ′ finer than τ if and only if for any x ∈ X and each basis element
B ∈ β containing x, there is a basis element B′ ∈ β′ such that x ∈ B′ ⊆ B.

Let (X, τ) be a topological space. We have following separation axioms in (X, τ)

T0 : for any x, y ∈ X and x 6= y, there is at least one in an open neighbor-
hood excluding the other;
T1 : for any x, y ∈ X and x 6= y, each has an open neighborhood not
containing the other;
T2 : for any x, y ∈ X and x 6= y, both have disjoint open neighborhoods
U, V ∈ τ such that x ∈ U and y ∈ V .

A topological space satisfying Ti is called a Ti-space, for any i = 0, 1, 2. A T2-space
is also known as a Hausdorff space.

Theorem 2.10. [18] Every finite point set in a Hausdorff space is closed.

3. Topological EQ-algebras

The main purpose of this section is to endow a special topology TF on an EQ-
algebra E such that all operations of E are continuous with respect to TF , and
some properties of E with this topology are investigated.

Definition 3.1. Let E be an EQ-algebra and T be a topology on it. The pair
(E, T ) is called a topological EQ-algebra (TEQ-algebra for short) if the operations
∧,⊗ and ∼ are continuous with respect to T .

Note that operation ∗ ∈ {∧,⊗,∼} is continuous if and only if for any x, y ∈ E
and any open neighborhood W of x ∗ y, there exist two open neighborhoods U and
V of x and y, respectively, such that U ∗ V ⊆W .

Recall that a topological space (X,U) is a discrete space if for any x ∈ X, {x}
is an open set (see [18]).

Example 3.2. Any EQ-algebra with a discrete topology is a TEQ-algebra. Let T
be a discrete topology on an EQ-algebra E. Routine calculation shows that (E, T )
is a TEQ-algebra.
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Example 3.3. Let E = {0, a, b, c, d, 1} be a ∧-semilattice which can be seen below
Hasse diagram. Consider Cayley tables as follows:
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1

⊗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 a a
b 0 0 0 0 b b
c 0 0 0 0 c c
d 0 a b c d d
1 0 a b c d 1

∼ 0 a b c d 1
0 1 1 a a a a
a 1 1 a a a a
b a a 1 c b b
c a a c 1 c c
d a a b c 1 d
1 a a b c d 1

Routine calculation shows that < E,∧,⊗,∼, 1 > is an EQ-algebra. We give a
non-trivial topology T = {∅, {0, a}, {b}, {c}, {d}, {1}, {b, c}, {b, d}, {b, 1}, {c, d},
{c, 1}, {d, 1}, {0, a, b}, {0, a, c}, {0, a, d}, {0, a, 1}, {b, c, d}, {b, c, 1}, {b, d, 1}, {c, d, 1},
{0, a, b, c}, {0, a, b, d}, {0, a, b, 1}, {0, a, c, d}, {0, a, c, 1}, {0, a, d, 1}, {b, c, d, 1},
{0, a, b, c, d, 1}} on E induced by a base β = {{0, a}, {b}, {c}, {d}, {1}}. Then it is
easy to check that (E, T ) is a TEQ-algebra.

Definition 3.4. Let F be a family of filters of an EQ-algebra E. We call F a
system of filters of E (system for short) if (F ,⊆) is a down-directed set.

Remark 3.5. Note that in an EQ-algebra E the definition of system denoted by
F = {Fi | i ∈ Λ} is equivalent to the index set Λ is an upward directed set and
it satisfies if i ≤ j implies Fj ⊆ Fi for any i, j ∈ Λ. In fact, suppose that poset
(F ,⊆) is a down-directed set, we define a relation on index set Λ by i ≤ j if and
only if Fj ⊆ Fi, then it is easy to verify that (Λ,≤) is an upward directed set. The
converse is obviously.

Proposition 3.6. Let E be an EQ-algebra and F be a family of filters of E. If F
is closed with respect to finite intersection, then F is a system of E.

Proof. Let F = {Fi | i ∈ I} be a family of filters of E which is closed with respect
to finite intersection. It is sufficient to show that (F ,⊆) is a down-directed set.
Assume Fi, Fj ∈ F , then Fi ∩ Fj ∈ F . Setting Fk = Fi ∩ Fj , we conclude that
Fk ⊆ Fi, Fj . Therefore, (F ,⊆) is a down-directed set. �
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Recall that Tx denotes the set of all neighborhoods of x in a topological space
(A, T ). Then subfamily Vx of Tx is called a fundamental system of neighborhoods
of x, if for each Ux in Tx, there exists a Vx in Vx such that Vx ⊆ Ux (see [18]).

Proposition 3.7. Let F = {Fi | i ∈ Λ} be a system of an EQ-algebra E. Then
there exists a topology T on E with a base β = {x/Fi | x ∈ E, i ∈ Λ}. Moreover, F
is a fundamental system of neighborhoods of 1.

Proof. Let F = {Fi | i ∈ Λ} be a system of E and β = {x/Fi | x ∈ E, i ∈ Λ}. Now
we prove that T = {U ⊆ E : ∀a ∈ U,∃y/Fi ∈ β s.t. a ∈ y/Fi ⊆ U} is a topology on
E. Clearly, ∅, A ∈ T . Let {Uα} be a subfamily of T and a ∈

⋃
Uα. Then a ∈ Uα

for some α. Hence there exists y/Fi ∈ β such that a ∈ y/Fi ⊆ Uα. It follows
that

⋃
Uα ∈ T . Let Uα, Uβ ∈ T and a ∈ Uα ∩ Uβ . Then there exist y1/Fi ∈ β

and y2/Fj ∈ β such that a ∈ y1/Fi ⊆ Uα and a ∈ y2/Fj ⊆ Uβ . Since (F ,⊆) is
a down-directed set and Fi, Fj ∈ F , there exists Fk ∈ F such that Fk ⊆ Fi, Fj .
Hence Fk ⊆ Fi ∩ Fj . Now, we have

a ∈ a/Fk ⊆ (a/Fi) ∩ (a/Fj) = (y1/Fi) ∩ (y2/Fj) ⊆ Uα ∩ Uβ .
It follows that Uα ∩ Uβ ∈ F . Clearly, β is a base for T . Now we prove that F is
a fundamental system of neighborhoods of 1. Let 1 ∈ U ∈ T . Then there exists
y/Fi ∈ β such that 1 ∈ y/Fi ⊆ U . Thus we can get 1 ∈ Fi = 1/Fi = y/Fi ⊆ U . �

From now on, if F = {Fi | i ∈ Λ} is a system of filters of an EQ-algebra E,
then the topology in Proposition 3.7 will be denoted by TF . We say that TF is a
topology on E induced by F , unless otherwise stated.

Example 3.8. Let E = {0, a, b, 1} be a chain (0 < a < b < 1) with Cayley tables
as follows:

⊗ 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

∼ 0 a b 1
0 1 0 0 0
a 0 1 a a
b 0 a 1 1
1 0 a 1 1

Routine calculation shows that < E,∧,⊗,∼> is an EQ-algebra. It is easy to
check that F = {Fi | i ∈ Λ} is a system of E, where Λ = {1, 2}, F1 = {0, a, b, 1} and
F2 = {b, 1}. So we can easily calculate β = {{0}, {a}, {b, 1}, {0, a, b, 1}} and TF =
{∅, {0}, {a}, {0, a}, {b, 1}, {0, b, 1}, {a, b, 1}, {0, a, b, 1}} is a topology on E with a
base β.

Theorem 3.9. Let F = {Fi | i ∈ Λ} be a system of an EQ-algebra E and TF be a
topology on E induced by F . Then (E, TF ) is a TEQ-algebra.

Proof. According to Proposition 3.7, TF is a topology on E with a base β = {x/Fi |
x ∈ E, i ∈ Λ}. Let ∗ ∈ {∧,⊗,∼} and f∗ : E×E → E be a map which is defined by
f∗(x, y) = x ∗ y for any x, y ∈ E. Since β is a base for TF , it is sufficient to show
that f−1

∗ (b/Fi) is an open subset of E×E for any b/Fi ∈ β. Let (x, y) ∈ f−1
∗ (b/Fi).
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Then x ∗ y ∈ b/Fi. Clearly, x/Fi × y/Fi is an open subset of E × E containing
(x, y). We shall show that x/Fi × y/Fi ⊆ f−1

∗ (b/Fi). For any (u, v) ∈ x/Fi × y/Fi,
we have u ∈ x/Fi, v ∈ y/Fi, that is, x ≈Fi u, y ≈Fi v. Due to ≈Fi is a congruence
of E, we get x ∗ y ≈Fi u ∗ v. Thus u ∗ v ∈ b/Fi. Hence x/Fi × y/Fi ⊆ f−1

∗ (b/Fi).
It follows that f−1

∗ (b/Fi) is open subset of E × E and so f∗ is a continuous map.
Therefore, (E, TF ) is a TEQ-algebra. �

By Proposition 3.7 and Theorem 3.9, the pair (E, TF ) is a TEQ-algebra, where
TF is a topology induced by a system F = {Fi | i ∈ Λ}. For simply, we always use
a sentence (E, TF ) is a TEQ-algebra induced by a system F = {Fi | i ∈ Λ} replace
if there is no chance for confusion.

Let (E,U) be a TEQ-algebra and F be a filter of E. We define ∧,⊗ and ∼ on
E/F by

(a/F ) ∧ (b/F ) = (a ∧ b)/F,

(a/F )⊗ (b/F ) = (a⊗ b)/F,

(a/F ) ∼ (b/F ) = (a ∼ b)/F.
It is easy to check that < E/F,∧,⊗,∼, 1 > is an EQ-algebra. In the following we
give conditions under which E/F becomes a TEQ-algebra.

Proposition 3.10. Let (E,U) be a TEQ-algebra and F be a filter of E. If natural
projection PF is an open map, then the quotient EQ-algebra E/F equipped with the
quotient topology is a TEQ-algebra.

Proof. It is sufficient to prove that (x/F, y/F ) 7→ x/F ∗ y/F = (x ∗ y)/F is con-
tinuous with respect to quotient topology, where ∗ ∈ {∧,⊗,∼}. Let x, y ∈ E and
W be an open neighborhood of (x ∗ y)/F . Then P−1

F (W ) is an open subset in

E and x ∗ y ∈ P−1
F (W ). Since (E,U) is a TEQ-algebra, there exist open neigh-

borhoods U0 of x and V0 of y, respectively, such that U0 ∗ V0 ⊆ P−1
F (W ). Taking

U = PF (U0) and V = PF (V0). Then U and V are open subsets in E/F , since PF is
open. Clearly, x/F ∈ U , y/F ∈ V and then U ∗ V ⊆ PF (U0 ∗ V0) ⊆ W. Therefore,
∗ is continuous. �

Theorem 3.11. Let (E, TF ) be a TEQ-algebra induced by a system F = {Fi |
i ∈ Λ} and F be a filter of E. If F ⊆

⋂
{Fi | i ∈ Λ}, then the natural projection

PF : E → E/F is an open map.

Proof. Let F = {Fi | i ∈ Λ} and β = {x/Fi | x ∈ E, i ∈ Λ}. By Proposition 3.7,
β is a base for TF , so that it is sufficient to show that PF (x/Fi) is an open subset
in E/F for any x/Fi ∈ β. Suppose x/Fi ∈ β. We show that P−1

F (PF (x/Fi)) ∈ TT .

Let a be an arbitrary element of P−1
F (PF (x/Fi)). Then PF (a) ∈ PF (x/Fi) and

so a/F ∈ (x/Fi)/F . Hence there exists b ∈ x/Fi such that a/F = b/F , that is,
a ≈F b. Since b ≈Fi x and F ⊆ Fi, we get a ≈Fi b and b ≈Fi x. Thanks to ≈Fi is a
congruence, it follows that a ≈Fi x. Hence a ∈ x/Fi and so P−1

F (PF (x/Fi)) ⊆ x/Fi.
Clearly, x/Fi ⊆ P−1(PF (x/Fi)). Therefore, P−1

F (PF (x/Fi)) = x/Fi ∈ TF . So PF
is an open map. �
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Corollary 3.12. Let (E, TF ) be a TEQ-algebra induced by a system F = {Fi | i ∈
Λ} and F be a filter of E. If F ⊆

⋂
{Fi | i ∈ Λ}, then quotient EQ-algebra E/F

equipped with the quotient topology is a TEQ-algebra.

Proof. It is directly follows from Proposition 3.10 and Theorem 3.11. �

Proposition 3.13. Let (E, TF ) be a TEQ-algebra induced by a system F = {Fi |
i ∈ Λ} and F be a filter of E. If F is open, then the quotient topology on E/F is
discrete.

Proof. Note that for every x ∈ E, the equality P−1
F ({x/F}) = x/F holds. There-

fore, it is enough to prove that x/F is open for topology TF for any x ∈ E. Let
x ∈ E. We define fx : E → E by fx(y) = x ∼ y. Then fx is continuous. Since F
is open, we get f−1

x (F ) is open. Clearly, x/F = {y ∈ E | x ∼ y ∈ F} = f−1
x (F ).

Therefore, x/F is an open set. �

Proposition 3.14. Let (E, TF ) be a TEQ-algebra induced by a system F = {Fi |
i ∈ Λ} and F be a filter of E. If F is open (closed), then for each x ∈ E, x/F is
open (closed).

Proof. When F is open, the proof has been given in the proof of Proposition 3.13.
The case F closed is handled similarly. �

Proposition 3.15. Let (E, TF ) be a TEQ-algebra induced by a system F = {Fi |
i ∈ Λ}. Then every open filter is closed.

Proof. Suppose that a filter F is open. Then by Proposition 3.14, x/F is open for
any x ∈ E. It follows that F = E \

⋃
{x/F | x /∈ F} is closed. �

Recall that a topological space (X,U) is a zero-dimensional space if U has a
clopen base (see [18]).

Theorem 3.16. Let (E, TF ) be a TEQ-algebra induced by a system F = {Fi | i ∈
Λ}. Then (E, TF ) is a zero-dimensional space.

Proof. Let F = {Fi | i ∈ Λ} and β = {x/Fi | x ∈ E, i ∈ Λ}. According to
Proposition 3.7, it is enough to show that x/Fi is closed for any x/Fi ∈ β. Let
x/Fi ∈ β. Clearly, Fi = 1/Fi ∈ β. By Proposition 3.15, it follows that Fi is closed.
According to Proposition 3.14, we conclude that x/Fi is closed �

Theorem 3.17. Let (E, TF ) be a TEQ-algebra induced by a system F = {Fi |
i ∈ Λ}, S be a non-empty subset of E and S/Fi =

⋃
{x/Fi | x ∈ S}. Then

S =
⋂
{S/Fi | i ∈ Λ}, where S is a topological closure of S.

Proof. Let x ∈ E. Then x ∈ S
⇔ x ∈ U implies U ∩ S 6= ∅ for any U ∈ TF
⇔ x ∈ a/Fi implies (a/Fi) ∩ S 6= ∅ for any a/Fi ∈ β
⇔ (x/Fi) ∩ S 6= ∅ for any i ∈ Λ
⇔ x ∈ S/Fi for any i ∈ Λ
⇔ x ∈

⋂
{S/Fi | i ∈ Λ}. �
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Theorem 3.18. Let (E, TF ) be a TEQ-algebra induced by a system F = {Fi | i ∈
Λ}. If (E, TF ) is a Hausdorff space, then

⋂
{Fi | i ∈ Λ} = {1}. The converse is

true if E is separated.

Proof. Let (E, TF ) be a Hausdorff space. Then by Theorem 2.10, the set {1} is
closed. Hence according to Theorem 3.17, we have

{1} = {1} =
⋂
{1/Fi | i ∈ Λ} =

⋂
{Fi | i ∈ Λ}.

Conversely, let E be separated. Assume that
⋂
{Fi | i ∈ Λ} = {1} and x, y are

distinct elements of E. It follows that x ∼ y /∈
⋂
{Fi | i ∈ Λ} = {1}, and hence

there is a λ ∈ Λ such that x ∼ y /∈ Fλ. So (x/Fλ)
⋂

(y/Fλ) = ∅. Therefore, we
conclude that (E, TF ) is a Hausdorff space. �

In the following we give an example to show that in Theorem 3.18 separability
is necessary.

Example 3.19. Consider 6-element EQ-algebra E given in Example 3.3. Note
that this EQ-algebra is not separated because 0 ∼ a = 1 but 0 6= a. We give a
system of E by F = {Fi | i ∈ Λ}, where Λ = {1, 2}, F1 = {d, 1} and F2 = {1}. By
Proposition 3.7, the topology TF with a base β = {{0, a}, {b}, {c}, {d}, {1}}. By
Theorem 3.9, (E, TF ) is a TEQ-algebra. Clearly, F satisfies

⋂
{Fi | i ∈ Λ} = {1}.

However, it is not a Hausdorff space because any open set of TF can not separate
0 and a.

Proposition 3.20. Let (E, TF ) be a TEQ-algebra induced by a system F = {Fi |
i ∈ Λ}. The following statements are equivalent:

(i) (E, TF ) is a Hausdorff space;
(ii) (E, TF ) is a T1-space;

(iii) (E, TF ) is a T0-space.

Proof. The proofs of (i)⇒(ii) and (ii)⇒(iii) are clear. Let (E, TF ) be a T0-space
and x, y ∈ E, x 6= y. By assumption, either there exists an open set U containing
x but not containing y or there exists open set V containing y but not containing
x. If the former holds, then there exists z/Fj such that x ∈ z/Fj ⊆ U. We can
get x/Fj = z/Fj and y /∈ x/Fj , and so (x/Fj)

⋂
(y/Fj) = ∅. The rest situation is

similar. Therefore, (E, TF ) is a Hausdorff space. �

Proposition 3.21. Let F = {Fi | i ∈ Λ} and G = {Gj | j ∈ Γ} be two systems
of an EQ-algebra E and TF , TG be the topologies induced by them, respectively.
Then TF is finer than TG if and only if for any j ∈ Γ, there exists i ∈ Λ such that
Fi ⊆ Gj.

Proof. Let β = {x/Fi | x ∈ E, i ∈ Λ} and β′ = {x/Gj | x ∈ E, j ∈ Γ} be two
bases for topologies TF and TG on E, respectively. We prove the sufficiently at
first. Let x ∈ E and a/Gj be an arbitrary element of β′ containing x. Then by the
assumption, there is i ∈ Λ such that Fi ⊆ Gj . Clearly, x ∈ x/Fi. We claim that
x/Fi ⊆ a/Gj . Let u ∈ x/Fi. Then u ∼ x ∈ Fi ⊆ Gj . We can get u ∼ x ∈ Gj
and so u ≈Gj x. Since x ∈ a/Gj , we have x ≈Gj a. It follows that u ≈Gj a,
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that is, u ∈ a/Gj . Thus x/Fλ ⊆ a/Gi. Therefore, by Lemma 2.9, TF is finer
than TG . Now we prove the necessity. Suppose TF is finer than TG and j ∈ Γ.
Clearly, 1 ∈ Gj = 1/Gj ∈ β′. By Lemma 2.9, there exists x/Fi ∈ β such that
1 ∈ x/Fi ⊆ 1/Gj . It follows that x/Fi = 1/Fi = Fi. Hence Fi ⊆ Gj . �

Theorem 3.22. Let (E, TF ) be a TEQ-algebra induced by a system F = {Fi | i ∈
Λ} and F be a filter of E. If F is closed, then quotient EQ-algebra E/F equipped
with the quotient topology is a TEQ-algebra.

Proof. By Corollary 3.12, it is sufficient to show that F ⊆
⋂
{Fi | i ∈ Λ}. According

to Theorem 3.17, we have F = F =
⋂
{F/Fi | i ∈ Λ} ⊆

⋂
{1/Fi | i ∈ Λ} =

⋂
{Fi |

i ∈ Λ}. �

Proposition 3.23. Let (E, TF ) be a TEQ-algebra induced by a system F = {Fi |
i ∈ Λ}, F be a filter of E and PF : E → E/F be the nature projection. If E/F
equipped with the quotient topology is a Hausdorff space, then F is closed. Moreover,
the converse is true if PF is open.

Proof. Let quotient topology on E/F be Hausdorff and F be a filter of E. Suppose
x ∈ E \ F , then x/F 6= 1/F . According to assumption, there exist two open
subsets V,W of E/F such that x/F ∈ W, 1/F ∈ V and V ∩ W = ∅. Hence
x ∈ P−1

F (W ) ∈ UF , F ⊆ P−1
F (V ) ∈ UF and F ∩ P−1

F (W ) = ∅. Since P−1
F (W ) is an

open subset of E satisfies x ∈ P−1
F (W ) ⊆ E \F , we deduce that F is a closed subset

of E. Conversely, let PF be open and F be closed. Suppose x/F 6= y/F . Then
we get that x ∼ y 6∈ F and so x ∼ y ∈ E \ F . By assumption, x ∼ y 6∈ F . Thus
there exists an open subset V of E such that x ∼ y ∈ V and V ∩ F = ∅. Hence
1/F 6∈ V/F . Considering a map f : E×E → E which is defined by f(a, b) = a ∼ b
for any a, b ∈ E. Since (E, TF ) is a TEQ-algebra, we have f is a continuous map and
so PF ◦f is continuous, too. As PF is an open map, we conclude that PF (V ) = V/F
is an open subset of E/F . Hence (PF ◦ f)−1(V/F ) is an open subset of E × E.
By x ∼ y ∈ V , we get (PF ◦ f)(x, y) ∈ V/F and so (x, y) ∈ (PF ◦ f)−1(V/F ).
Then there exist W,A ∈ TF such that (x, y) ∈W ×A ⊆ (PF ◦ f)−1(V/F ). We get
x ∈W, y ∈ A and so x/F ∈W/F, y/F ∈ A/F . Clearly, W/F,A/F are open subsets
of E/F , since PF is an open map. Now, we show that (W/F ) ∩ (A/F ) = ∅. Let
z/F ∈ (W/F ) ∩ (A/F ). Then there exist a ∈ W and b ∈ A such that a/F = z/F
and z/F = b/F . It follows that 1/F = (z ∼ z)/F = (z/F ) ∼ (z/F ) = (a/F ) ∼
(b/F ) = (a ∼ b)/F = PF (a ∼ b) = PF (f(a, b)) ∈ (PF ◦ f)(W ×A) ⊆ V/F , which is
a contradiction. Hence (A/F )

⋂
(W/F ) = ∅ and so E/F with quotient topology is

a Hausdorff space. �

In the following we introduce notions of Cauchy sequences and convergent se-
quences in TEQ-algebras (E, TF ) induced by a system F = {Fi | i ∈ Λ}.

Definition 3.24. Let (E, TF ) be a TEQ-algebra induced by a system F = {Fi |
i ∈ Λ}. A sequence {xi}i∈Λ in (E, TF ) is called

(ii) convergent to the point x if for any λ ∈ Λ, there exists Nλ ∈ Λ such that
xi ∈ x/Fλ for any Nλ ≤ i and i ∈ Λ;
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(ii) Cauchy sequence if for any λ ∈ Λ, there exists Nλ ∈ Λ such that xn/Fλ =
xm/Fλ for any m,n ≥ Nλ and m,n ∈ Λ.

If a sequence {xi}i∈Λ converges to x, we denote limxi = x and say that x is a
limit of {xi}i∈Λ.

Theorem 3.25. Let (E, TF ) be a TEQ-algebra induced by a system F = {Fi | i ∈
Λ} and let {xi}i∈Λ and {yi}i∈Λ be two sequences of (E, TF ). Then we have the
following:

(i) if (E, TF ) is a Hausdorff space, E is a separated EQ-algebra and {xi}i∈Λ

is convergent, then its limit is unique;
(ii) if lim yi = y and limxi = x for some x, y ∈ E, then the sequence {xi∗yi}i∈Λ

is convergent and lim(xi ∗ yi) = x ∗ y for any operation ∗ ∈ {∧,⊗,∼};
(iii) any convergent sequence of (E, TF ) is a Cauchy sequence.

Proof. (i) Let limxi = x and limxi = y for some x, y ∈ E. For λ ∈ Λ, there exist

Nλ ∈ Λ and N
′

λ ∈ Λ such that xm ∈ x/Fλ, xm′ ∈ y/Fλ for any m,m
′ ∈ Λ and

Nλ ≤ m,N
′

λ ≤ m
′
. Since Λ is an upward directed set, there exists µ ∈ Λ such that

Nλ ≤ µ and N
′

λ ≤ µ. If n ∈ Λ and µ ≤ n, then xn ∈ x/Fλ and xn ∈ y/Fλ and
so x ≈Fλ y, that is, x ∼ y ∈ Fλ. By Proposition 3.18 and (E, TF ) is a Hausdorff
space, we conclude that x ∼ y ∈

⋂
{Fi | i ∈ Λ} = {1}, and so x ∼ y = 1. As E is

separated, we have x = y.
(ii) Let ∗ ∈ {∧,⊗,∼}, limxi = x and lim yi = y. Suppose that λ ∈ Λ. Then

there exist Nλ, N
′

λ ∈ Λ such that xm ∈ x/Fλ and ym′ ∈ y/Fλ for any m,m
′ ∈ Λ

and Nλ ≤ m,N
′

λ ≤ m
′
. Since Λ is an upward directed set, there exists N ∈ Λ such

that Nλ ≤ N and N
′

λ ≤ N . If n ∈ Λ and N ≤ n, then xn ∈ x/Fλ and yn ∈ y/Fλ.
Hence xn ≈Fλ x, yn ≈Fλ y. It follows that xn ∗ yn ≈Fλ x ∗ y for any n ∈ Λ, N ≤ n.
Therefore, limxn ∗ yn = x ∗ y.

(iii) Let {xi}i∈Λ converge to the point x of E. For λ ∈ Λ, there is Nλ ∈ Λ such
that xi ∈ x/Fλ for any Nλ ≤ i. Suppose that m,n ∈ Λ and m,n ≥ Nλ. Then
xn ∈ x/Fλ and xm ∈ x/Fλ, and so xn/Fλ = x/Fλ = xm/Fλ. Therefore, {xi}i∈Λ is
a Cauchy sequence. �

4. Conclusion

In this paper, we use a system of an EQ-algebra to construct a TEQ-algebra
and investigate some topological properties of TEQ-algebras and quotient TEQ-
algebras. Currently, studying topologies of logic algebras based on residuated lat-
tices mainly through filters of corresponding algebras, which are prefilters corre-
sponding to EQ-algebras. A prefilter is a subset F of an EQ-algebra E satisfies:
(i) 1 ∈ F , and (ii) for any x, y ∈ E, if x ∈ F, x → y ∈ F , then y ∈ F . Unlike the
method of recent papers [10, 19, 23], prefilters of E can not induce a topology on
E such that every operation on E is continuous with respect to this topology, since
prefilters can not induce congruences on E. So we consider the system of filters on
E, which can induce a topology such that all binary operations of E are continuous.
In our future work, we shall try to use such filters to study sheaf representations of
TEQ-algebras and completeness of TEQ-algebras.
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