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ON CONTROLLABILITY AND OBSERVABILITY OF FUZZY

CONTROL SYSTEMS

ROYA MASTIANI AND SOHRAB EFFATI

Abstract. In order to more effectively cope with the real world problems

of vagueness, imprecise and subjectivity, fuzzy event systems were proposed
recently. In this paper, we investigate the controllability and the observability
property of two systems that one of them has fuzzy variables and the other one
has fuzzy coefficients and fuzzy variables (fully fuzzy system). Also, sufficient

conditions for the controllability and the observability of such systems are
established. Some examples are given to substantiate the results obtained.

1. Introduction

Mathematical models describing real systems will usually require knowing ex-
actly parameter model values. However, in practice, exact values are not available
and models usually exhibit a certain degree of uncertainty. These lead to use mod-
els with uncertain parameters and sometimes also uncertain initial conditions. In
order to consider the whole spectrum of possible results, such uncertainty should
be taken into account. One possible way to handle this uncertainty in parameters
and initial conditions is to use fuzzy numbers and fuzzy arithmetic operations for
the model simulation. Thus, for a long time, there remained a need for effective
means to describe and quantify information in terms of its associated vagueness
and imprecision. This need had been answered by the emergence of fuzzy theory
in 1965.

The controllability and the observability of any system (linear and non-linear)
are very important concepts in the control design process. The controllability con-
ditions ensure that the control action exists to drive the states from the initial
condition to a target point. Hence, both metrics provide a tool to determine if the
system under investigation, can achieve the control design requirements. Parallel to
controllability, observability of systems is also a metric in the design of observers.
Thus, paralleling a similar approach presented herein, observability conditions can
be also easily obtained. While the controllability of linear systems is easy to deter-
mine, unfortunately a similar simple criterion, in general, for non-linear controllers
does not exist [17].

The controllability and the observability in the fuzzy sense, as the foundation of
fuzzy dynamical system theory, are one of the most important issues that need to
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be explored in fuzzy dynamical system theory [14]. In the classical control theory,
the controllability is the characteristic of the system to transfer a crisp initial state
to any desired crisp state in a finite time interval by applying an appropriate control
input. The observability is the characteristic of the system to estimate the crisp
initial state according to the knowledge of the input and the output in a finite time
interval. However, when the coefficients and variables of fuzzy dynamical system are
fuzzy, not deterministic, the concepts of the controllability and the observability in
the classical control theory cannot be applied for the fuzzy dynamical system. As a
result, it is considered important to research the controllability and the observability
of fuzzy dynamical system. The controllability of fuzzy systems has been explored
by many authors, such as, Cai and Tang [3], Ding and Kandel [4, 5], Farinwata et
al. [7], Feng et el. [8], and Gupta et al. [11]. Recently, Biglarbegian et al. [2] have
studied the accessability and the controllability properties of T-S fuzzy logic control
systems by using differential geometric and Lie-algebraic techniques. The literature
[6] investigated the observability of the fuzzy dynamical system with the fuzzy initial
state, and pointed out that the observability was the characteristic of the system to
estimate the range of the fuzzy initial state according to the knowledge of the fuzzy
input and the fuzzy output in a finite time interval. Also, Gabr [10] presented a new
approach for the modelling, analysis, and design of automatic control systems in
fully fuzzy environment based on the normalized fuzzy matrices. The approach was
also suitable for determining the propagation of fuzziness in automatic control and
dynamical systems where all system coefficients are expressed as fuzzy parameters.

In this paper, we consider linear time-invariant systems with fuzzy condition and
establish results on the controllability and the observability properties of the system.
In fact, we study the controllability and the observability of two different systems.
That one of them has fuzzy variables and another one has fuzzy coefficients and
fuzzy variables (fully fuzzy system). Furthermore, we give some sufficient conditions
for the controllability and the observability about such systems.

The organization of the paper is as follows. In Section 2, we state some prelim-
inaries from fuzzy set theory and control systems. Section 3, introduce the fuzzy
linear system (FLS). We describe the evolution of the solutions of systems with
fuzzy variables in Section 4. In fact, in this section the controllability and the ob-
servability of systems with fuzzy variables (FLCS) are discussed. In Section 5, we
investigate the controllability and the observability system with fuzzy coefficients
and variables. Section 6 gives an interesting application of FLCS (i. e., the fuzzy
inverted pendulum). Some examples are given to demonstrate the results obtained
in Section 7. Finally, we conclude the paper in Section 8.

2. Preliminaries

In this section, some basic definitions of fuzzy numbers are given. Let R be the
set of all real numbers. R+ denotes the set of all non-negative real numbers. N is
the set of all natural numbers. For n ∈ N, En is the set of all n-dimensional vectors
of fuzzy numbers on R. F (X) denotes the set of all fuzzy sets defined in a set X.
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Definition 2.1 ([1, 18, 13]). If X is a collection of objects denoted by x, then a
fuzzy set A in X is a set of ordered pairs A = {(x, µA(x)) | x ∈ X}, where µA(x)
is called the membership function or grade of membership of x in A. The range of
membership function is a subset of non-negative real numbers whose supremum is
finite.

Definition 2.2 ([1, 18, 13]). By a fuzzy number on R, we mean a mapping µ :
R −→ [0, 1] with the following properties:

(1) µ is fuzzy convex, that is, µ(αx+(1−α)y) ≥ min(µ(x), µ(y)) for all x, y ∈ R
and α ∈ [0, 1].

(2) Closure of the support of µ is compact, that is, cl(x ∈ R : µ(x) > 0) is
compact in R.

Definition 2.3 ([1, 18, 13]). Let A be a fuzzy number or a fuzzy set defined on the
universe X which, in general, could be a subset of Rn. The α-cut or α-level set of A
is denoted by Aα or [A]α and is defined as Aα = {x ∈ X,µ(x) ≥ α} for α ∈ (0, 1].
For α = 0, the α-cut of A is defined as the closure of union of all non-zero α-cut of
A. That is, A0 =

∪
α∈(0,1] A

α.

It is well known that for every A ∈ E1, the α-level sets of A are closed and
bounded intervals defined by [A]α = [Aα, Aα], where Aα and Aα are called the
lower α-cut and the upper α-cut of A, respectively. Every fuzzy set can be uniquely
represented in terms of its α-cut. The following decomposition theorem of fuzzy
sets depicts this fact.

Definition 2.4 ([1, 18]). A fuzzy number Ã is LR-type if there exit L (for left),
R (for right), and scalars α, β > 0 with the following representations:

µÃ(x) =

{
L(a−x

α ), x ≤ a

R(x−a
β ), x ≥ a,

where L and R are strictly decreasing functions defined on [0, 1] and satisfy the
following conditions:

L(0) = R(0) = 1,

L(1) = R(1) = 0,

0 < L(x) < 1, 0 < R(x) < 1, x ̸= 0.

The mean value of Ã, (m) is a real number, and α, β are called the left and the

right spreads, respectively. Ã is denoted by (α,m, β)LR.

Definition 2.5 ([1, 18, 13]). A matrix Ã = (ãij) is called a fuzzy matrix if for all

i and j, ãij ∈ F (R). Ã will be positive (negative) and denoted by Ã > 0 (Ã < 0),

if for all i and j, ãij > 0 (ãij < 0). Clearly, Ñ = (a, b, c) is positive (negative), if
and only if, a > 0 (c < 0). Non-negative and non-positive fuzzy matrices will be
defined similarly.

Next theorem describes the fuzzy arithmetic.
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Theorem 2.6 ([1, 12, 18]). Let M̃ = (α,m, β) and Ñ = (γ, n, δ) are two arbitrary
triangular fuzzy numbers and λ > 0 is a real number. Then,

(1) M̃ ⊕ Ñ = (α+ γ,m+ n, β + δ),

(2) −M̃ = (β,−m,α),

(3) M̃ ⊖ Ñ = (α+ δ,m− n, β + γ),

(4) Let M̃ = (a, b, c) be any triangular fuzzy number and Ñ = (x, y, z) be a
non-negative triangular fuzzy number, then

M̃ ⊗ Ñ =


(ax, by, cz), a ≥ 0

(az, by, cz), a < 0, c ≥ 0,

(az, by, cx), c < 0.

The rest of this section gives some preliminaries from control system. Consider
the following linear system: {

ẋ = Ax+Bu

y = Cx, (1)

where A = (aij) is an n × n real matrix, B = (bij) is an n × m real matrix, and
C = (cij) is a r × n real matrix.

Definition 2.7 (Hukuhara difference [16, 13]). Given ũ, ṽ ∈ E1, the H-difference
is defined by:

ũ⊖H ṽ = w̃ ⇐⇒ ũ = ṽ + w̃.

If ũ⊖H ṽ exists, it is unique and its α-cuts are (ũ⊖H ṽ)[α] = [u(α)−v(α), u(α)−v(α)],
α ∈ [0, 1]. Clearly, ũ⊖H ũ = 0. Also, when ũ and ṽ are fuzzy vectors, this conclusion
is true if it is satisfied for the elements of ũ and ṽ.

Remark 2.8. There exists an n× n non-singular matrix P such that,

P−1AP = Λ = {λ1, λ2, · · · , λn},

where λi for i = 1, 2, . . . , n is an eigenvalue of A. In fact, Λ is a diagonal matrix.
Now, substituting x = Pz in (1), yields:{

ż = Λz + βu

y = γz, (2)

where β = P−1B and γ = CP . The system (2) is controllable if β has no zero row.
Also, the system (2) is observable if γ has no zero column.

3. Fuzzy linear system

In this section, the fuzzy linear system (FLS) is stated. In fact, some new results
about the FLS are given.
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Consider the following n× n linear system of equations:
a11x̃1 + a12x̃2 + · · ·+ a1nx̃n = ỹ1,

a21x̃1 + a22x̃2 + · · ·+ a2nx̃n = ỹ2,
...

an1x̃1 + an2x̃2 + · · ·+ annx̃n = ỹn.

The above system can be written as the matrix form as follow:

Ax̃ = ỹ,
(3)

where the coefficient matrix A = (aij) is a crisp n × n matrix and x̃i, ỹi ∈ E1 for
1 ≤ i ≤ n. This system is called fuzzy linear system (FLS).

Definition 3.1 ([9]). A fuzzy number vector (x̃1, x̃2, ..., x̃n)
T given by

x̃j = (xj(α), xj(α)), j = 1, 2, . . . , n, 0 ≤ α ≤ 1,

is called the solution of the FLS (3) if,

n∑
j=1

aijxj(α) =
n∑

j=1

aijxj(α) = y
i
(α), i = 1, 2, · · · , n, 0 ≤ α ≤ 1,

n∑
j=1

aijxj(α) =
n∑

j=1

aijxj(α) = yi(α), i = 1, 2, · · · , n, 0 ≤ α ≤ 1.

If for a particular index i, aij > 0 for all j = 1, 2, . . . , n, then we simply get:

n∑
j=1

aijxj(α) = y
i
(α), i = 1, 2, · · · , n

n∑
j=1

aijxj(α) = yi(α), i = 1, 2, · · · , n.

In order to solve the given system Ax̃ = ỹ, one must solve a crisp 2n × 2n linear
system where the right hand side column is the following vector function:

(y
1
(α), y

2
(α), · · · , y

n
(α),−y1(α),−y2(α), · · · ,−yn(α))

T .

In fact, the following 2n× 2n linear system is derived:

s11x1(r) + · · ·+ s1nxn(r) + s1,n+1(−x1(r)) + · · ·+ s1,2n(−xn(r)) = y
1
(r),

.

..
.
..

sn1x1(r) + · · ·+ snnxn(r) + sn,n+1(−x1(r)) + · · ·+ sn,2n(−xn(r)) = y
n
(r),

sn+1,1x1(r) + · · ·+ sn+1,nxn(r) + sn+1,n+1(−x1(r)) + · · ·+ sn+1,2n(−xn(r)) = −y1(r),

..

.

s2n,1x1(r) + · · ·+ s2n,nxn(r) + s2n,n+1(−x1(r)) + · · ·+ s2n,2n(−xn(r)) = −yn(r),

(4)
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in which,

aij ≥ 0 =⇒ sij = si+n,j+n = aij , si+n,j = si,j+n = 0,

aij < 0 =⇒ si+n,j = si,j+n = −aij , sij = si+n,j+n = 0.

Applying the matrix form, equations (4) can be expressed as follows:

SX = Y,

where,

X = (x1(α), x2(α), · · · , xn(α),−x1(α),−x2(α), · · · ,−xn(α))
T ,

Y = (y
1
(α), y

2
(α), · · · , y

n
(α),−y1(α),−y2(α), · · · ,−yn(α))

T .

The structure of S implies that, S = (sij) ≥ 0 for 1 ≤ i, j ≤ 2n, i. e,:

S =

[
S1 S2

S2 S1

]
,

(5)

where S1 contains the positive entries of A, and S2 contains the absolute values of
the negative entries of A. In fact, A = S1 − S2.

The following theorems are used in the rest of the paper.

Theorem 3.2. The matrix S is non-singular, if and only if, the matrices A =
S1 − S2 and S1 + S2 are non-singular.

Proof. See Theorem 1 in [9]. □

Theorem 3.3. If S−1 exists, then it must have the same structure as S, i.e.,

S−1 =

[
E F
F E

]
,

where E contains the positive entries of S−1, and F contains the absolute values of
the negative entries of S−1 (i.e., S−1 = E − F ). Also,

E =
1

2
[(S1 + S2)

−1 + (S1 − S2)
−1], F =

1

2
[(S1 + S2)

−1 − (S1 − S2)
−1].

Moreover, if S is non-singular then, X = S−1Y .

Proof. See Theorem 2 in [9]. □

4. Controllability and observability of systems with fuzzy variables

Here, the controllability and the observability of a system with fuzzy variables
are investigated. In fact, we study the following fuzzy linear control system (FLCS):{

˙̃x = Ax̃+Bũ

ỹ = Cx̃ (6)
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where A = (aij), B = (bij), and C = (cij) are real n×n, n×m, and r×n matrices,
respectively. Assume that in (6) x̃ = P z̃, where P = (pij) is an n× n real matrix.
According to Definition 3.1, the system x̃ = P z̃ can be written as equivalence form
X = SZ where,

X =
[
x1 x2 . . . xn −x1 . . . −xn

]T
, Z =

[
z1 z2 . . . zn −z1 . . . −zn

]T
.

Also, the matrix S is similar to (5). Therefore, the FLCS (6) is reformulated as
follows: {

P ˙̃z = APz̃ +Bũ

ỹ = CP z̃,

By using the equivalence form X = SZ we get,{
Ż = S′A′SZ + S′B′U

Y = C ′SZ, (7)

where matrices A′, B′, and C ′ and vectors Ż, U , and Y are as follow:

A
′
=

[
A1 A2

A2 A1

]
, B′ =

[
B1 B2

B2 B1

]
, C ′ =

[
C1 C2

C2 C1

]
,

Ż =



ż1
ż2
...
żn
−ż1
...

−żn


=

[
ż
−ż

]
, U =



u1

u2
...
un

−u1

...
−un


=

[
u
−u

]
, Y =



y
1

y
2
...
y
n

−y1
...

−yn


=

[
y
−y

]
.

(8)

Also, A1, B1, C1, and A2, B2, C2 contain the positive entries and the absolute
values of the negative entries of A, B, C, respectively. Moreover, we know that:

A = A1 −A2, B = B1 −B2, C = C1 − C2.

Now, the system (7) can be stated in the following form:{
SŻ = A′SZ +B′U,

Y = C ′SZ,

where, S′ =

[
S′
1 S′

2

S′
2 S′

1

]
, and S′

1, S
′
2 contain the positive entries and the absolute

values of the negative entries of P−1, respectively. Also, P−1 = S′
1 − S′

2.
The following theorem states the connection between the defined matrices.

Theorem 4.1. Let S′A′S =

[
D E
E D

]
, S′B′ =

[
F G
G F

]
, and C ′S =

[
H I
I H

]
.

Then D − E = P−1AP , F −G = P−1B, and H − I = CP.
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Proof. According to the definitions of matrices we have:

S′A′S =

[
S′
1 S′

2

S′
2 S′

1

] [
A1 A2

A2 A1

] [
S1 S2

S2 S1

]
=

[
S′
1A1S1 + S′

2A2S1 + S′
1A2S2 + S′

2A1S2 S′
1A1S2 + S′

2A2S2 + S′
1A2S1 + S′

2A1S1

S′
1A1S2 + S′

2A2S2 + S′
1A2S1 + S′

2A1S1 S′
1A1S1 + S′

2A2S1 + S′
1A2S2 + S′

2A1S2

]
.

Also,

D − E

= S′
1A1S1 + S′

2A2S1 + S′
1A2S2 + S′

2A1S2︸ ︷︷ ︸
D

−(S′
1A1S2 + S′

2A2S2 + S′
1A2S1 + S′

2A1S1︸ ︷︷ ︸
E

)

= S′
1A1S1 + S′

2A2S1 + S′
1A2S2 + S′

2A1S2 − S′
1A1S2 − S′

2A2S2 − S′
1A2S1 − S′

2A1S1

= S′
1A1(S1 − S2) + S′

2A2(S1 − S2)− S′
1A2(S1 − S2)− S′

2A1(S1 − S2)

= S′
1A1P + S′

2A2P − S′
1A2P − S′

2A1P

= S′
1(A1 −A2)P − S′

2(A1 −A2)P

= S′
1AP − S′

2AP

= (S′
1 − S′

2)AP

= P−1AP.

Moreover,

S′B′ =

[
S′
1 S′

2

S′
2 S′

1

] [
B1 B2

B2 B1

]
=

[
S′
1B1 + S′

2B2 S′
1B2 + S′

2B1

S′
1B2 + S′

2B1 S′
1B1 + S′

2B2

]
.

Therefore, F −G is constructed as below:

F −G = S′
1B1 + S′

2B2︸ ︷︷ ︸
F

−(S′
1B2 + S′

2B1︸ ︷︷ ︸
G

)

= S′
1(B1 −B2)− S′

2(B1 −B2)

= (S′
1 − S′

2)B

= P−1B.

Finally,

C ′S =

[
C1 C2

C2 C1

] [
S1 S2

S2 S1

]
=

[
C1S1 + C2S2 C1S2 + C2S1

C1S2 + C2S1 C1S1 + C2S2

]
Thus, H − I is become,

H − I = C1S1 + C2S2︸ ︷︷ ︸
H

−(C1S2 + C2S1︸ ︷︷ ︸
I

)

= C1(S1 − S2)− C2(S1 − S2)

= (C1 − C2)S

= CP.

So, the results follow. □

Corollary 4.2. Based on Remark 2.8 the system (7) is controllable if F − G has
no zero row. Also, the system (7) is observable if H − I has no zero column.
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Theorem 4.3. The sufficient condition for the controllability of the system (7) is,

rank(B′, A′B′, A′2B′, ..., A′n−1
B′) = n.

Proof. According to Remark 2.8 the sufficient condition for the controllability of
the system (7) is that the matrix[

S′B′, S′A′SS′B′, S′A′2SS′B′, ..., S′A′n−1
SS′B′

]
be non-singular. Furthermore, we know that:[
S′B′, S′A′SS′B′, S′A′2SS′B′, ..., S′A′n−1

SS′B′
]
= S′[B′, A′B′, A′2B′, ..., A′n−1

B′].

Since S′ is non-singular so rank(B′, A′B′, A′2B′, . . . , A′n−1
B′) = n. Therefore, the

proof is completed. □

Theorem 4.4. The sufficient condition for the observability of the system (7) is:

rank(
[
C ′ C ′A′ C ′A′2 . . . C ′A′n−1

]T
) = n.

Proof. The proof is similar to the former theorem therefore, we omit here. □
From the aforementioned discussion, the process and algorithm for deducing the

controllability and the observability of systems with fuzzy variables are summarized
as follows.

Algorithm 4.5. The algorithm for investigating the controllability and the ob-
servability of systems with fuzzy variables.

1: Identify the matrices A, B, and C.
2: Construct the matrices P and P−1 from matrix A.
3: According to Equations (8), matrices A, B, C, and vectors x, u, y are changed

into matrices A′, B′, C ′, and vectors X, U , Y , respectively.
4: From (5) and the fact that, P−1 = S′

1−S′
2 the matrices S and S′ are obtained.

5: Based on Theorem 4.1 the matrices D − E, F −G, and H − I are derived.
6: Applying the matrices F −G, H−I, and Corollary (4.2) the controllability and

the observability of the system (7) is stated.
7: The sufficient condition for the controllability and the observability of the sys-

tem (7) can be obtained from Theorems 4.3 and 4.4.

5. Controllability and observability of system with fuzzy coefficients
and variables

In this section, the controllability and the observability of system with fuzzy
coefficients and fuzzy variables are studied. As a matter of fact, we consider the
following FLCS: {

˙̃x = Ãx̃+ B̃ũ

ỹ = C̃x̃
(9)

where fuzzy matrices and fuzzy variables are LR-type, that are:

Ã = (ãij) = (a′
ij , aij , a

′′
ij)LR, B̃ = (b̃ij) = (b′ij , bij , b

′′
ij)LR, C̃ = (c̃ij) = (c′ij , cij , c

′′
ij)LR,

x̃ = (x̃i) = (x′
i, xi, x

′′
i )LR, ũ = (ũi) = (u′

i, ui, u
′′
i )LR, ỹ = (ỹi) = (y′

i, yi, y
′′
i )LR,
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where 1 ≤ i, j ≤ n. For convenience, we define the following matrices:

A1 = (a′ij), A2 = (aij), A3 = (a′′ij), B1 = (b′ij), B2 = (bij), B3 = (b′′ij),

C1 = (c′ij), C2 = (cij), C3 = (c′′ij), X1 = (x′
i), X2 = (xi), X3 = (x′′

i ),

U1 = (u′
i), U2 = (ui), U3 = (u′′

i ), Y1 = (y′i), Y2 = (yi), Y3 = (y′′i ).

(10)

We break up the matrix A1 into two n× n matrices such that their addition is A1.
Let A+

1 = (a′ij
+
) and A−

1 = (a′ij
−
) where,

a′ij
+
=

{
a′ij a′ij ≥ 0

0 a′ij < 0
, a′ij

−
=

{
0 a′ij ≥ 0

a′ij a′ij < 0.

Then A+
1 +A−

1 = A1. We also break up the matrix A3 into two matrices, similarly.

Let A+
3 = (a′′ij

+
) and A−

3 = (a′′ij
−
), where,

a′′ij
+
=

{
a′′ij a′′ij ≥ 0

0 a′′ij < 0
, a′′ij

−
=

{
0 a′′ij ≥ 0

a′′ij a′′ij < 0.

Also we break up matrices B1 and B3 and C1 and C3 like above.

Theorem 5.1. The system ˙̃x = Ã ⊗ x̃ + B̃ ⊗ ũ with the multiplication defined in
Theorem 2.6 is equivalent to the following system:Ẋ1

Ẋ2

Ẋ3

 =

A+
1 0 A−

1

0 A2 0
A−

3 0 A+
3

X1

X2

X3

+

B+
1 0 B−

1

0 B2 0
B−

3 0 B+
3

U1

U2

U3

 . (11)

Proof. According to Theorem 2.6 we have:

˙̃xi = (ẋ′
i, ẋi, ẋ

′′
i )

T

= (Ã⊗ x̃)i + (B̃ ⊗ ũ)i

=

n∑
j=1

{(ãij ⊗ x̃j) + (b̃ij ⊗ ũj)}

=

n∑
j=1

(((a′
ij , aij , a

′′
ij)⊗ (x′

j , xj , x
′′
j )) + ((b′ij , bij , b

′′
ij)⊗ (u′

j , uj , u
′′
j )))

=



n∑
j=1

((a′
ijx

′
j , aijxj , a

′′
ijx

′′
j ) + (b′iju

′
j , bijuj , b

′′
iju

′′
j )), a′

ij ≥ 0, b′ij ≥ 0

n∑
j=1

((a′
ijx

′′
j , aijxj , a

′′
ijx

′′
j ) + (b′iju

′′
j , bijuj , b

′′
iju

′′
j )), a′

ij < 0, b′ij < 0, a′′
ij ≥ 0, b′′ij ≥ 0

n∑
j=1

((a′
ijx

′′
j , aijxj , a

′′
ijx

′
j) + (b′iju

′′
j , bijuj , b

′′
iju

′
j)), a′′

ij < 0, b′′ij < 0

=



n∑
j=1

(a′
ijx

′
j + b′iju

′
j , aijxj + bijuj , a

′′
ijx

′′
j + b′′iju

′′
j ), a′

ij ≥ 0, b′ij ≥ 0

n∑
j=1

(a′
ijx

′′
j + b′iju

′′
j , aijxj + bijuj , a

′′
ijx

′′
j + b′′iju

′′
j ), a′

ij < 0, b′ij < 0, a′′
ij ≥ 0, b′′ij ≥ 0

n∑
j=1

(a′
ijx

′′
j + b′iju

′′
j , aijxj + bijuj , a

′′
ijx

′
j + b′′iju

′
j), a′′

ij < 0, b′′ij < 0



On controllability and observability of fuzzy control systems 57

By adding the first component and the third component together we get:

 ẋ′
i

ẋi

ẋ′′
i

 =



n∑
j=1

((a′ijx
′
j + b′iju

′
j)︸ ︷︷ ︸

a′
ij

+,b′ij
+

+(a′ijx
′′
j + b′iju

′′
j ))︸ ︷︷ ︸

a′
ij

−,b′ij
−

n∑
j=1

(aijxj + bijuj)

n∑
j=1

((a′′ijx
′′
j + b′′iju

′′
j )︸ ︷︷ ︸

a′′
ij

+,b′′ij
+

+(a′′ijx
′
j + b′′iju

′
j))︸ ︷︷ ︸

a′′
ij

−,b′′ij
−


.

According to the notations (10) the above system can be stated as the following
form: Ẋ1

Ẋ2

Ẋ3

 =


(A+

1 X1 +B+
1 U1) + (A−

1 X3 +B−
1 U3)

A2X2 +B2U2

(A−
3 X1 +B−

3 U1) + (A+
3 X3 +B+

3 U3)

 .

Or it can be replaced as follows:Ẋ1

Ẋ2

Ẋ3

 =

A+
1 0 A−

1

0 A2 0
A−

3 0 A+
3


︸ ︷︷ ︸

A

X1

X2

X3

+

B+
1 0 B−

1

0 B2 0
B−

3 0 B+
3


︸ ︷︷ ︸

B

U1

U2

U3

 .

Thus, the result follows. □

Theorem 5.2. The system ỹ = C̃ ⊗ x̃ with the multiplication defined in Theorem
2.6 is equivalent to the following system:Y1

Y2

Y3

 =

C+
1 0 C−

1

0 C2 0
C−

3 0 C+
3


︸ ︷︷ ︸

C

X1

X2

X3

 .
(12)

Proof. The proof is similar to the former theorem therefore, we omit here. □

Remark 5.3. According to Theorem 5.1, instead of studying the controllability of
the system (9) one can study the system (11). As you can see, the system (11) is a
crisp system and for the controllability of the system (11) we can use the method
described in Remark 2.8. In other words, the system (11) is controllable whenever
all rows corresponding to u′

i, ui, u
′′
i in term P−1B are not zero. Also, for discussing

the observability of the system (9) one can check the system (12). In other words,
the system (12) is observable whenever all columns corresponding to y′i, yi, y

′′
i in

term CP are not zero.

Theorem 5.4. The sufficient condition for the controllability and the observability
of the system (9) is:

rank[B,AB,A2B, ..., An−1B] = n, rank(
[
C CA CA2 . . . CAn−1

]T
) = n,
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respectively.

Proof. The proof is clear, so omit here. □
From the aforementioned discussion, the process and algorithm for deducing the

controllability and the observability of systems with fuzzy coefficients and variables
are summarized as follows.

Algorithm 5.5. The algorithm for investigating the controllability and the ob-
servability of systems with fuzzy coefficients and variables.

1: Identify the LR-type matrices Ã, B̃, and C̃.
2: According to Equations (10), the system (9) is become to the Equations (11)

and (12).
3: The controllability and the observability of the system (9) are obtained from

Remark 5.3.
4: The sufficient condition for the controllability and the observability of the sys-

tem (9) can be obtained from Theorem 5.4.

6. Application: The Inverted Pendulum

In this section, the application of the FLS is given. In fact, we consider a crisp
Inverted Pendulum problem as a fuzzy Inverted Pendulum with assuming the fuzzy
coefficient matrix and fuzzy variables.

The single inverted pendulum is a classical problem in the field of non-linear
control theory; it also offers a good example for control engineers to verify a mod-
ern control theory. The inverted pendulum is a highly non-linear and open-loop
unstable system. The characteristics of the inverted pendulum make identification
and control more challenging. Inverted pendulum can be considered as a popular
system that is used to approximate highly complex models such as rockets during
liftoff, bipedal walking, cranes, robots, and etc. After ignoring the air resistance
and a variety of friction, the linear inverted pendulum can be abstracted into a cart
and a homogeneous rod, shown in Figure 1. From the sum of force in both hori-

Figure 1. Pendulum system force analysis.

zontal and vertical directions and the sum of moments around the centroid of the
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pendulum, the system can be described by the following two nonlinear differential
equations [15]:

(M +m)ẍ+ bẋ−mlϕ̈ = u,

(I +ml2)ϕ̈−mglϕ = mlẍ,

(13)

where the parameters in Equations (13) are describe in Table 1.

Symbol Meaning
M Cart mass
m Rod mass
b Friction coefficient of the cart
l Distance from the rod axis rotation center to the rod mass center
I Rod inertia
F Force acting on the cart
x Cart position
ϕ The angle of the pendulum with the vertical upward direction
θ The angle of the pendulum and the vertical downward direction

Table 1. Description of the parameters in Equations (13).

A set of state variables sufficient to describe this system are chosen as the position
and velocity of the cart, the angular position and change of angular position of the
pendulum. Therefore, the equations that describe the behaviour of the inverted
pendulum are as the following:

ẋ = ẋ

ẍ =
−(I +ml2)b

I(M +m) +Mml2
ẋ+

m2gl2

I(M +m)Mml2
ϕ+

(I +ml2)

I(M +m) +Mml2
u

ϕ̇ = ϕ̇

ϕ̈ =
−mlb

I(M +m) +Mml2
ẋ+

mgl(M +m)

I(M +m)Mml2
ϕ+

ml

I(M +m) +Mml2
u.

Now, in the above equations consider the fuzzy parameters x̃, ũ, ϕ̃, and θ̃ therefore,
the equations that describe the behaviour of the fuzzy inverted pendulum can be
as the following:

(M +m)ẍ+ bẋ⊖H mlϕ̈ = u,

(I +ml2)ϕ̈⊖H mglϕ = mlẍ,
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where the ⊖H denotes the Hukuhara difference (see Definition 2.7). Or

˙̃x = ˙̃x

¨̃x =
−(I +ml2)b

I(M +m) +Mml2
˙̃x+

m2gl2

I(M +m)Mml2
ϕ̃+

(I +ml2)

I(M +m) +Mml2
ũ

˙̃
ϕ =

˙̃
ϕ

¨̃
ϕ =

−mlb

I(M +m) +Mml2
˙̃x+

mgl(M +m)

I(M +m)Mml2
ϕ̃+

ml

I(M +m) +Mml2
ũ

The fuzzy system state-space equation can be written as follow:

˙̃x = Ax̃+Bũ

˙̃y = Cx̃+Dũ.

Or it can be:
˙̃x
¨̃x
˙̃
ϕ
¨̃
ϕ

 =


0 1 0 0

0 −(I+ml2)b
I(M+m)+Mml2

m2gl2

I(M+m)Mml2 0

0 0 0 1

0 −mlb
I(M+m)+Mml2

mgl(M+m)
I(M+m)Mml2 0



x̃
˙̃x

ϕ̃
˙̃
ϕ

+


0

I+ml2

I(M+m)+Mml2

0
ml

I(M+m)+Mml2

 ũ,

ỹ =

[
x̃

ϕ̃

]
=

[
1 0 0 0
0 0 1 0

]
x̃
˙̃x

ϕ̃
˙̃
ϕ

+

[
0
0

]
ũ.

7. Numerical Examples

In order to demonstrate the effectiveness and efficiency of the proposed method,
we solve some examples.

Example 7.1. Consider the following FLCS:
˙̃x =

0 0 −6

1 0 −11

0 1 −6

 x̃+

11
0

 ũ,

ỹ =
[
2 1 −1

]
x̃.

The eigenvalues of matrix A are λ1 = −1, λ2 = −2, λ3 = −3, so the matrices P and
P−1 can be as follow:

P =

6 −3 4
5 −4 6
1 −1 2

 , P−1 =

 0.5 −0.5 0.5
1 −2 4

0.25 −0.75 2.25

 .
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Now, we obtain the following matrices,

S =


6 0 4 0 3 0
5 0 6 0 4 0
1 0 2 0 1 0
0 3 0 6 0 4
0 4 0 5 0 6
0 1 0 1 0 2

 , S′ =


0.5 0 0.5 0 0.5 0
1 0 4 0 2 0

0.25 0 2.25 0 0.75 0
0 0.5 0 0.5 0 0.5
0 2 0 1 0 4
0 0.75 0 0.25 0 2.25



A′ =


0 0 0 0 0 6
1 0 0 0 0 11
0 1 0 0 0 6
0 0 6 0 0 0
0 0 11 1 0 0
0 0 6 0 1 0

 , B′ =


1 0
1 0
0 0
0 1
0 1
0 0

 , C′ =

[
2 1 0 0 0 1
0 0 1 2 1 0

]

Therefore,

S′A′S =


8 7.5 14 9 7.5 14
42 36 68 42 38 68
19 17.25 30 19 17.25 33
9 7.5 14 8 7.5 14
42 38 68 42 36 68
19 17.25 33 19 17.25 30

 , S′B′ =


1 0
1 0
0 0
0 1
0 1
0 0

 ,

C′S =

[
17 1 14 1 10 2
1 10 2 17 1 14

]
.

As one can see,

D =

 8 7.5 14
42 36 68
19 17.25 30

 , E =

 9 7.5 14
42 38 68
19 17.25 33

 , F =

11
0

 ,

G =

00
0

 , H =
[
17 1 14

]
, I =

[
1 10 2

]
.

And also,

D − E =

−1 0 0
0 −2 0
0 0 −3

 , F −G =

11
0

 , H − I =
[
16 −9 12

]
.

The third row of the matrix F − G or P−1B is zero so the above system is not
controllable. But the above system is the observable because the matrix H − I has
no zero columns. In other way,

rank(B′, A′B′, A′2B′, A′3B′, A′4B′, A′5B′) = 5, rank([C′ C′A′ C′A′2 C′A′3 C′A′4 C′A′5]T ) = 6.

Therefore, the above system is not the controllable but it is the observable.
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Example 7.2. Consider the following FLCS:
˙̃x =

[
3 −1

2 0

]
x̃+

[
−1 2

1 −1

]
ũ,

ỹ =

[
2 0

1 −1

]
x̃.

The eigenvalues of matrix A are λ1 = 1, λ2 = 2, so the matrices P and P−1 can be
as follow:

P =

[
1 −1
2 −1

]
, P−1 =

[
−1 1
−2 1

]
Now, we obtain the following matrices,

S =


1 0 0 1
2 0 0 1
0 1 1 0
0 1 2 0

 , S′ =


0 1 1 0
0 1 2 0
1 0 0 1
2 0 0 1



A′ =


3 0 0 1
2 0 0 0
0 1 3 0
0 0 2 0

 , B′ =


0 2 1 0
1 0 0 1
1 0 0 2
0 1 1 0

 , C′ =


2 0 0 0
1 0 0 1
0 0 2 0
0 1 1 0


Therefore,

S′A′S =


4 3 3 3
6 6 6 4
3 3 4 3
6 4 6 6

 , S′B′ =


2 0 0 2
3 0 0 5
0 3 2 0
0 5 3 0

 , C′S =


2 0 0 2
1 1 2 1
0 2 2 0
2 1 1 1

 ,

D − E =

[
1 0
0 2

]
, F −G =

[
2 −3
3 −5

]
, H − I =

[
2 −2
−1 0

]
.

As a result, none of the rows of the matrix F−G or P−1B and none of the columns
of the matrix H − I or CP are not zero thus, the system is both the controllable
and the observable. Also, in other way, since

rank(B′, A′B′, A′2B′, A′3B′) = 4, rank(
[
C ′ C ′A′ C ′A′2 C ′A′3

]T
) = 4,

therefore, the above system is both the controllable and the observable.

Example 7.3. Consider the following FLCS:
˙̃x =

[
(1,−1, 1) (2, 2, 3)

(2,−3, 3) (1, 4, 1)

]
x̃+

[
(−0.7, 4, 0) (0, 4, 0.7)

(0.7, 6, 0) (0, 6, 0.7)

]
ũ,

ỹ =

[
(−2,−1, 0) (1, 2, 3)

(−4,−3,−2) (3, 4, 5)

]
x̃.

Now, for solving this example assume that:

x̃ =

[
x̃1

x̃2

]
, ũ =

[
ũ1

ũ2

]
, ỹ = (ỹ1, ỹ2),
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where,

x̃1 = (x′
1, x1, x

′′
1 ), x̃2 = (x′

2, x2, x
′′
2 ), ũ1 = (u′

1, u1, u
′′
1 ),

ũ2 = (u′
2, u2, u

′′
2 ), ỹ1 = (y′

1, y1, y
′′
1 ), ỹ2 = (y′

2, y2, y
′′
2 ).

Also, suppose that the following matrices:

A1 =

[
1 2
2 1

]
, A2 =

[
−1 2
−3 4

]
, A3 =

[
1 3
3 1

]
.

B1 =

[
−0.7 0
0.7 0

]
, B2 =

[
4 4
6 6

]
, B3 =

[
0 0.7
0 0.7

]
C1 =

[
−2 1
−4 3

]
, C2 =

[
−1 2
−3 4

]
, C3 =

[
0 3
−2 5

]
.

So, we obtain the following matrices:

A+
1 =

[
1 2
2 1

]
, A−

1 =

[
0 0
0 0

]
, A+

3 =

[
1 3
3 1

]
, A−

3 =

[
0 0
0 0

]
,

B+
1 =

[
0 0
0.7 0

]
, B−

1 =

[
−0.7 0
0 0

]
, B+

3 =

[
0 0.7
0 0.7

]
, B−

3 =

[
0 0
0 0

]
,

C+
1 =

[
0 1
0 3

]
, C−

1 =

[
−2 0
−4 0

]
, C+

3 =

[
0 3
0 5

]
, C−

3 =

[
0 0
−2 0

]
.

Therefore, applying system (11) implies:
ẋ′
1

ẋ′
2

ẋ1

ẋ2

ẋ′′
1

ẋ′′
2

 =


1 2 0 0 0 0
2 1 0 0 0 0
0 0 −1 2 0 0
0 0 −3 4 0 0
0 0 0 0 1 3
0 0 0 0 3 1




x′
1

x′
2

x1

x2

x′′
1

x′′
2

+


0 0 0 0 −0.7 0
0.7 0 0 0 0 0
0 0 4 4 0 0
0 0 6 6 0 0
0 0 0 0 0 0.7
0 0 0 0 0 0.7




u′
1

u′
2

u1

u2

u′′
1

u′′
2


The eigenvalues of the first matrix are λ1 = −2, λ2 = −1, λ3 = 1, λ4 = 2, λ5 =
3, λ6 = 4. Then,

P =


0 −1 0 0 1 0
0 1 0 0 1 0
0 0 1 2 0 0
0 0 1 3 0 0
−1 0 0 0 0 1
1 0 0 0 0 1

 , P−1 =


0 0 0 0 −0.5 0.5

−0.5 0.5 0 0 0 0
0 0 3 −2 0 0
0 0 −1 1 0 0
0.5 0.5 0 0 0 0
0 0 0 0 0.5 0.5

 .

So,

P−1AP =


−2 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 3 0
0 0 0 0 0 4

 , P−1B =


0 0 0 0 0 0

0.35 0 0 0 0.35 0
0 0 0 0 0 0
0 0 2 2 0 0

0.35 0 0 0 −0.35 0
0 0 0 0 0 0.7

 .

As one can see, three rows of the matrix P−1B corresponding to u′
1, u1, u

′′
1 and

three rows of the matrix P−1B corresponding to u′
2, u2, u

′′
2 are not zero. Therefore,
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the above system is the controllable. Also, by using system (12) we have:

(y′
1, y

′
2, y1, y2, y

′′
1 , y

′′
2 ) =


0 1 0 0 −2 0
0 3 0 0 −4 0
0 0 −1 2 0 0
0 0 −3 4 0 0
0 0 0 0 0 3
−2 0 0 0 0 5




x′
1

x′
2

x1

x2

x′′
1

x′′
2

 .

So, we get:

CP =


2 1 0 0 1 −2
4 3 0 0 3 −4
0 0 1 4 0 0
0 0 1 6 0 0
3 0 0 0 0 3
5 2 0 0 −2 5

 .

Since three columns of the matrix CP corresponding to y′1, y1, y
′′
1 and three columns

of the matrix CP corresponding to y′2, y2, y
′′
2 are not zero thus, the above system is

the observable. Also, in other way,

rank(B′, A′B′, A′2B′, A′3B′, A′4B′, A′5B′) = 6, rank([C′ C′A′ C′A′2 C′A′3 C′A′4 C′A′5]T ) = 6.

Based on Theorem 5.2 the above system is both controllable and observable.

Example 7.4. Consider the fuzzy inverted pendulum with the parameters setting
in the following table (Table 2). Therefore, we get the following fuzzy state-space

System Parameters Values
M (kg) 1.096
m (kg) 0.109
b (Nm/s) 0.1
l (m) 0.25
I (kg.m.m) 0.0034

Table 2. List of System Parameters

equation cart-inverted pendulum:
˙̃x
¨̃x
˙̃
ϕ
¨̃
ϕ

 =


0 1 0 0
0 −0.1818 2.6727 0
0 0 0 1
0 −0.4545 31.1818 0



x̃
˙̃x

ϕ̃
˙̃
ϕ

+


0

0.18182
0

4.5455

 ũ,

ỹ =

[
x̃

ϕ̃

]
=

[
1 0 0 0
0 0 1 0

]
x̃
˙̃x

ϕ̃
˙̃
ϕ

+

[
0
0

]
ũ.
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Matrices P and P−1 are obtained as follow:

P =


1 0.0154 −0.990 0.0147
0 −0.0863 0.1414 0.0820
0 0.1750 0.0021 0.1762
0 −0.9807 0.0003 0.9808

 , P−1 =


1 7.0007 0 −0.6001
0 −0.0426 2.8468 −0.5080
0 7.0705 0.0866 −0.6064
0 −0.0405 2.8464 0.5115

 .

Now, we define:

S =



1 0.0154 0 0.0147 0 0 0.99 0
0 0 0.1414 0.0820 0 0.0863 0 0
0 0.1750 0.0021 0.1762 0 0 0 0
0 0 0.0003 0.9808 0 0.9807 0 0
0 0 0.99 0 1 0.0154 0 0.0147
0 0.0863 0 0 0 0 0.1414 0.0820
0 0 0 0 0 0.1750 0.0021 0.1762
0 0.9807 0 0 0 0 0.0003 0.9808


,

C′ =


1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

 , B′ =



0 0
0.18182 0

0 0
4.5554 0

0 0
0 0.18182
0 0
0 0.4.5455



S′ =



1 7.0007 0 0 0 0 0 0.6001
0 0 2.8468 0 0 0.0426 0 0.5080
0 7.0705 0.0866 0 0 0 0 0.6064
0 0 2.8464 0.5115 0 0.0405 0 0
0 0 0 0.6001 1 7.0007 0 0
0 0.0426 0 0.5080 0 0 2.8468 0 0
0 0 0 0.6064 0 7.0705 0.0866 0
0 0.0405 0 0 0 0 2.8464 0.5115


.

Consequently,

S′B′ =



1.2729 2.7278
0 2.3169

1.2856 2.7564
2.3250 0.0074
2.7278 1.2729
2.3169 0
2.7564 1.2856
0.0074 2.3250



C ′S =


1 0.0154 0 0.0147 0 0 0.99 0
0 0.1750 0.0021 0.1726 0 0 0 0
0 0 0.99 0 1 0.0154 0 0.0147
0 0 0 0 0 0.1750 0.0021 0.1726

 .
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As one can check,

F =


1.2729

0
1.2856
2.3250

 , G =


2.7278
2.3169
2.7564
0.0074

 ,

H =

[
1 0.0154 0 0.0147
0 0.1750 0.0021 0.1726

]
, I =

[
0 0 0.99 0
0 0 0 0

]
.

And, finally we get,

F −G =


−1.4549
−2.3169
−1.3708
2.3176

 , H − I =

[
1 0.0154 −0.99 0.0147
0 0.1750 0.0021 0.1726

]
.

As a result, none of the rows of the matrix F −G or P−1B and none of the columns
of the matrix H − I or CP are not zero, so the system is both the controllable and
the observable.

Example 7.5. Consider the fuzzy inverted pendulum with the parameters setting
in the following table (Table 3). Therefore, we get the following fuzzy state-space

System Parameters Values
M (kg) 2.081
m (kg) 0.54
b (Nm/s) 0.15
l (m) 0.37
I (kg.m.m) 0.01

Table 3. List of System Parameters

equation cart-inverted pendulum:
˙̃x
¨̃x
˙̃
ϕ
¨̃
ϕ

 =


0 1 0 0
0 −0.078 35.95 0
0 0 0 1
0 −0.17 12.752 0



x̃
˙̃x

ϕ̃
˙̃
ϕ

+


0

0.47
0

1.11

 ũ,

ỹ =

[
x̃

ϕ̃

]
=

[
1 0 0 0
0 0 1 0

]
x̃
˙̃x

ϕ̃
˙̃
ϕ

+

[
0
0

]
ũ.

Matrices P and P−1 are obtained as follow:

P =


1 0.1005 0.9968 0.1043
0 −0.6492 0.0797 0.6581
0 0.1154 −0.0003 0.1168
0 −0.745 0.000 0.7365

 , P−1 =


1 −12.5038 0 11.031
0 −0.0177 4.2844 −0.6634
0 12.5475 −0.8857 −11.0712
0 −0.0183 4.3341 0.6871

 .
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Now, we define:

S =



1 0.1005 0.9968 0.1043 0 0 0 0
0 0 0.0797 0.6581 0 0.6492 0 0
0 0.1154 0 0.1168 0 0 0.0003 0
0 0 0.000 0.7365 0 0.745 0 0
0 0 0 0 1 0.1005 0.9968 0.1043
0 0.6492 0 0 0 0 0.0797 0.6581
0 0 0.0003 0 0 0.1154 0 0.1168
0 0.745 0 0 0 0 0.000 0.7365


,

C′ =


1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

 , B′ =



0 0
0.47 0
0 0

1.11 0
0 0
0 0.47
0 0
0 1.11



S′ =



1 0 0 11.031 0 12.5038 0 0
0 0 4.28448 0 0 0.0177 0 0.6634
0 12.5475 0 0 0 0 0.8857 11.0712
0 0 4.3341 0.6871 0 0.0183 0 0
0 12.5038 0 0 1 0 0 11.031
0 0.0177 0 0.6634 0 0 4.28448 0
0 0 0.8857 11.0712 0 12.5475 0 0
0 0.0183 0 0 0 0 4.3341 0.6871


.

Consequently,

S′B′ =



12.2444 5.8768
0 0.7447

0.8973 12.2890
0.7627 0.0086
5.8768 12.2444
0.7447 0
12.2890 0.8973
0.0086 0.7627



C′S =


1 0.1005 0.9968 0.1043 0 0 0 0
0 0.1154 0 0.1168 0 0 0.0003 0
0 0 0 0 1 0.1005 0.9968 0.1043
0 0 0.0003 0 0 0.1154 0 0.1168

 .

As one can check,

F =


12.2444

0
0.8973
0.7627

 , G =


5.8768
0.7447
12.2890
0.0086

 ,

H =

[
1 0.1005 0.9968 0.1043
0 0.1154 0 0.1168

]
, I =

[
0 0 0 0
0 0 0.0003 0

]
.
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And, finally we get,

F −G =


6.3676
−0.7447
−11.3917
0.7541

 , H − I =

[
1 0.1005 0.9968 0.1043
0 0.1154 −0.0003 0.1168

]
.

As a result, none of the rows of the matrix F −G or P−1B and none of the columns
of the matrix H − I or CP are not zero, so the system is both the controllable and
the observable.

Example 7.6. Consider the fuzzy inverted pendulum with the parameters setting
in the following table (Table 4). Therefore, we get the following fuzzy state-space

System Parameters Values
M (kg) 2000
m (kg) 850
b (Nm/s) 140
l (m) 20
I (kg.m.m) 80

Table 4. List of System Parameters

equation cart-inverted pendulum:


˙̃x
¨̃x
˙̃
ϕ
¨̃
ϕ

 =


0 1 0 0
0 −0.07 0.00002 0
0 0 0 1
0 −0.003 0.000003 0



x̃
˙̃x

ϕ̃
˙̃
ϕ

+


0

0.00005
0

0.00003

 ũ,

ỹ =

[
x̃

ϕ̃

]
=

[
1 0 0 0
0 0 1 0

]
x̃
˙̃x

ϕ̃
˙̃
ϕ

+

[
0
0

]
ũ.

Matrices P and P−1 are obtained as follow:

P =


1 −0.9966 0.1963 0.1870
0 0.0698 −0.0003 0.0003
0 −0.0427 −0.9805 0.9824
0 0.0030 0.0014 0.0014

 , P−1 =


1 20 0 −133.3333
0 14.3263 −0.0041 0.0585
0 −15.2449 −0.5077 348.3072
0 −14.5936 0.5110 347.6683

 .
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Now, we define:

S =



1 0 0.1963 0.1870 0 0.9966 0 0
0 0.0698 0 0.0003 0 0 0.0003 0
0 0 0 0.9824 0 0.0427 0.9805 0
0 0.0030 0.0014 0.0014 0 0 0 0
0 0.9966 0 0 1 0 0.1963 0.1870
0 0 0.0003 0 0 0.0698 0 0.0003
0 0.0427 0.9805 0 0 0 0 0.9824
0 0 0 0 0 0.0030 0.0014 0.0014


,

C′ =


1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

 , B′ =



0 0
0.00005 0

0 0
0.00003 0

0 0
0 0.00005
0 0
0 0.00003



S′ =



1 20 0 0 0 0 0 −133.3333
0 14.3263 0 0.0585 0 0 0.0041 0
0 0 0 348.3072 0 15.2449 0.5077 0
0 0 0.5110 347.6683 0 14.5936 0 0
0 0 0 133.3333 1 20 0 0
0 0 0.0041 0 0 14.3263 0 0.0585
0 15.2449 0.5077 0 0 0 0 348.3072
0 14.5936 0 0 0 0 0.5110 347.6683


.

Consequently,

S′B′ =



0.0010 0.0040
0.0007 0
0.0104 0.0008
0.0104 0.0007
0.0040 0.0010

0 0.0007
0.0008 0.0104
0.0007 0.0104



C′S =


1.0000 0 0.1963 0.1870 0 0.9966 0 0

0 0 0 0.9824 0 0.0427 0.9805 0
0 0.9966 0 0 1.0000 0 0.1963 0.1870
0 0.0427 0.9805 0 0 0 0 0.9824

 .

As one can check,

F =


0.0010
0.0007
0.0104
0.0104

 , G =


0.0040

0
0.0008
0.0007

 ,

H =

[
1 0 0.1963 0.1870
0 0 0 0.9824

]
, I =

[
0 0.9966 0 0
0 0.0427 0.9805 0

]
.
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And, finally we get,

F −G =


−0.003
0.0007
0.0096
0.0097

 , H − I =

[
1 −0.9966 0.1963 0.1870
0 −0.0427 −0.9805 0.9824

]
.

As a result, none of the rows of the matrix F −G or P−1B and none of the columns
of the matrix H − I or CP are not zero, so the system is both the controllable and
the observable.

8. Conclusions

In this paper, we used operations on fuzzy numbers and solve two fuzzy system,
that the first system had fuzzy variable and the second system was fully fuzzy. In the
both systems we changed them to the crisp system then examined the controllability
and the observability of the system. All simulation results that are presented as
support to the theories in this work have been for a continuous, linear time invariant
systems. The proposed theory also holds for time variant systems which still lack
simulation evidences. Therefore, simulation results that support the theory for such
systems would be particularly interesting. Also, the simulation results shows the
applicability and the effectiveness of the method. Finally, the work is in progress
to extend the method to investigate the controllability and the observability of the
time-variant systems.

References

[1] B. Bede, Mathematics of Fuzzy Sets and Fuzzy Logic, Springer, Berlin, 2013.

[2] M. Biglarbegian, A. Sadeghian and W. Melek, On the accessibility/ controllability of fuzzy
control systems, Information Science, 202(2012), 58-72.

[3] Z. Cai and S. Tang, Controllability and robustness of T-fuzzy control systems under direc-
tional disturbance, Fuzzy Sets and Systems, 115(2000), 279-285.

[4] Z. Ding and A. Kandel, On the controllability of fuzzy dynamical systems (I), Journal of
Fuzzy Mathematics, 8(1)(2000), 203-214.

[5] Z. Ding and A. Kandel, On the controllability of fuzzy dynamical systems (II), Journal of

Fuzzy Mathematics, 8(2)(2000), 295-306.
[6] Z. Ding, M. Ma and A. Kandel, On the observability of fuzzy dynamical control systems (I),

Fuzzy Sets and Systems, 111(2)(2000), 225-236.
[7] S. S. Farinwata and G. Vachtsevanos, Survey on the controllability of fuzzy logic systems,

Proceedings of 32th IEEE Conference on Decision and Control, 1749-1750, 1993.
[8] Y. Feng and L. Hua, On the quasi-controllability of continuous-time dynamic fuzzy control

systems, Chaos, Solitons and Fractals, 30(1)(2006), 177-188.
[9] M. Friedman, Ma Ming and A. Kandel, Fuzzy linear systems, Fuzzy Sets and Systems,

96(1998), 201-209.
[10] W. I. Gabr, A new approach for automatic control modelling, analysis and design in fully

fuzzy environment, Ain Shams Engineering Journal, 6(2015), 835-850.
[11] M. M. Gupta, Controllability of fuzzy control systems, IEEE Transactions on Systems, Man,

and Cybernetics, 16(1985), 576-582.
[12] A. Kumar, J. Kaur and P. Singh, A new method for solving fully fuzzy linear programming

problems, Applied Mathematics and Computation, 35(2011), 817-823.



On controllability and observability of fuzzy control systems 71

[13] A. Mansoori, S. Effati and M. Eshaghnezhad, A neural network to solve quadratic program-

ming problems with fuzzy parameters, Fuzzy Optimization and Decision Making, online, DOI:
10.1007/s10700-016-9261-9, 2016.

[14] M. S. N. Murty and G. Suresh Kumar, On Controllability and Observability of Fuzzy Dy-
namical Matrix Lyapunov Systems, Advances in Fuzzy Systems, 8(1)(2008), 1-16.

[15] K. Ogata, Modern Control Engineering, Fourth ed., Prentice Hall, New Jersey, 2002.
[16] L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy

arithmetic, Fuzzy Sets and Systems 161(11)(2010), 1564-1584.
[17] C. Tetiana and Z. Alexander, Application of the return method to the steering of nonlinear

systems, in: Krzysztof Kozlowski (Ed.), Robot Motion and Control 2009, Lecture Notes in
Control and Information Sciences, vol. 396, Springer, Berlin/Heidelberg, 83-91, 2009.

[18] L. -X. Wang, A Course in Fuzzy Systems and Control, Prentice Hall PTR, 1997.

Roya Mastiani, Department of Applied Mathematics, Ferdowsi University of Mash-
had, Mashhad, Iran

E-mail address: roya mastiani@yahoo.com

Sohrab Effati∗, Department of Applied Mathematics, Ferdowsi University of Mash-

had, Mashhad, Iran and The Center of Excellence on Soft Computing and Intelligent
Information Processing (SCIIP), Ferdowsi University of Mashhad, Mashhad, Iran

E-mail address: s-effati@um.ac.ir

∗Corresponding Author


