INTUITIONISTIC FUZZY BOUNDED LINEAR OPERATORS

Document Type: Research Paper

Authors

1 Department of Mathematics, Annamalai University, Annamalainagar- 608002, Tamilnadu, India

2 Department of Mathematics Section, Faculty of Engineering and Technology, Annamalai University, Annamalainagar-608002, Tamilnadu, India

Abstract

The object of this paper is to introduce the notion of intuitionistic
fuzzy continuous mappings and intuitionistic fuzzy bounded linear operators
from one intuitionistic fuzzy n-normed linear space to another. Relation between
intuitionistic fuzzy continuity and intuitionistic fuzzy bounded linear
operators are studied and some interesting results are obtained.

Keywords


[1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1)(1986), 87-96.
[2] K. T. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Sets and Systems, 33(1989), 37-46.

[3] K. T. Atanassov, Intuitionistic fuzzy sets, Physica-Verlag Heidelberg, Newyork, 1999.
[4] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, The Journal of
Fuzzy Mathematics, 11(3)(2003), 687-705.
[5] T. Bag and S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems,
151(2005), 513-547.
[6] S. C. Chang and J. N. Mordesen, Fuzzy linear operators and fuzzy normed linear spaces, Bull.
Cal. Math. Soc., 86(1994), 429-436.
[7] G. Deschrijver and E. Kerre , On the Cartesian product of the intuitionistic fuzzy sets, The
Journal of Fuzzy Mathematics, 11 (3)(2003), 537-547.
[8] MS. Elnaschie, On the uncertainty of Cantorian geometry and two-slit experiment, Chaos,
Soliton and Fractals, 9 (3)(1998), 517-529.
[9] MS. Elnaschie, On the verications of heterotic strings theory and 1 theory, Chaos, Soliton
and Fractals,11 (2) (2000), 2397-2407.
[10] C. Felbin, Finite dimensional fuzzy normed linear spaces, Fuzzy Sets and Systems, 48 (1992),
239-248.
[11] C. Felbin, The Completion of fuzzy normed linear space, Journal of Mathematical Analysis
and Applications, 174 (2)(1993), 428-440.
[12] C. Felbin, Finite dimensional fuzzy normed linear spaces II, Journal of Analysis, 7 (1999),
117-131.
[13] S. G¨ahler, Lineare 2-Normierte R¨aume, Math. Nachr., 28 (1965), 1-43.
[14] S. G¨ahler, Unter Suchungen ¨U ber Veralla gemeinerte m-metrische R¨aume I, Math. Nachr.,
(1969), 165-189.
[15] H. Gunawan and M. Mashadi, on n-Normed spaces, International J. Math. & Math. Sci., 27
(10)(2001), 631-639.
[16] A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12 (1984), 143-
154.
[17] S. S. Kim and Y. J. Cho, Strict convexity in linear n-normed spaces, Demonstratio Math.,
29 (4) (1996), 739-744.
[18] S. V. Krishna and K. K. M. Sharma, Separation of fuzzy normed linear spaces, Fuzzy Sets
and Systems, 63 (1994), 207-217.
[19] R. Malceski, Strong n-convex n-normed spaces, Mat. Bilten, 21 (1997), 81-102.
[20] A. Misiak, n-inner product spaces, Math. Nachr., 140 (1989), 299-319.
[21] AL. Narayanan and S. Vijayabalaji, Fuzzy n-normed linear space, 24(2005), 3963-3977.
[22] J. H. Park, Intuitionistic fuzzy metric space, Chaos, Solitons and Fractals, 22(2004), 1039-
1046.
[23] G. S. Rhie, B. M. Choi and S. K. Dong, On the completeness of fuzzy normed linear spaces,
Math. Japonica, 45 (1) (1997), 33-37.
[24] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10(1960), 314-334.
[25] S. Vijayabalaji, N. Thillaigovindan and Y. B. Jun, Intuitionistic fuzzy n-normed linear space,
Submitted to Bulletin of Korean Mathematical Society, Korea.