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FUZZY LOGISTIC REGRESSION BASED ON LEAST SQUARE

APPROACH AND TRAPEZOIDAL MEMBERSHIP FUNCTION

S. MUSTAFA, S. ASGHAR AND M. HANIF

Abstract. Logistic regression is a non-linear modification of the linear regres-

sion. The purpose of the logistic regression analysis is to measure the effects of

multiple explanatory variables which can be continuous and response variable
is categorical. In real life situations sometimes we deal with the information

that is vague in nature and where each and every case has not been explained

precisely. In this regard, we have used the concept of possiblistic odds and
fuzzy approach. Fuzzy logic deals with linguistic uncertainties and extracts

valuable information from linguistic terms. In our study, we have developed

fuzzy possiblistic logistic model with trapezoidal membership function and
fuzzy possiblistic logistic model is a tool that help us to deal with imprecise

observations. Comparison of the fuzzy logistic regression model with classical

logistic regression has been done by goodness of fit criteria on real life example.

1. Introduction

The regression analysis is widely used for the purpose of forecasting, predictions
and making inferences. Regression analysis is a statistical process that studies the
relationship among variables. It measures the strength of the relationship between
an explained variable and one or more explanatory variables. More specifically,
the regression tells how the particular value of explaining variable changes due to
changes in the explanatory variables. There are two main types of regression anal-
ysis, i.e. simple regression and multiple regressions [7]. In the simple regression,
one independent variable is used to predict the dependent variable while in multiple
regressions; two or more independent variables are used to predict the dependent
variable. Regression helps to establish a mathematical relationship between vari-
ables where both the explained and the explanatory variables are of continuous
type. This relationship is usually expressed in terms of a straight line i.e. by simple
linear regression. Binary Logistics is used when the nature of explained variable
is binary. It has the boundaries between zero and one and estimates the proba-
bility of occurring of an event. Here our interest is in the fact that whether the
probability is one (the event occurs) or zero (event does not occur). There are
different types of logistic regression model and the model is chosen according to the
type of variable. When the categories of the dependent variable are ordinals (e.g.
important, more important and most important) then we use the ordinal logistic
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regression. The ordinal regression model is based on a proportional odds model
which converts the ordinal scale into binary cutoff points. When there are more
than two categories of nominal dependent variables, we use the multinomial logistic
regression. Maximum likelihood method (MLE) [2] is the method of estimating the
unknown parameters which gives the maximum of a known likelihood distribution.
Wald test [6] is used to estimate the unknown population parameter on the basis
of a sample statistic and it is used in the multivariate case. It helps in testing the
significance of particular predictors in a statistical model. The Wald statistic is the
square of t-statistic and gives equivalent results for a single parameter. Likelihood
Ratio Test is an alternative to Wald test. It is the ratio of likelihoods of data under
two hypotheses, null hypothesis and alternative hypothesis. This test compares the
fit of two models, where one model (null) is nested within another (alternative)
model. The Likelihood ratio statistic is calculated as D=-2 ln (likelihood for null
model)— (likelihood for alternative model). The D statistic is compared to the
critical value table to conclude whether to accept null model or reject, D statistic
asymptotically follows the chi square distribution. The Goodness of Fit tells how
well a model fits a data, in other words, it tells whether a given data represents
a particular distribution or not. In logistic regression models Hosmer Lemeshow
(HL) [8]test is used for determining the goodness of fit. This test tells whether the
rates of observed events in the model population match with the expected rates
or not. The odds ratio is an important concept in the logistic regression, it is a
measure of association which compares the odds of an event happens or not. In
logistic regression the dependent variable is a log of odds ratios (logit). Usually we
deal with precise data but when we deal with imprecise data then we move towards
fuzzy regression. Fuzzy logic [8] is an approach that recognizes more than simple
true or false values and it deals with the ”degree of truthiness” where the true value
may lie between completely true or completely false. The truth value of fuzzy logic
[13] variables ranges between zero and one and includes different stages of truth in
between. For example when two fat women are compared then the result may be
”over-weight” instead of fat or smart. Fuzzy theory performs better to deal with
these uncertainties and impreciseness. Fuzzy techniques have been used in image
understanding applications such as detection of edges, feature extraction, classi-
fication and clustering. Fuzzy logic is introduced by Zadeh in 1960’s [3]and it is
concerned with the possibilistic theory that deals with the vagueness. When we are
concerned with the linguistic variables for example slow/fast, hot/cold, tall/short
etc. then their degrees of truth is managed by using fuzzy logic [4]. Fuzzy reason-
ing is based on the theory of fuzzy sets and it includes theories from logic to pure
and applied Mathematics like graph theory, topology and optimization. Fuzzy set
[9] theory is commonly used in fuzzy models. Linguistic are mostly used in sci-
entific researches as compared to mathematical terminology. The linguistic terms
are irreducibly vague. Fuzzy logic addresses the linguistic ambiguities and it is an
approach of reasoning. Boolean or binary logic is the special case of fuzzy logic.
It is applicable in many fields medicine,engineering and economics as discussed in
[2] and [4] . Fuzzy logic studies the possibility approach and it deals with degrees
of truth instead of true or false. It is concerned with the uncertainty data. The
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information which is compiled from real world problems has different forms of am-
biguity. Fuzzy logic [4] is a helping instrument to consider these ambiguities. In
our research, we have developed fuzzy logistic regression diagnostic model and esti-
mated the values of parameters. Here the input variables are independent variables
and output variables are dependent variables. Before this, researchers have been
explored an application of fuzzy Logistic regression model in different fields, see
[13], [10], and [11].

2. Preliminaries

In this study, we have developed fuzzy logistic regression model using least square
trapezoidal membership function. Before this, the vagueness of logistic model has
been studied by triangular and least square method in [13].The aim of this study is
to develop a possiblistic fuzzy logistic regression and to present the logistic regres-
sion diagnostic model with trapezoidal fuzzy membership technique. A comparison
has been done between the results obtained by classical and fuzzy logistic regression
techniques and definite methodology has been formulated for fuzzy logistic regres-
sion model. The concept of possiblistic odd has been used and it is defined as in
[13]
Possiblistics Odds Let µi, i = 1, 2, ...n represents the possibility of achievement
. Then the ratio µi

1−µi
is reflected as the possiblistic odds of the ith situation that

notices opportunity of achievement as compared to the possibilistic odd of not
achievement.

2.1. Fuzzy Logistic Regression Model. Let the independent and dependent
variables consists of the number of observations (xi0, xi1, ....xin, Yi) and 1 < i < m
and Yi is a fuzzy observation detecting the status of each case relative to binary
response categories i.e. it takes two labels: approximately 1 or approximately 0
instead of 1 or 0. In our study, we consider the fuzzy logistic model with input
variables are fuzzy and output variable is categorical. The proposed fuzzy logistic
regression model is given below

W = ln(
µi

1− µi
) = b0 + b1x1i + .....+ b5x5i + ε (1)

where in (1),W is fuzzy estimated response variable, b0, b1, ..., b5 exposed fuzzy
association. We suppose b5 = (al, au, am, ar) in equation (1) then the predictable
outputs become trapezoidal fuzzy numbers and al, au, am, ar represents left, right
middle, left middle and right points.

Fuzzy Least Square Technique

Fuzzy least square approach (which is proposed by Diamond [5] and Celmins [3])
is an addition of ordinary least square technique. This technique encompasses of
goodness of fit and entails a distance between the fuzzy values estimated by the
model and ambiguous data is really observed. Mathematically it is expressed as

d(A1, A2) = [

∫ 1

0

f(α)d2(A1, A2)αdα]
1
2 , (2)

where in (2), A1, A2 are arbitrary fuzzy numbers.d2(trapezoidal distance)is rep-
resented as [1]
d2(A1, A2) = (a1l − a2l)2 + 0.5(a1u − a2u)2 + 0.5 ∗ (a1m − a2m)2 + (a1r − a2r)2
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A1 = [a1l, a1u, a1m, a1r],

A2 = [a2l, a2u, a2m, a2r],

where A1 and A2 are α− cuts, ail denotes left values and shown air right values,
whereas aim and aiu are the left and right middle points, i = 1, 2. The function
f(α) represents as weighting function.

2.2. Estimation of Model Parameters. In order to obtain an optimal solution
of equation (1) by the least square method, the sum of squared errors between w
and W should be minimized. By using distance equation in equation (2), the sum
of squared errors is,

SSE =

m∑
i=1

[d(w,W )]2. (3)

In equation(3)

d(w,W ) = [

∫ 1

0

f(α)d2(w,W )dα]
1
2 ,

w represents the possibilistic odds which is reflected as observed outputs and W
represents the estimated output value. Now using the (3) on w and W we have

W = [f(al, au, am, ar],
where

f(al) = al0 + ...+ alnxin, (4)

f(au) = au0 + ...+ aunxin, (5)

f(am) = am0 + ...+ amnxin, (6)

f(ar) = ar0 + ...+ arnxin, (7)

The above equations (4), (5), (6) and (7) expresses the function contains left
values, left middle values, right middle values and right values. Now we expressed
W in terms of Trapezoidal fuzzy number.

(W ) = [f(au)− f(al)α+ f(al), f(ar)− αf(ar)− f(am)],

Similarly the observed value (w) is based on

w = [k1, k2],
where

k1 = [f(au)− f(al)α+ f(al)],

k2 = [f(ar)− α[f(ar)− f(am)],

which gives lower and upper bound of W.

(w) = [ln(
k1

1− k1
), ln(

k2
1− k2

)],

where (w) gives observed values. Using the distance formula we have.

d2[w,W ] = [ln( k1
1−k1 )− {f(au)− f(al)}α+ f(al)]2 + [ln( k2

1−k2 )− f(ar) + α{f(ar)− f(am)}]2 (8)
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Then by putting equation (8) in equation (3), we get

SSE =
∑m
i=1

∫ 1

0
f(α)[ln( k1

1−k1 )− {f(au)− f(al)}α+ f(al)]2 + [ln( k2
1−k2 )− f(ar) + α{f(ar)− f(am)}]2

(9)

The minimization process includes setting the partial derivatives of SSE with
respect to al, au, am, ar we get these equations.

m∑
i=1

(

∫ 1

0

2α(α− 1)xij [ln(
k1

1− k1
)− {f(au)− f(al)}α+ f(al)]dα)

(10)

m∑
i=1

(

∫ 1

0

2α(α− 1)xij [ln(
k1

1− k1
)− {f(au)− f(al)}α+ f(al)]dα) (11)

m∑
i=1

(

∫ 1

0

2αxij [− ln(
k2

1− k2
) + f(ar)− α{f(ar)− f(am)}dα) (12)

m∑
i=1

(

∫ 1

0

2α(α− 1)xij [ln(
k2

1− k2
)− f(ar) + α{f(ar)− f(am)}dα) (13)

The simplified form of equations (10),(11), (12) and (13) are written in matrix
form

AL = Z,L = [al0...aln]T , Z = [

m∑
i=1

zixi0...

m∑
i=1

zixin]T (14)

AU = K,U = [au0...aun]T ,K = [

m∑
i=1

kixi0...

m∑
i=1

kixin]T (15)

AM = P,M = [am0...amn]T , P = [

m∑
i=1

pixi0...

m∑
i=1

pixin]T (16)

AR = Q,R = [ar0...arn]T , Q = [

m∑
i=1

qixi0...

m∑
i=1

rixin]T (17)

Here A = XTX where X =

1... x1n
... ...
1... xnn


If rank(X)=n+1 , then matrix A is positive definite and inverse of A is com-

putable. Then maximization problem has a unique solution. is positive definite
and inverse of A is computable. Then maximization problem has a unique solution.

L = A−1Z (18)

U = A−1K (19)

M = A−1P (20)

R = A−1Q (21)
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L, U, M and R represents left, left middle, right middle and right values, Z, K, P
and Q provides the results of integral computation, gives us unique solution where

L = A−1Z ≥ 0

U = A−1K ≥ 0

M = A−1P ≥ 0

R = A−1Q ≥ 0

3. Numerical Computation

The efficiency of the model has been checked by considering the teeth decaying
disease and data has been collected from the Raazi Hospital of teeth decaying
disease. The primary data was collected by using questionnaire. . The model
has been formulated in which dependent variable is teeth decaying, explanatory
variables age, family history, gender, sweetness effect and chewable stuff effect.
The standard points of the given variables are shown in table 1 after discussion of
the doctor. In this research we have collected data from fifty patients, we examine
this model. The optimal model is given as below

W = ln[( µ
1−µ )] = β0 + β1age+ β2familyhistory + β3gender + β4sweetnesseffect+ β5chewableeffect+ ε,

where ε represents error term. We have to estimate β0, ..., β5 by using equations
(19) to (21).

A = XTX =


50 28 50 27 38 29
28 28 25 14 24 18
50 25 3 3 3 3
4 4 4 4 7 7
6 7 6 7 7 7
9 9 4 4 3 3


L = A−1Z = (1.3250, 0.0003, 0.0004, 0.0001, 0.0002, 0.0001)

U = A−1K = (0.0884, 0.1800, 1.0566, 1.0261, 1.5880, 0.5476)

M = A−1P = (1.7902, 0.7246, 1.0638, 0.0684, 2.7819, 0.4685)

R = A−1Q = (4.3232, 0.3039, 0.0306, 0.2396, 3.8747, 0.5561)

The optimal model based on our observations is

W = ln( µi

1−µi
) = (1.3250, 0.0884, 1.7902, 4.3232) + (0.0003, 0.1800, 0.7246, 0.3039)age+

(0.0004, 1.05661, 1.0638, 0.0306)familyhistory + (0.0001, 1.0261, 0.0684, 0.2396)gender+

(0.0002, 1.5880, 2.7819, 3.8747)sweetnesseffect+ (0.0001, 0.5476, 0.4685, 0.5561)chewablestuff + ε

Consider second patient equation

W = ln( µi

1−µi
) = (1.3250, 0.0884, 1.7902, 4.3232) + (0.0003, 0.1800, 0.7246, 0.3039)1

(0.0004, 1.05661, 1.0638, 0.0306)0 + (0.0001, 1.0261, 0.0684, 0.2396)1+

(0.0002, 1.5880, 2.7819, 3.8747)1 + (0.0001, 0.5476, 0.4685, 0.5561)0

W = (1.3256, 2.8825, 5.3651, 6.2084)
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The observed possibilistic odds of this case is as follows. By using extension
principle we get,

(
µ2

1− µ2
)(x) = exp(W2(x)) =

{1− 1.3256−lnx
2.8825 0.25 ≤ lnx ≤ 1.3256
1 1.3256 ≤ lnx ≤ 5

1− lnx−5.3651
6.2084 5 ≤ lnx ≤ 11.57

The standard points of above model are defined as follows.

Standard Points Age Family History Sugar Intake Chewable Stuff Fuzzy Interval
(Binary Logistic) (teaspoon)

High 17-28(1) 1-above 1 1
2

− 2 ≤ 5 0.70

Very High 28 or above(0) 0-0.9 3 and above ≥ 8 0.75

Table 1. Standard Points

The graphical representation of observed possibilistic odds as follows.

Figure 1. Observed Possibilistic Odds

Interpretation of Observed Possibilistic Odds
This figure depicts the observed possibilities of the relationship between explained
variable and explanatory variables [0.25, 1.325, 5.0, 11.57] represents left, left mid-
dle, right middle and right values of trapezoidal numbers and also denotes age,
family history, sweetness effect and chewable stuff effect. In comparison from stan-
dard points which are given in table (1.0), the patient has very high chances of
teeth decaying disease due to sweetness effect and chewable stuff effect and high
chances of family history. Estimated possibility odd of teeth decaying disease for
this case is given below,

µ2(x) = W2(ln
x

1− x
) =

{1− 1.3256−ln x
1−x

3.3722 0.20 ≤ x ≤ 0.57
1 0.57 ≤ x ≤ 0.83

1− ln x
1−x−5.3651

6.2084 0.83 ≤ x ≤ 0.92
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The Graphical representation of estimated possibilistic odds as follows.

Figure 2. Estimated Possibilistic Odds

Interpretation of Estimated Possibilistic Odds
This picture shows the association of the estimated possibilities between dependent
variable and independent variables. [0.20, 0.57, 0.83, 0.92] denotes left, left middle,
right middle and right values of trapezoidal numbers and also represents age, family
history, sweetness effect, chewable stuff effect. In comparison from standard points
it has very high chances of teeth decaying due to family history, sweetness effect
and chewable effect. It defines the range of the possibilistic odds of having teeth
decaying disease is 0.57 and 0.83. On the above pattern , we have studied 50
patient cases and find left, left middle, right middle and right values of trapezoidal
numbers. It shows the association of the estimated possibilities between dependent
variable (teeth decaying) and independent variables (age, family history, gender,
sweetness effect and chewable stuff effect). They provide us precise information
reduces vagueness in the responses and values falls between fuzzy limits.

3.1. Discussion on Fuzzy Logistic Regression and Classical Regression.
In the current paper the detail of fuzzy logistic regression model and a numerical
example of its application in teeth decaying problem has been discussed. The
proposed model is applied when number of observations are vague and the values are
reported in the interval [0,1], represents the possibility of having the disease. The
fuzzy coefficients in our proposed model has been estimated by using possibilistic
approach As concerned to Logistic regression it is suitable when the expected result
is dualistic (happening/not happening, success/failure, healthy/unhealthy) and it
has only two outcomes that is 0 and 1. In our proposed model, the degree of
possibility levels are measured between 0 and 1 and this estimated the possibility
levels of each coefficient of having disease in the interval [0,1]. The proposed model
can also be used in other research area with similar situations.
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Observed t d Percentage Correct
Step1 t-d 0 0 1 72.0

1 18 7 72.0
Overall Percentage 7 18 72.0

Table 2. Classification Table

Mean Capability Index
To evaluate model goodness of fit, we use mean capability index, see [13] and [10].

MCI =
1

n

n∑
i=1

Iui(w,W ) =
1

50
(36.5)

MCI =
1

n

n∑
i=1

Iui(w,W ) = 0.73

MCI has lowest value is zero and largest value is one, so a value close to one directs
good model fitting. n represents number of observations, 1

n

∑n
i=1 Iui(w,W ) this

represents the summation of observed and estimated values.

Interpretation of Classification Table 2 It shows us the goodness of fit of
classical logistic regression. Classification table 2 from output result summarizes
the observed group and the predicted group classification. The overall correctly
specified group percentage is 72

4. Conclusion

We have proposed a fuzzy logistic regression model with trapezoidal fuzzy num-
bers based on a breakdown of the association among a fuzzy explained variable and
explanatory crisp variables into four components: two for middle and left middle
and two for right and left right of variable. As comparison to logistic regression , it
has been observed that ideal assumptions of logistic regression like other statistical
methods may not hold in practice and does not cover the vagueness of observation.
The proposed fuzzy logistic regression model is based on fuzzy least square method
and establishes the relation between crisp inputs and fuzzy outputs. Also the es-
timated coefficients are fuzzy in nature and it determines the possibility levels of
each factor of having teeth decaying problem. Mean capability index has 0.73 value
of goodness of

fit for fuzzy logistic regression whereas correctly specified validation for classical
logistic regression is 0.72 .The results of our proposed fuzzy logistic regression model
has shown improvement in precision. In the current paper, the details of a fuzzy
logistic regression, its advantages and application are explored by giving a real
life example. The proposed model is applied when the observations of the binary
response variable are vague (i.e. instead of 0 or 1, they are reported as a value in
[0,1] representing the possibility of having the person teeth decaying disease) but
the observations of the explanatory variables are precise. We have compared the
proposed model with the classical logistic model in which it is difficult to guess on
the basis of vague information that a person having a disease or not. This imprecise
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information can easily be handled using our proposed model. The proposed model
can also be used in other research areas with similar situations.
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