• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Iranian Journal of Fuzzy Systems
Articles in Press
Current Issue
Journal Archive
Volume Volume 15 (2018)
Issue Issue 6
Issue Issue 7
Issue Issue 5
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 14 (2017)
Volume Volume 13 (2016)
Volume Volume 12 (2015)
Volume Volume 11 (2014)
Volume Volume 10 (2013)
Volume Volume 9 (2012)
Volume Volume 8 (2011)
Volume Volume 7 (2010)
Volume Volume 6 (2009)
Volume Volume 5 (2008)
Volume Volume 4 (2007)
Volume Volume 3 (2006)
Volume Volume 2 (2005)
Volume Volume 1 (2004)
Xiu, Z., Pang, B. (2018). BASE AXIOMS AND SUBBASE AXIOMS IN M-FUZZIFYING CONVEX SPACES. Iranian Journal of Fuzzy Systems, 15(2), 75-87. doi: 10.22111/ijfs.2018.3760
Zhen-Yu Xiu; Bin Pang. "BASE AXIOMS AND SUBBASE AXIOMS IN M-FUZZIFYING CONVEX SPACES". Iranian Journal of Fuzzy Systems, 15, 2, 2018, 75-87. doi: 10.22111/ijfs.2018.3760
Xiu, Z., Pang, B. (2018). 'BASE AXIOMS AND SUBBASE AXIOMS IN M-FUZZIFYING CONVEX SPACES', Iranian Journal of Fuzzy Systems, 15(2), pp. 75-87. doi: 10.22111/ijfs.2018.3760
Xiu, Z., Pang, B. BASE AXIOMS AND SUBBASE AXIOMS IN M-FUZZIFYING CONVEX SPACES. Iranian Journal of Fuzzy Systems, 2018; 15(2): 75-87. doi: 10.22111/ijfs.2018.3760

BASE AXIOMS AND SUBBASE AXIOMS IN M-FUZZIFYING CONVEX SPACES

Article 6, Volume 15, Issue 2, March and April 2018, Page 75-87  XML PDF (347 K)
Document Type: Research Paper
DOI: 10.22111/ijfs.2018.3760
Authors
Zhen-Yu Xiu1; Bin Pang 2
1College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, P.R.China
2School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P.R.China
Abstract
Based on a completely distributive lattice $M$, base axioms and subbase axioms are introduced in $M$-fuzzifying convex spaces. It is shown that a mapping $\mathscr{B}$ (resp. $\varphi$) with the base axioms (resp. subbase axioms) can induce a unique $M$-fuzzifying convex structure with  $\mathscr{B}$ (resp. $\varphi$) as its base (resp. subbase). As applications, it is proved that bases and subbases can be used to characterize CP mappings and CC mappings between $M$-fuzzifying convex spaces.
Keywords
$M$-fuzzifying convex structure; Base axiom; Subbase axiom; CP mapping; CC mapping
References
[1] P. Dwinger, Characterizations of the complete homomorphic images of a completely distribu-
tive complete lattice I, Indagationes Mathematicae (Proceedings), 85 (1982), 403{414.
[2] W. Kubis, Abstract Convex Structures in Topology and Set Theory, PhD thesis, University
of Silesia Katowice, 1999.
[3] M. Lassak, On metric B-convexity for which diameters of any set and its hull are equal, Bull.
Acad. Polon. Sci., 25 (1977), 969{975.
[4] Y. Maruyama, Lattice-valued fuzzy convex geometry, RIMS Kokyuroku, 164 (2009), 22{37.
[5] J. V. Mill, Supercompactness and Wallman Spaces, Math. Centre Tracts 85, Amsterdam
1977.
[6] B. Pang and F. G. Shi, Subcategories of the category of L-convex spaces, Fuzzy Sets Syst.,
313 (2017), 61{74.
[7] B. Pang and Y. Zhao, Characterizations of L-convex spaces, Iranian Journal of Fuzzy Sys-
tems, 13(4) (2016), 51{61.
[8] M. V. Rosa, On fuzzy topology fuzzy convexity spaces and fuzzy local convexity, Fuzzy Sets
Syst., 62 (1994), 97{100.
[9] M. V. Rosa, A Study of Fuzzy Convexity with Special Reference to Separation Properties,
PhD thesis, Cochin University of Science and Technology, 1994.
[10] F. G. Shi and E. Q. Li, The restricted hull operator of M-fuzzifying convex structures, J.
Intell. Fuzzy Syst., 30 (2015), 409{421.
[11] F. G. Shi and Z. Y. Xiu, A new approach to the fuzzi cation of convex structures, J. Appl.
Math., vol. 2014, Article ID 249183.
[12] V. P. Soltan, d-convexity in graphs, Soviet Math. Dokl., 28 (1983), 419{421.
[13] M. L. J. Van de Vel, Theory of Convex Structures, North-Holland, Amsterdam 1993.
[14] J. C. Varlet, Remarks on distributive lattices, Bull. Acad. Polon. Sci., 23 (1975), 1143{1147.
[15] X. Y. Wu and S. Z. Bai, On M-fuzzifying JHC convex structures and M-fuzzifying Peano
interval spaces, J. Intell. Fuzzy Syst., 30 (2016), 2447{2458.
[16] Z. Y. Xiu and F. G. Shi, M-fuzzifying interval spaces, Iranian Journal of Fuzzy Systems,
14(1) (2017), 145{162.
[17] M. S. Ying, A new approach for fuzzy topology (I), Fuzzy Sets Syst., 39 (1991), 303{321.
[18] Y. L. Yue and J. M. Fang, Bases and subbases in I-fuzzy topologiacl spaces, J. Math. Res.
Exposition, 26(1) (2006), 89{95.
[19] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 238{353.

Statistics
Article View: 185
PDF Download: 153
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.