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LK-INTERIOR SYSTEMS AS SYSTEMS OF “ALMOST OPEN”
L-SETS

T. FUNIOKOVA

Abstract. We study interior operators and interior structures in a fuzzy set-

ting. We investigate systems of “almost open” fuzzy sets and the relationships
to fuzzy interior operators and fuzzy interior systems.

1. Introduction

Interior and closure operators on ordinary sets belong to fundamental mathemat-
ical structures with a number of applications, both in mathematics (e.g. topology,
logic) and other areas (e.g. data mining, knowledge representation, deductive rea-
soning). In fuzzy set theory, both general interior operators, which operate with
fuzzy sets (so called fuzzy interior operators) and several particular interior opera-
tors have been studied, e.g. operators in fuzzy topology, formal concept formation
operators in formal concept analysis and operators induces by binary fuzzy rela-
tions, see e.g. [1, 2, 3, 4, 5, 6, 13, 14].

Recall that an ordinary (crisp) interior operator on X is a mapping I : 2X → 2X

satisfying the following conditions: (I1) I(A) ⊆ A, (I2) if A ⊆ B then I(A) ⊆ I(B),
and (I3) I(A) = I(I(A)), for any A,B ∈ 2X . An ordinary (crisp) closure operator on
X is a mapping C : 2X → 2X satisfying the following conditions: (C1) A ⊆ C(A),
(C2) if A ⊆ B then C(A) ⊆ C(B), and (C3) C(A) = C(C(A)), for any A,B ∈ 2X .
It is a well known fact that given an interior operator I and a closure operator
C, putting CI(A) = I(A) and IC(A) = C(A), CI is a closure operator and IC is
an interior operator. Moreover, the mappings thus defined are bijective. That is,
having developed the theory of interior operators, one can automatically obtain
the theory of closure operators. Then we can easily transfer true statements about
interior operators to corresponding true statements about closure operators and
vice versa. As an easy observation shows, this is possible due to the law of double
negation (which says that for each set A we have A = A with B denoting the
complement of B) which is true in ordinary set theory. In general however, the law
of double negation does not hold in fuzzy set theory. This means that the easy one–
to–one relation between closure and interior operators is not applicable in fuzzy set
theory, and therefore fuzzy interior operators and fuzzy interior systems have to be
studied separately from fuzzy closure operators and fuzzy closure systems.
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In earlier studies, monotony for fuzzy interior operators meant just (I2) with A
and B being fuzzy sets and A ⊆ B meaning that A(x) ≤ B(x) for each element
x of the universe set. As shown e.g. in [2], several fuzzy interior operators satisfy
stronger conditions of monotony which enable us to tell more about the interior
operator. For instance, one can obtain generalizations of theorems from the bivalent
case for which the above weaker monotony is not sufficient.

A natural idea is to consider the property “to be closed (w.r.t. a given fuzzy
closure operator C)” resp. “to be open (w.r.t. a given fuzzy interior operator I)”
a graded property. In [5] the author studied the so called LK-closure systems as
systems of “almost closed” L-sets. (An L-set A can be considered to be “almost
closed w.r.t. C” iff “A almost equals C(A)”, and then fuzzy closure systems can be
defined as systems of “almost closed” fuzzy sets).

Naturally, we may ask if analogous statements hold for LK-interior systems.
There are several papers dealing with the correspondence between closure and in-
terior concepts, so it worthwhile to solve this problem as well and because of the
the missing one-to-one correspondence between fuzzy closure and interior operators
this has to be studied separately and that is what this paper aims to do.

Here an L-set A can be considered to be “almost open w.r.t. I” iff “A almost
equals I(A)”, and the question is whether fuzzy interior systems can be defined as
systems of “almost open” fuzzy sets.

2. Preliminaries

Complete residuated lattices, first introduced in the 1930s in ring theory, were
defined in the context of fuzzy logic by Goguen [7, 8]. Various logical calculi were
investigated using residuated lattices or particular types of residuated lattices. Re-
call that a (complete) residuated lattice is an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 such
that 〈L,∧,∨, 0, 1〉 is a (complete) lattice with the least element 0 and the greatest
element 1, 〈L,⊗, 1〉 is a commutative monoid (i.e. ⊗ is a commutative and asso-
ciative binary operation on L satisfying a⊗ 1 = a), and ⊗, → form an adjoint pair,
i.e. a⊗ b ≤ c if and only if a ≤ b → c is valid for each a, b, c ∈ L. In the following, L
denotes an arbitrary complete residuated lattice (with L being the universe set of
L). All properties of complete residuated lattices used in the sequel are well-known
and can be found e.g. in [11]. Note that particular types of residuated lattices
(distinguishable by identities) include Boolean algebras, Heyting algebras, algebras
of Girard’s linear logic, MV-algebras, Gödel algebras, product algebras, and more
generally, BL-algebras (see [5, 10, 12]).

We recall that the most studied and applied residuated lattices are those defined
on the real unit interval [0, 1] or on some subchain. It can be shown (see e.g. [11])
that L = 〈[0, 1], min, max,⊗,→, 0, 1〉 is a complete residuated lattice if and only
if ⊗ is a left-continuous t-norm and → is defined by a → b = max{c | a⊗ c ≤
b}. A t-norm is a binary operation on [0, 1] which is associative, commutative,
monotone, and has 1 as its neutral element, hence, capturing the basic properties
of conjunction. A t-norm is called left-continuous if, as a real function, it is left-
continuous in both arguments. Most commonly used t-norms are continuous. The
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basic three of these are  Lukasiewicz t-norm ( given by a⊗ b = max(a + b − 1, 0)
with the corresponding residuum a → b = min(1− a + b, 1)), minimum (also called
Gödel) t-norm (a⊗ b = min(a, b), a → b = 1 if a ≤ b and = b else), and product
t-norm (a⊗ b = a ·b, a → b = 1 if a ≤ b and = b/a else). A special case of the latter
algebras is the Boolean algebra 2 of classical logic with the support 2 = {0, 1}.

A fuzzy set with truth degrees from a complete residuated lattice L (also simply
an L-set) in a universe set X is any mapping A : X → L, A(x) ∈ L being interpreted
as the truth value of “x belongs to A”.

For L-sets A and B in X, we define E(A,B) =
∧

x∈X(A(x) ↔ B(x)) (degree of
equality of A and B) and S (A,B) =

∧
x∈X(A(x) → B(x)) (degree of subsethood

of A in B). Note that ↔ is defined by a ↔ b = (a → b) ∧ (b → a). Clearly,
E(A,B) = S (A,B) ∧ S (B,A). Furthermore, we write A ⊆ B (A is a subset of B)
if S (A,B) = 1, i.e. for each x ∈ X, A(x) ≤ B(x), A = B iff E(A,B) = 1, and
A 6= B iff E(A,B) < 1. A ⊂ B means A ⊆ B and A 6= B. It is easy to see that if
A1 ⊆ A2, then S (A2, B) ≤ S (A1, B) for any A1, A2, B ∈ LX . The set of all L-sets
in X will be denoted by LX . Note that the operations of L induce corresponding
operations on LX . For example, we have union

⋃
on LX induced by the supremum∨

of L by (
⋃

i∈I Ai)(x) =
∨

i∈I Ai(x), etc.
A nonempty subset K ⊆ L is called a ≤-filter if for every a, b ∈ L such that

a ≤ b we have b ∈ K whenever a ∈ K. Then a ≤-filter K is a filter if a, b,∈ K
implies a⊗ b ∈ K. In the following, we denote by K an arbitrary ≤-filter in L, and
by X we denote some fixed nonempty set.

Recall that an LK-interior operator (fuzzy interior operator) on X is a mapping
I : LX → LX satisfying: (FI1): I(A) ⊆ A, (FI2): S(A1, A2) ≤ S(I(A1), I(A2))
whenever S(A1, A2) ∈ K, and (FI3): I(A) = I(I(A)) for every A, A1, A2 ∈ LX . A
system S = {Ai ∈ LX | i ∈ I} is called closed under SK-unions iff for each A ∈ LX

we have
⋃

i∈I,S(Ai,A)∈K S (Ai, A)⊗Ai ∈ S, where

(
⋃

i∈I,S(Ai,A)∈K

S (Ai, A)⊗Ai)(x) =
∨

i∈I,S(Ai,A)∈K

S (Ai, A)⊗Ai(x)

for each x ∈ X. A system closed under SK-unions is called an LK-interior system.
Loosely speaking, S is closed under SK-unions iff for each fuzzy set A in X, the
union of all Ai ∈ S which are almost included in A, belongs to S.

Given an LK-interior operator I, and an LK-interior system S, we put SI =
{I(A) |A ∈ LX}, and define IS : LX → LX , by IS(A)(x) =

∨
i∈I,S(Ai,A)∈K(S (Ai, A)

⊗Ai(x)) for any A ∈ LX . Then SI is an LK-interior system, and if K i a filter then
IS is an LK-interior operator. Moreover we have the following Theorem (see [2]):

Proposition 2.1. Let I be an LK-interior operator on X, S be an LK-interior
system on X and K be a filter in L. Then SI is an LK-interior system, IS is an
LK-interiors operator on X, and we have I = ISI and S = SIS , i.e. the mappings
I → SI and S → IS are mutually inverse.

Remark 2.2. From the proof of Proposition 2.1 (see [2]) one may verify that
I = ISI holds even if K is just a ≤-filter.
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3. LK-interior Systems as Systems of “Almost Open” L-sets

Definition 3.1. An L-system M ∈ LLX

is called an LK-interior L-system in X if
for every A,B ∈ LX we have

M(
⋃

Ai∈LX ,S(Ai,A)∈K

M(Ai)⊗S(Ai, A)⊗Ai) = 1,
(1)

M(A)⊗S(A,B)⊗S(B,A) ≤ M(B) whenever S(A,B) ∈ K. (2)

Remark 3.2. (i) The L-set
⋃

Ai∈LX ,S(Ai,A)∈K M(Ai)⊗S(Ai, A)⊗Ai in X is de-
fined by

(
⋃

Ai∈LX ,S(Ai,A)∈K

M(Ai)⊗S(Ai, A)⊗Ai)(x) =

=
∨

Ai∈LX ,S(Ai,A)∈K

M(Ai)⊗S(Ai, A)⊗Ai(x).

(ii) An LK-interior L-system is therefore an L-set of L-sets in X. We interpret
M(A) as the degree to which A ∈ LX is open. Condition (2) is naturally interpreted
as the requirement that an L-set that is both a subset and a superset of an ”almost
open” L-set is itself ”almost open”.

Example 3.3. Let L be a residuated lattice where L = {0, 0.5, 1} with  Lukasiewicz
structure. Take X = {x1, x2}, and define M by M({0/x1, 0/x2}) =
M({0.5/x1, 1/x2}) = 1, M({1/x1, 1/x2}) = 0.5, and = 0 otherwise. An easy in-
spection shows that M is an L{1}-interior L-system in X. Now take K = {0.5, 1},
we have

M(
⋃

Ai∈LX ,S(Ai,{0.5/x1,0.5/x2})∈K

M(Ai)⊗S(Ai, {0.5/x1, 0.5/x2})⊗Ai) =

M({0/x1, 0.5/x2, }) = 0, i.e. M is not an L{0.5,1}-interior L-system in X.

In the following we shall investigate the relationship between LK-interior L-
systems, LK-interior operators, and LK-interior systems. To this end we define the
following mappings:

For an LK-interior operator I in X and an LK-interior system S in X we define
L-sets MI and MS in LX by

MI(A) = E(A, I(A)), (3)

MS(A) = E(A, IS(A)). (4)
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Hence we have MI(A) = S (A, I(A)) and MS(A) = S (A, IS(A)).
For an LK-interior L-system M in X we define a mapping IM : LX → LX and

a set SM ⊆ LX by

(IM (A))(x) =
∨

Ai∈LX ,S(Ai,A)∈K

M(Ai)⊗S (Ai, A)⊗Ai(x)
(5)

SM = {A ∈ LX | M(A) = 1}. (6)

Lemma 3.4. For an LK-interior operator I in X we have IMI = ISI .

Proof. Take any A ∈ LX , x ∈ X. We have to show (IMI(A))(x) = (ISI(A))(x).
“≥”:

(IMI(A))(x) =
∨

Ai∈LX ,S(Ai,A)∈K

MI(Ai)⊗S (Ai, A)⊗Ai(x) ≥

≥
∨

Ai∈LX ,S(Ai,A)∈K,MI(Ai)=1

MI(Ai)⊗S (Ai, A)⊗Ai(x) =

=
∨

Ai∈LX ,S(Ai,A)∈K,Ai=I(Ai)

S (Ai, A)⊗Ai(x) = (ISI(A))(x).

“≤”: By definitions, the inequality holds iff

MI(Aj)⊗S (Aj , A)⊗Aj(x) ≤ ISI(x)

for any j such that S (Aj , A) ∈ K. Since K is a ≤-filter in L, S (Aj , A) ∈ K and
S (Aj , A) ≤ S (I(Aj), A) imply S (I(Aj), A) ∈ K. Therefore

ISI(x) =
∨

Ai∈LX ,S(Ai,A)∈K,Ai=I(Ai)

S (Ai, A)⊗Ai(x) ≥

≥ S (I(Aj), A)⊗ I(Aj)(x).

Hence it suffices to show that

S (I(Aj), A)⊗ I(Aj)(x) ≥ MI(Aj)⊗S (Aj , A)⊗Aj(x),

. Indeed,

MI(Aj)⊗S (Aj , A)⊗Aj(x) = S (Aj , I(Aj))⊗S (Aj , A)⊗Aj(x) ≤

≤ I(Aj)(x)⊗S (Aj , A) ≤ I(Aj)(x)⊗S (I(Aj), A),

. However, Aj(x)⊗S (Aj , I(Aj)) = Aj(x)⊗
∧

y∈X(Aj(y) → I(Aj)(y)) ≤
≤ Aj(x)⊗(Aj(x) → I(Aj)(x)) ≤ I(Aj)(x), and the claim follows. �

Lemma 3.5. For any LK-interior operator I in X, MI is an LK-interior L-system
in X.
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Proof. We show MI satisfies (1) and (2).
(1): We have to show that for any A ∈ LX we have

MI(
⋃

Ai∈LX ,S(Ai,A)∈K

MI(Ai)⊗S(Ai, A)⊗Ai) = 1

i.e. MI(IMI(A)) = 1, i.e. IMI(A) = I(IMI(A)). The last equality follows from the
idempotency of I by observing that IMI = ISI = I (Lemma 3.4 and Remark 2.2).

(2): We have to show that MI(A)⊗S (A,B)⊗S (B,A) ≤ MI(B), whenever
S (A,B) ∈ K, i.e.

S (A, I(A))⊗S (A,B)⊗S (B,A) ≤ S (B, I(B))

which holds iff for each x ∈ X we have

B(x)⊗S (A, I(A))⊗S (A,B)⊗S (B,A) ≤ I(B)(x).

The last inequality is true because

B(x)⊗S (A, I(A))⊗S (A,B)⊗S (B,A) ≤
≤ B(x)⊗S (B,A)⊗S (A, I(A))⊗S (I(A), I(B)) ≤ I(B)(x).

�

Lemma 3.6. Let K be a filter in L. For any LK-interior L-system M in X, IM

is an LK-interior operator in X.

Proof. We verify (FI1)–(FI3)
(FI1): IM (A) ⊆ A holds iff M(Ai)⊗S (Ai, A)⊗Ai(x) ≤ A(x) for any x ∈ X,

and i such that S (Ai, A) ∈ K which is true because

M(Ai)⊗S (Ai, A)⊗Ai(x) ≤ Ai(x)⊗S (Ai, A) ≤ A(x).

(FI2): Let S (A,B) ∈ K. S (A,B) ≤ S (IM (A), IM (B)) is true iff for each x ∈ X
we have S (A,B)⊗ IM (A)(x) ≤ IM (B)(x) iff for any Aj ∈ LX such that S (Aj , A) ∈
K we have

S (A,B)⊗M(Aj)⊗S (Aj , A)⊗Aj(x) ≤ IM (B)(x),
but because S (Aj , A) ∈ K,S (A,B) ∈ K yield S (Aj , B) ∈ K (S (Aj , A)⊗S (A,B) ≤
S (Aj , B), and K is a filter) we have

S (A,B)⊗M(Aj)⊗S (Aj , A)⊗Aj(x) ≤ M(Aj)⊗S (Aj , B)⊗Aj(x) ≤

≤
∨

Ai∈LX ,S(Ai,B)∈K

M(Ai)⊗S (Ai, B)⊗Ai(x) = IM (B).

(FI3): It suffices to prove IM (A) ⊆ IM (IM (A)).

IM (IM (A)) =
∨

Ai∈LX ,S(Ai,IM (A))∈K

M(Ai)⊗S (Ai, IM (A))⊗Ai(x) ≥

≥ M(IM (A))⊗S (IM (A), IM (A))⊗ IM (A)(x) = 1⊗ IM (A)(x).
�

The relationship between LK-interior operators, LK-interior systems, and LK-
interior L-systems is the subject of the following theorems.
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Figure 1. Commuting Diagram of Corollary 3.9

Theorem 3.7. Let I be an LK-interior operator in X, M be an LK-interior L-
system, K be a filter in L. Then MI is an LK-interior L-system in X, IM is an
LK-interior operator in X, and I = IMI and M = MIM

, i.e. the mappings I → MI

and M → IM are mutually inverse.

Proof. By Lemmas 3.5 and 3.6 it remains to verify I = IMI and M = MIM
. By

Lemma 3.4 and Proposition 2.1 IMI = ISI = I. Since MIM
(A) = S (A, IM (A)), it

remains to prove M(A) = S (A, IM (A)):
On the one hand, M(A) ≤ S (A, IM (A)) iff for each x ∈ X we have

M(A)⊗A(x) ≤ IM (A)(x), i.e.

M(A)⊗A(x) = M(A)⊗S (A,A)⊗A(x) ≤

≤
∨

Ai∈LX ,S(Ai,A)∈K

M(Ai)⊗S (Ai, A)⊗Ai(x) = IM (A)(x).

On the other hand,

S (A, IM (A)) = M(IM (A))⊗S (A, IM (A))⊗S (IM (A), A) ≤ M(A),

by (2). �

Theorem 3.8. Let S be an LK-interior system in X, M be an LK-interior L-
system, K be a filter in L. Then MS is an LK-interior L-system in X, SM is
an LK-interior system in X, and S = SMS and M = MSM

, i.e. the mappings
S → MS and M → SM are mutually inverse.
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Proof. By definition MS = MIS . Therefore, by Lemma 3.5, MS is an LK-interior
system. To see that SM is an LK-interior system it suffices to show that SM = SIM

(by Proposition 2.1 and by Lemma 3.6), i.e.

{A ∈ LX | M(A) = 1} = {A ∈ LX | A = IM (A)}.

Now, M(A) = 1 implies

IM (A)(x) =
∨

Ai∈LX ,S(Ai,A)∈K

M(Ai)⊗S (Ai, A)⊗Ai(x) ≥

≥ M(A)⊗S (A,A)⊗A(x) = A(x)
i.e. A = IM (A). On the other hand, A = IM (A) implies (using (1) 1 = M(IM (A)) =
M(A).

We show that S = SMS : We have A ∈ S iff A = IS(A) iff MS(A) = 1 iff
A ∈ SMS . It remains to Show that M(A) = MSM

(A): We have IM = ISIM
(see

Proposition 2.1 ) and (by the above observation) SIM
= SM . Therefore, IM = ISM

.
Using M(A) = S (A, IM (A)) (see the end of the proof of Theorem 3.7), we conclude
M(A) = S (A, IM (A)) = S (A, ISM

(A)) = MSM
(A) completing the proof. �

Corollary 3.9. Under the above notation, the diagram in Figure 1 commutes.

Proof. Each oriented path in the diagram in Figure 1 defines a mapping (the one
composed of the mappings represented by the arrows). The assertion says that any
two mappings corresponding to oriented paths with common starting and final node
are equal. The coro;ary follows from the definitions, Proposition 2.1, Theorems 3.7,
and 3.8, and the proof of Theorem 3.8. �
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[3] R. Bělohlávek, Fuzzy closure operators, J. Math. Anal. Appl., 262(2001), 473-489.

[4] R. Bělohlávek, Fuzzy closure operators II, Soft Computing, 7(1)(2002), 53-64.
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