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RESOLUTION OF NONLINEAR OPTIMIZATION PROBLEMS

SUBJECT TO BIPOLAR MAX-MIN FUZZY RELATION

EQUATION CONSTRAINTS USING GENETIC ALGORITHM

H. DANA MAZRAEH AND A. ABBASI MOLAI

Abstract. This paper studies the nonlinear optimization problems subject to

bipolar max-min fuzzy relation equation constraints. The feasible solution set
of the problems is non-convex, in a general case. Therefore, conventional non-

linear optimization methods cannot be ideal for resolution of such problems.

Hence, a Genetic Algorithm (GA) is proposed to find their optimal solution.
This algorithm uses the structure of the feasible domain of the problems and

lower and upper bound of the feasible solution set to choose the initial popula-

tion. The GA employs two different crossover operations: 1- N-points crossover
and 2- Arithmetic crossover. We run the GA with two crossover operations for

some test problems and compare their results and performance to each other.
Also, their results are compared with the results of other authors’ works.

1. Introduction

Fuzzy Relation Equations (FREs) and their associated problems have been in-
vestigated by many researchers from two viewpoints of theory and application. The
system of FREs has firstly been studied by Sanchez in 1976 [27]. They have many
applications in different areas such as fuzzy decision-making, fuzzy optimization,
medical diagnosis, chemical engineering, image compression and reconstruction,
and et cetera [25, 26, 30].
The consistency of the system can be verified in polynomial time and it is well-
known that its solution set can be determined by a maximum solution and a finite
number of minimal solutions. Various methods have been proposed to solve the
system. An algebraic approach was designed to find all its minimal solutions in
[15]. The matrix pattern was used to compute the minimal solutions [20]. The al-
gebraic approach was improved by a universal algorithm in [24]. Also, an iterative
algorithm and an algorithm based on the concept of a fuzzy determinant were pre-
sented in [1, 2], respectively. Recently, Lichun and Boxing’s approach was improved
by Yeh [35]. A comprehensive review of the resolution methods of FREs has been
presented in [3] and references therein.
The linear optimization problem provided to the max-min FRE system was firstly
proposed by Fang and Li [4]. They decomposed the problem into two subproblems
and employed the branch-and -bound method for its resolution. Some researchers
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then improved their methods by providing an upper bound for its optimal objec-
tive function value and some necessary conditions [34, 33]. They then proposed
some simplification procedures to reduce the computation based on the facts. The
problem with different compositions has been studied in [12, 16, 17, 29, 31, 32, 36].
The nonlinear optimization problem provided to FRE constraints has been stud-
ied by some researchers[19, 18, 13, 7]. Since the feasible domain of the problem is
non-convex, in a general case, we cannot use the conventional approaches to solve
the problems. Lu and Fang [19] firstly studied the nonlinear optimization problem
subject to the max- min FRE constraints. They proposed a Genetic Algorithm
(GA) for its resolution using the structure of the solution set of FREs. The indi-
viduals of the initial population are chosen from its feasible domain and are kept
within it during the mutation and crossover operations. Khorram and Hassanzade
[13] studied the nonlinear optimization problem with the max-average composition
operator. They presented a modified GA to solve it and some of its components
were changed for its resolution. Also, the problem subject to the max-product FRE
constraints was investigated by Hassanzade et al [7]. They designed a GA to find an
approximate optimal solution for convex or non-convex solution set and evaluated
its performance by some test problems.
The applied FREs in the optimization problems are increasing in each of the vari-
ables. In some applications, the variables should have bipolar characters. For
example, we can see the roles of these variables to formulate the application prob-
lem in the product public awareness in revenue management [6]. The used operator
is the max-min composition operator. Ferson et al. [6] firstly considered the system
of bipolar max-min FREs. They investigated the solution set of each of its equa-
tions. With regard to this point, the solution set of the system was determined with
the max-min composition. This set can completely be determined by a finite set of
maximal and minimal solution pairs. The linear optimization problem subject to
the system was then investigated. An algorithm was designed to find its optimal
solutions based on the structure of its feasible domain. Checking the consistency
of the system of bipolar max-min FREs is NP-complete [14]. Hence, finding the
optimal solutions of the linear programming problem with Bipolar Fuzzy Relation
Equation (BFRE) constraints will be NP-hard. This problem with max-Lukasiewiz
t-norm was studied by Li and Liu [14]. They solved the problem using the inte-
ger programming techniques. Up to now, this optimization problem provided to
BFREs has only been studied in [6, 14] with the linear objective function. On the
other hand, we cannot formulate all of the real-world problems by linear objective
functions. Hence, it is necessary to study the nonlinear optimization problems with
the max-min BFRE constraints. Up to now, these kinds of problems have not been
studied and the proposed GAs in [7, 13, 19] can’t be applied to solve the nonlinear
optimization problems subject to the max-min bipolar FRE constraints. There-
fore, we are motivated to study the nonlinear optimization problems provided to
the max-min BFRE constraints. The feasible domain of the proposed problem in
this paper is completely different to the problems given in [7, 13, 19]. The second
motivation is to design a new genetic algorithm to solve the problems. First of
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all, we investigate to the structure of its feasible domain with the max-min com-
position. Its consistency is briefly considered. The lower and upper bound of its
feasible solution set are then determined. We use this point to generate the initial
population. Some properties of its feasible domain are investigated. The study
of difference between the given GAs in [7, 13, 19] and the proposed algorithm is
the third motivation. The proposed GA applies two different crossovers: N-points
crossover and Arithmetic crossover. The GA with two crossovers are run for some
test problems and compared their results and performance to each other.
The proposed algorithm can also be applied to solve the presented problem in
[7, 13, 19] since the proposed problem in this paper is a generalization of the given
problems in [7, 13, 19]. The comparison between the proposed GAs with two
crossovers in this paper is the forth motivation. The comparison between the GAs
in [7, 13, 19] and the proposed GA in this paper is the fifth motivation. This
proposed algorithm can be applied for resolution of any constrained optimization
problem with fuzzy relation equations or inequalities or bipolar fuzzy relation equa-
tions or inequalities. Since the inequality constraints can be converted to equality
constraints [6], the proposed GA in this paper can also be applied to solve the
nonlinear optimization problems subject to bipolar fuzzy relation inequality con-
straints. The given GAs in [7, 13, 19] can only be applied to solve the nonlinear
optimization problems subject to fuzzy relation equation constraints not fuzzy rela-
tion inequality. Moreover, the fuzzy relation equation or inequality is special cases
of bipolar fuzzy relation equation or inequality. Therefore, the proposed GA in this
paper is more general from the presented GAs in [7, 13, 19]. It can be applied to
solve the given problems in [7, 13, 19]. But the proposed algorithm in [7, 13, 19]
cannot be applied to solve the proposed problem in this paper. Therefore, the pro-
posed GA in this paper is more general from the presented GA in [7, 13, 19]. The
studied problem in [18] is completely deferent from the proposed problem in this
paper. The problem in [18] is a multi-objective optimization problem subject to
fuzzy relation equation constraints that intend to find the Pareto optimal solutions
but in this paper, we will find the optimal solutions. The aims of two problems are
completely deferent.

The structure of this paper is as follows. Section 2 is divided to two subsec-
tions. The formulation of the problem is introduced in the first subsection and the
structure of feasible domain is studied in the second subsection. The algorithm
for initializing with a population and the fitness function are designed in Section
3. The steps of the proposed GA are presented in Section 4. Some test problems
are given to show its performance. Also, we compare the GA with two crossover
operations to each other. Their results are compared to the real optimal solution
of the test problems in Section 5. The analysis of the results is discussed in Section
6. The results are compared to the results of the other authors’ work in Section 6.
Conclusions are presented in Section 7.
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2. The Nonlinear Optimization Problem with BFRE Constraints

This section is divided to two subsections. The first subsection introduces the
optimization problem and the second subsection investigates the structure of its
feasible domain.

2.1. Formulation of the Problem. Let A+ = (a+ij) and A− = (a−ij) are two m×n
fuzzy relation matrices with a+ij , a

−
ij ∈ [0, 1]. Also, assume that b = (b1, . . . , bm)T ∈

[0, 1]m. Then the nonlinear optimization problem subject to the constraints of
bipolar max-min fuzzy relation equations is formulated as follows:

Min(or Max) f(x),

s.t. A+ ◦ x ∨A− ◦ ¬x = b,

x ∈ [0, 1]n, (1)

where the function of f : Rn → R is a nonlinear function. The notation of ”◦” is the
max-min composition operator. Moreover, the vector of x = (x1, . . . , xn)T ∈ [0, 1]n

is the vector of decision variables to be determined and ¬x = (1 − x1, . . . , 1 −
xn)T . The notation of ”

∨
” is the maximum operation. With regard to the above

notations, the part of constraints of problem (1) is a system of the bipolar max-min
FREs as follows:

A+ ◦ x ∨A− ◦ ¬x = b, where x ∈ [0, 1]n, (2)

which its solutions are vectors as x = (x1, . . . , xn)T , x ∈ [0, 1]n, such that

max
j∈J

max {min(a+ij , xj),min(a−ij , (1− xj))} = bi, ∀i ∈ I, (3)

where the index sets I and J are as I = {1, 2, ...,m} and J = {1, 2, ..., n}, respec-
tively.
A system of bipolar max-min FREs is called consistent if its solution set, i.e.,
X(A+, A−, b), is not empty. Otherwise, it is inconsistent. We now investigate the
structure of the solution set of system (2).

2.2. The Structure of the Solution Set of System (2). In this subsection,
we express some important results about system (2) of [6]. Some conditions are
firstly presented to be nonempty of the solution set of system (2). Then, the lower
and upper bound of the solution set of system (2) are reviewed in terms of some
lemmas.

Lemma 2.1. [6] Consider the ith equality constraint of (3). Then a necessary and
sufficient condition for this equation to have a solution is as follows:

bi ∈
[

max
j=1,...,n

min

(
a+ij , a

−
ij ,

1

2

)
, max
j=1,...,n

max
(
a+ij , a

−
ij

)]
.

(4)

We will now consider the general case of system (3). In this case, the feasible
domain is confronted with the existence of holes in its solution set. A necessary
condition for existence of solution is presented in the following lemma.
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Lemma 2.2. [6] A necessary and sufficient condition for existence of solution of
system (3) is as follows:

∀i ∈ I bi ∈
[

max
j=1,...,n

min

(
a+ij , a

−
ij ,

1

2

)
, max
j=1,...,n

max
(
a+ij , a

−
ij

)]
.

(5)

We remind some notations to determine the solution set of system (3) or (2)
from [6] as follows.

Remark 2.3. Let vector gi+ =
((
gi+
)
1
, . . . ,

(
gi+
)
n

)T
where its components are

computed using the following relation:(
gi+
)
j

=

{
1 if a+ij ≤ bi,
bi if a+ij > bi,

j = 1, . . . , n .

Also, let Si+ =
{
si+k = ((si+k )1, ..., (s

i+
k )n)

∣∣a+ik ≥ bi} where the components of vec-

tor si+k are computed using the following relation:

(si+k )j = biδkj , j = 1, ..., n,

where δkj is Kronecker’s delta.

Remark 2.4. Let vector gi∗ =
((
gi∗
)
1
, . . . ,

(
gi∗
)
n

)T
where its components are

computed using the following relation:(
gi∗
)
j

=

{
1 if a−ij ≤ bi,
bi if a−ij > bi,

j = 1, . . . , n ,

Now, we introduce the vector of si−k based on the vector of gi∗ as follows:

si− = gi∗ = (1− (gi∗)1, ..., 1− (gi∗)n).

Also, let Si∗ =
{
si∗k = ((si∗k )1, ..., (s

i∗
k )n)

∣∣a−ik ≥ bi} where the components of vector

si∗k are computed using the following relation:

(si∗k )j = biδkj , j = 1, ..., n.

Moreover, let Gi− = {g | ∃s ∈ Si∗, g = s}.

With regard to the above remarks, the solution set of system (3) is determined
as follows.

Lemma 2.5. [6] The solution set of system (3) is determined by the following
relation:

D =

m⋂
i=1

[si−, gi+] ∩

( ⋃
s∈Si+

[s ∨ si−, gi+]

)
∪

 ⋃
g∈Gi−

[si−, g ∧ gi+]

 ,

where notation ∧ denotes the minimum operation.

The following corollary is a direct result of Lemma 2.5.

Corollary 2.6. [6] Let s− = sup
i=1,...,m

si− and g+ = inf
i=1,...,m

gi+. Then vectors s−

and g+ are lower and upper bound of the solution set of system 3, respectively.
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With regard to Corollary 2.6, we can obtain a lower and upper bound for the
optimal value of variable xi. The lower and upper bound are as LBi = s−i and
UBi = g+i , respectively, where s−i and g+i are the ith components of the given
vectors of s− and g+ in Corollary 2.6, respectively. We are now ready to present
the proposed genetic algorithm.

3. A proposed GA for Nonlinear Optimization Problems Subject to the
Bipolar Max-Min FRE Constraints

The GA has been developed by Holland in 1975 [9]. The GA is a heuristic search
that mimics the process of the natural evolution of genetics. GAs are routinely ap-
plied to find the solutions of the optimization problems. These algorithms usually
start from a population of randomly generated individuals and improve solutions
using two genetic operators, called crossover and mutation operators. In GAs, the
solutions for a problem are denoted as individuals. The individuals can be rep-
resented in terms of the genetics structure of chromosomes. The offsprings are
generated with regard to the process of selection and the operators of crossover and
mutation. In each generation, individuals (solutions) are selected by a fitness-based
process and some selection criteria. The fitter solutions are typically more likely to
be selected. Certain selection approaches measure their fitness and preferentially
select the best solutions. Some approaches were designed to solve the constrained
optimization problems using GAs. To do this, these methods used the penalty or
barrier functions [5, 10, 11, 28]. Several genetic operators were introduced to solve
the optimization problems with convex domain [21, 22, 23]. In this paper, we de-
sign a Genetic Algorithm for Optimization problems with Bipolar Fuzzy Relation
Constraints (GAOBFRC).
The proposed GAOBFRC is specially designed for resolution of nonlinear opti-
mization problem with bipolar fuzzy relation constraints. Its feasible domain is
non-convex in a general case and the structure of its feasible domain is completely
different to the structure of the feasible domain in [19, 18, 13, 7]. Also, the proposed
GAOBFRC uses real-value representation for individuals. We illustrate the details
of each step of the algorithm below.

3.1. Initialization. In a genetic algorithm, the evaluation usually starts from a
population of randomly generated individuals, and is an iterative process. The
initial population is randomly generated in the search space. The population in
each iteration is called a generation. This procedure works for the unconstrained
optimization problems well. In the constrained optimization problems, the genera-
tions may not be in the feasible domain. Since the proposed GA want to keep the
solutions in the feasible domain, an initialization plan is presented to initialize a
population by randomly generating the individuals inside the feasible domain. To
do this, we use Corollary 2.6. The number of solutions of the feasible domain is
usually infinite. Therefore, the solution set can be found and some solution is ran-
domly picked from it. The algorithm for initializing with a population is designed
below.
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Initialization:
Let i := 1
While i ≤ population-size do
Generate randomly x = (x1, ..., xn), xi ∈ [LBi, UBi], as a chromosome
If x is feasible then
population(i).chromosome=x
Let i:=i+1
Endif
Endwhile
We now illustrate the fitness function in the next subsection.

3.2. Fitness Function. One of the most important components of heuristic al-
gorithms is the definition of fitness function. In this study, we use the objective
function value to define the fitness function. In the maximization problem, the
fitness function value is proportional to the objective function value. Also, in the
minimization problems, it is proportional to the inverse of objective function value.
The fitness function is defined as follows.

Fitness-function(vector x as a chromosome)
If problem is maximization then
Let t1 := f(x)
else
Let t1 := 1

f(x)

Endif
Let t2 := feasible(x) ”To check the feasibility of vector x”
Return(t1− (1− t2) ∗ penalty−value+ Constant−value)
In the above procedure, we added the penalty value to the statement of (t1− (1−
t2)∗penalty−value) to shift this statement by a constant value which is equal to the
penalty value. We do this work because the returned value of procedure becomes
positive. The variable of t1 denotes the objective function value or the inverse of
objective function value. The variable of t2 is a boolean variable. If the chromosome
is feasible, then its value is one. Otherwise, its value is zero. We are now ready to
present a real-value genetic algorithm to solve the nonlinear optimization problem
subject to the system of bipolar max-min fuzzy relation equations.

4. A Real-value Genetic Algorithm for Resolution of Problem (1)

The steps of the proposed algorithm are as follows.

Step 1: Initialization.
Step 2: Evaluate each chromosome.
Step 3: Parent selection.
Step 4: Recombination.
Step 5: Mutation.
Step 6: Evaluate offspring.
Step 7: Survivor.
Step 8: Repeat Step 3 to Step 7, until predefined number of generations is

accomplished.
We now illustrate the above procedures in Steps 2-7, respectively.
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4.1. Evaluate Each Chromosome. Let i := 1
While i ≤ population-size do
Let population(i).fitness:=fitness-function(population(i).chromosome)
let i := i+ 1
Endwhile

4.2. Parent Selection. Roullete wheel:
Let i:=1
While i ≤ 2 do
Pick a random value r uniformly from [0,Sum of All Fitnesses]
Let j := 1
Let a:=population(j).fitness
While a < r do
Let j:=j+1
Let a:=a+population(j).fitness
Endwhile
Let Parent(i).chromosome:=population(j).chromosome
Let i:=i+1
Endwhile

4.3. Recombination. In this part, we apply two kinds of crossover: a. N-points
crossover and b. Arithmetic crossover.

a. N-points crossover
Pick two random integer values n1 and n2 from [1,n]
If n1 > n2 then
Exchange(n1,n2)
Endif
For i := 1 to n1 do
Let offspring.chromosome(i):=Parent(1).chromosome(i)
Endfor
For i := n1 + 1 to n2 do
Let offspring.chromosome(i):=Parent(2).chromosome(i)
Endfor
For i := n2 + 1 to n do
Let offspring.chromosome(i):=Parent(1).chromosome(i)
Endfor

b. Whole Arithmetic crossover
For i = 1 to n do
Pick a random value r uniformly from [0,1]
Let offspring.choromosome(i):=r*Parent(1).chromosome(i)+(1-r)*Parent(2). chro-
mosome(i)
Endfor

4.4. Mutation. Pick a random small value r uniformly from [−α, α], where α is a
positive small value.
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Pick an integer value i from [1, n]
Let offspring.chromosome(i):=offspring.chromosome(i)+r

4.5. Evaluate Offspring. Let offspring.fitness:=fitness-function(offspring. chro-
mosome)

4.6. Survivor. Replace offspring with the first individual in population with lower
fitness.

4.7. Termination Condition. It will continue until the predefined number of
generations is accomplished. The predefined number of generations is given by a
decision-maker. Those are often determined as 100, 200, 300, 400, 500, 600, 700, 800,
900, 1000 in the GA. The number of generations has been determined in Tables
1-10. We are ready to present some test problems to show the performance of the
proposed GA with two crossovers for resolution of Problem (1).

5. Test Problems and Numerical Results

We present two test problems from [6, 19] and three test problems that three
their objective functions have been taken from Hock and Schittkowski’s book [8].
In this part, the test problems have been solved by the proposed GA with two
crossovers: a. N-points crossover and b. Arithmetic crossover. The results show
their performance and time.

Example 5.1. [6] Consider the problem (1), where

Max f(x) = 2x1 + 6x2, A
+ =

(
0.30 0.60
0.90 0.60

)
, A− =

(
0.70 0.70
0.50 0.30

)
, and

b = (0.70, 0.60)T .

In Tables 1 and 2, the solutions of Example 5.1 and their times in each genera-
tion have been presented using the proposed GA with two crossovers:N-points and
Arithmetic.

Generations x1 x2 f(x) Execution time of
each generation (Sec-
ond)

100 0.2543 0.9400 6.1488 0.021822

200 0.2785 0.9950 6.5271 0.075823

300 0.2968 0.9976 6.5773 0.058363

400 0.2972 0.9848 6.5030 0.079144

500 0.2967 0.9998 6.5923 0.136101

600 0.2983 0.9962 6.5735 0.138805

700 0.2953 0.9975 6.5761 0.168818

800 0.2932 0.9962 6.5637 0.165860

900 0.2903 0.9994 6.5768 0.172156

1000 0.2999 0.9981 6.5884 0.176013

Table 1. The Results of the Proposed GA with N-points

Crossover on Example 5.1
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Generations x1 x2 f(x) Execution time
of each genera-
tion(Second)

100 0.2152 0.9755 6.2833 0.031202

200 0.2930 0.9948 6.5547 0.061252

300 0.2906 0.9984 6.5716 0.054502

400 0.2645 0.9911 6.4757 0.102274

500 0.2890 0.9956 6.5516 0.092436

600 0.2656 0.9952 6.5026 0.104286

700 0.2916 0.9944 6.5497 0.114739

800 0.2950 0.9882 6.5194 0.130705

900 0.2911 0.9941 6.5470 0.151142

1000 0.2993 0.9974 6.5827 0.165587

Table 2. The Results of the Proposed GA with Arithmetic

Crossover on Example 5.1
Figure 1 shows that the feasible domain of the problem in Example 5.1 is non-

convex and we cannot apply the resolution methods of convex programming prob-
lems to solve these problems. Since non-convex programming problems are NP-
hard problem, exact resolution methods for these problems have a high computa-
tional complexity. Therefore, we apply GA with N-points crossover and Arithmetic
crossover to solve the problems. Also, Figure 2 shows the performance of the pro-
posed GA with two crossovers in Example 5.1.

Figure 1. The Green Region Displays the Feasible Solution Set

for Example 5.1

Example 5.2. [8] Consider the Problem of (1), where

Min f(x) = 3000x1 + 1000x31 + 2000x2 + 666.667x32, A
+ =

0.44 0.24 0.44
0.22 0.98 0.46
0.55 0.21 0.42

 ,

A− =

0.22 0.05 0.44
0.22 0.44 0.66
0.11 0.64 0.20

 , and b = (0.44, 0.66, 0.5)T .
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Figure 2. The Performance of the Proposed GA for Example 5.1

To accelerate for finding the initialization population, we use Corollary 2.6 and
compute the lower and upper bound of each xi, for i = 1, 2, 3, as follows: g1+ =
(g1+1 , g1+2 , g1+3 )T = (1, 1, 1)T , g2+ = (g2+1 , g2+2 , g2+3 )T = (1, 0.66, 1)T , and g3+ =
(g3+1 , g3+2 , g3+3 )T

= (0.5, 1, 1)T . Now, we compute the upper bound using gi+, for i = 1, 2, 3, as
follows: g+ = inf

i=1,...,3
gi+ = (0.5, 0.66, 1)T . Similarly, using Corollary 2.6, we have:

s1− = (0, 0, 0)T , s2− = (0, 0, 0)T , and s3− = (0, 0.5, 0)T . Now, we compute the
lower bound using si−, for i = 1, 2, 3, as follows: s− = sup

i=1,...,3
si− = (0, 0.5, 0)T .

With regard to the values of vectors s− and g+, the lower and upper bound of
each xi, for i = 1, 2, 3, are as follows: x1 ∈ [0, 0.5], x2 ∈ [0.5, 0.66], and x3 ∈
[0, 1]. With regard to these values, we can find the initialization population more
quickly. In Tables 3 and 4, the solutions of Example 5.2 and their times in each
generation have been presented using the proposed GA with two crossovers:N-points
and Arithmetic.

Generations x1 x2 x3 f(x) Execution time

of each genera-
tion(Second)

100 0.002 0.500 0.160 1089.333383 12.66

200 0.002 0.500 0.187 1089.333383 16.177

300 0.001 0.500 0.178 1086.010091 19.858

400 0.001 0.500 0.057 1084.839131 17.076

500 0.000 0.500 0.288 1084.013869 19.814

600 0.000 0.500 0.324 1084.183784 20.496

700 0.000 0.500 0.125 1083.333375 27.212

800 0.000 0.500 0.113 1083.333375 25.782

900 0.000 0.500 0.027 1083.333375 26.859

1000 0.000 0.500 0.223 1083.333375 27.956

Table 3. The Results of the Proposed GA with N-points

Crossover on Example 5.2
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Generations x1 x2 x3 f(x) Execution time

of each genera-

tion(Second)

100 0.004 0.500 0.096 1094.585432 9.627

200 0.002 0.500 0.197 1087.862361 20.127

300 0.001 0.500 0.201 1086.333376 17.400

400 0.001 0.500 0.094 1086.333376 16.316

500 0.001 0.500 0.024 1086.333376 23.548

600 0.000 0.500 0.250 1083.838205 27.390

700 0.000 0.500 0.085 1083.976601 26.690

800 0.000 0.500 0.040 1083.963706 29.714

900 0.000 0.500 0.202 1083.493867 28.610

1000 0.000 0.500 0.277 1083.333375 27.43

Table 4. The Results of Proposed GA with Arithmetic

Crossover Example 5.2

Figure 3 shows that the feasible domain of the problem in Example 5.2 is non-
convex and we cannot apply the resolution methods of convex programming prob-
lems to solve these problems. Since non-convex programming problems are NP-
hard problem, exact resolution methods for these problems have a high computa-
tional complexity. Therefore, we apply GA with N-points crossover and Arithmetic
crossover to solve the problems. Also, Figure 4 shows the performance of the pro-
posed GA with two crossovers in Example 5.2.

Figure 3. The Green Region Displays the Feasible Solution
Set for Example 5.2

Example 5.3. [8] Consider the problem (1), where

Min f(x) = x1x2x3x4x5, A+ =


0.33 0.41 0.44 0.56 0.43
0.43 0.37 0.5 0.56 0.13

0.67 0.99 0.78 0.41 0.74
0.81 0.57 0.37 0.01 0.77

 ,

A− =


0.32 0.5 0.43 0.64 0.12
0.24 0.87 0.24 0.02 0.01

0.56 0.13 0.89 0.91 0.08

0.11 0.23 0.45 0.33 0.02

 , and b = (0.64, 0.69, 0.88, 0.45)T .
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Figure 4. The Performance of the Proposed GA for Example 5.2

Similar to Example 5.2, we can use Corollary 2.6 to accelerate for finding the ini-
tialization population and compute the lower and upper bound of each xi, for i =
1, 2, 3, 4, 5 as follows:
g1+ = (1, 1, 1, 1, 1)T , g2+ = (1, 1, 1, 1, 1)T , g3+ = (1, 0.88, 1, 1, 1)T , and g4+ =
(0.45, 0.45,
1, 1, 0.45)T . Now, we compute the upper bound using gi+, for i = 1, 2, 3, 4, as
follows: g+ = inf

i=1,...,4
gi+ = (0.45, 0.45, 1, 1, 0.45)T .

Similarly, using Corollary 2.6, we have: s1− = (0, 0, 0, 0, 0)T , s2− = (0, 0.31, 0, 0, 0)T ,
s3− = (0, 0, 0.12, 0.12, 0)T , and s4− = (0, 0, 0, 0, 0)T . Now, we compute the lower
bound using si−, for i = 1, 2, 3, 4, as follows: s− = sup

i=1,...,4
si− = (0, 0.31, 0.12, 0.12,

0)T . With regard to the values s− and g+, the lower and upper bound of each
xi, for i = 1, 2, 3, 4, 5, are as follows: x1 ∈ [0, 0.45], x2 ∈ [0.31, 0.45], x3 ∈ [0.12, 1],
x4 ∈ [0.12, 1], and x5 ∈ [0, 0.45]. With regard to these values, we can find the
initialization population more quickly.
In Tables 5 and 6, the solutions of Example 5.3 and their times in each genera-
tion have been presented using the proposed GA with two crossovers:N-points and
Arithmetic.

Generations x1 x2 x3 x4 x5 f(x) Execution time
of each genera-
tion(Second)

100 0.392 0.310 0.178 0.120 3.4694e-18 9.0055e-21 115.366
200 0.003 0.310 0.124 0.120 0.004 5.5354e-08 183.766
300 0.005 0.310 0.138 0.120 0.008 2.0534e-07 89.558
400 0.001 0.310 0.120 0.121 0.004 1.8005e-08 140.505
500 5.2042e-18 0.310 0.120 0.130 0.098 2.4664e-21 243.023
600 0.110 0.310 0.210 0.120 1.7347e-18 1.4907e-21 210.531
700 0.001 0.310 0.120 0.120 0.004 1.7856e-08 128.585
800 8.6736e-19 0.310 0.120 0.125 0.029 1.1696e-22 236.390
900 1.1276e-17 0.310 0.245 0.120 0.091 9.3518e-21 43.596
1000 0.036 0.310 0.154 0.120 1.2143e-17 2.5043e-21 162.71

Table 5. The Results of the Proposed GA with N-points

Crossover on Example 5.3
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Generations x1 x2 x3 x4 x5 f(x) Execution time

of each genera-

tion(Second)

100 0.249 0.310 0.120 0.160 0.020 0.000030 71.816

200 0.032 0.310 0.120 0.160 0 0 80.732

300 0.010 0.310 0.289 0.120 0 0 67.409

400 0 0.310 0.120 0.218 0.010 0 116.366

500 0 0.310 0.120 0.127 0.010 0 28.927

600 0.076 0.310 0.120 0.190 0 0 118.311

700 0 0.310 0.249 0.120 0 0 233.396

800 0 0.310 0.135 0.120 0.030 0 76.161

900 0.015 0.310 0.150 0.120 0 0 119.75

1000 0.010 0.310 0.120 0.300 0 0 101.577

Table 6. The Results of the Proposed GA with Arithmetic

Crossover on Example 5.3

Also, Figure 5 shows the performance of the proposed GA with two crossovers
in Example 5.3.

Figure 5. The performance of the proposed GA on Example 5.3.

Example 5.4. [8] Consider the problem (1), where

Max f(x) = ex1+x3−x4 + sin(x2 + x5 + x6),

A+ =


0.15 0.75 0.25 0.12 0.28 0.37
0.35 0.85 0.41 0.8 0.35 0.15
0.7 0.22 0.25 0.28 0.12 0.2
0.9 0.51 0.85 0.4 0.2 1
0.1 0.11 0.21 0.25 0.8 0.65

 ,

A− =


0.2 0.23 0.51 0.3 0.7 0.15
0.4 0.8 0.6 0.4 0.32 0.16
0.4 0.9 0.5 0.65 0.4 0.24
0.14 0.18 0.65 0.54 0.38 0.6
0.45 0.5 0.4 0.83 0.6 0.4

 , and b = (0.51, 0.6, 0.65, 0.8, 0.83)T .
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Similar to Example 5.2, we can use Corollary 2.6 to accelerate for finding the ini-
tialization population and compute the lower and upper bound of each xi, for i =
1, 2, 3, 4, 5, 6, as follows:
g1+ = (1, 0.51, 1, 1, 1, 1)T , g2+ = (1, 0.6, 1, 0.6, 1, 1)T , g3+ = (0.65, 1, 1, 1, 1, 1)T ,
g4+ = (0.8, 1, 0.8, 1, 1, 0.8)T , and g5+ = (1, 1, 1, 1, 1, 1)T . Now, we compute the up-
per bound using gi+, for i = 1, 2, 3, 4, 5, as follows: g+ = inf

i=1,...,5
gi+ = (0.65, 0.51,

0.8, 0.6, 1, 0.8)T . Similarly, using Corollary 2.6, we have: s1− = (0, 0, 0, 0, 0.49, 0)T ,
s2− = (0, 0.4, 0, 0, 0, 0)T , s3− = (0, 0.35, 0, 0, 0, 0)T , s4− = (0, 0, 0, 0, 0, 0)T , and s5−

= (0, 0, 0, 0, 0, 0)T . Now, we compute the lower bound using si−, for i = 1, 2, 3, 4, 5,
as follows: s− = sup

i=1,...,5
si− = (0, 0.4, 0, 0, 0.49, 0)T . With regard to the values of

vectors s− and g+, the lower and upper bound of each xi, for i = 1, 2, 3, 4, 5, 6, are
as follows: x1 ∈ [0, 0.65], x2 ∈ [0.4, 0.51], x3 ∈ [0, 0.8], x4 ∈ [0, 0.6], x5 ∈ [0.49, 1],
and x6 ∈ [0, 0.8]. With regard to these values, we can find the initialization popu-
lation more quickly.
In Tables 7 and 8, the solutions of Example 5.4 and their times in each genera-
tion have been presented using the proposed GA with two crossovers:N-points and
Arithmetic.

Generations x1 x2 x3 x4 x5 x6 f(x) Execution time
of each genera-
tion(Second)

100 0.638 0.409 0.366 0.017 0.659 0.800 3.638859 45.74
200 0.634 0.430 0.376 0.010 0.517 0.800 3.705168 59.089
300 0.644 0.407 0.392 0.006 0.537 0.800 3.786104 79.782
400 0.647 0.412 0.393 0.004 0.516 0.800 3.805592 61.479
500 0.646 0.412 0.400 0.005 0.501 0.800 3.821954 98.273
600 0.650 0.406 0.396 0.003 0.490 0.800 3.829890 62.017
700 0.649 0.401 0.399 0.002 0.503 0.800 3.837385 104.883
800 0.648 0.400 0.456 0.009 0.521 0.800 3.977923 73.965
900 0.650 0.400 0.474 0.000 0.505 0.800 4.068146 109.587
1000 0.650 0.400 0.489 0.000 0.491 0.800 4.116427 99.77

Table 7. The Results of the Proposed GA with N-points

Crossover on Example 5.4

Generations x1 x2 x3 x4 x5 x6 f(x) Execution time
of each genera-
tion(Second)

100 0.630 0.444 0.381 0.042 0.508 0.800 3.618935 48.745
200 0.650 0.488 0.369 0.014 0.667 0.800 3.659004 83.359
300 0.637 0.408 0.394 0.010 0.584 0.800 3.751208 48.197
400 0.650 0.431 0.378 0.002 0.573 0.800 3.764173 69.119
500 0.642 0.410 0.395 0.003 0.581 0.800 3.788971 51.572
600 0.648 0.400 0.395 0.001 0.504 0.800 3.826580 53.744
700 0.648 0.408 0.399 0.001 0.502 0.800 3.836772 77.391
800 0.650 0.405 0.400 0.002 0.502 0.800 3.842680 59.658
900 0.649 0.400 0.457 0.002 0.504 0.800 4.007348 105.60
1000 0.650 0.400 0.468 0.000 0.492 0.800 4.051394 114.512

Table 8. The Results of the Proposed GA with Arithmetic

Crossover on Example 5.4

Also, Figure 6 shows the performance of the proposed GA with two crossovers
in Example 5.4. Before Example 5.5 is presented, it is necessary to remind a point.
The constraints of studied problem in [19] is as x ◦ A = b which can be converted
as xt ◦At = bt where notation t is the transpose of matrix.
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Figure 6. The Performance of the Proposed GA on Example 5.4

This FRE can equivalently be rewritten as A+ ◦ y ∨ A− ◦ ¬y = d where A+ = At,
y = xt, A− = o, and d = bt that notation o is a zero matrix. With regard to this
point, we consider the following example.

Example 5.5. [19] Consider the problem (1), where

Max f(x) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 10(x1 − x4)4,

A+ =

0.5176 0.2278 0.8993 0.9858
0.1370 0.4585 0.6334 0.2790

0.4093 0.7399 0.0313 0.3039

 ,

A− =

0 0 0 0

0 0 0 0

0 0 0 0

 , and b = (0.7208, 0.6334, 0.4725)T .

In Tables 9 and 10, the solutions of Example 5.5 and their times in each genera-
tion have been presented using the proposed GA with two crossovers:N-points and
Arithmetic.

Generations x1 x2 x3 x4 f(x) Execution time

of each genera-
tion(Second)

100 0.3261 0.4725 0.6732 0.7208 3.211402 8676.91

200 0.2604 0.4725 0.7108 0.7208 2.775089 7560.90

300 0.2604 0.4725 0.6858 0.7208 2.622769 10332.09

400 0.0811 0.4725 0.7046 0.7208 2.592573 8100.63

500 0.1570 0.4725 0.6951 0.7208 2.273279 9360.91

600 0.1883 0.4725 0.6444 0.7208 2.068840 11412.64

700 0.1526 0.4725 0.6443 0.7208 2.035064 10944.11

800 0.1593 0.4725 0.6355 0.7208 2.003492 9504.45

900 0.1583 0.4725 0.6350 0.7208 2.001897 10296.72

1000 0.1673 0.4725 0.6334 0.7208 1.999701 9720.80

Table 9. The Results of the Proposed GA with N-points

Crossover on Example 5.5
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Generations x1 x2 x3 x4 f(x) Execution time
of each genera-
tion(Second)

100 0.3415 0.4725 0.7185 0.7208 3.676057 8316.71
200 0.3341 0.4725 0.6960 0.7208 3.433574 9720 .81
300 0.0372 0.4725 0.6489 0.7208 2.704444 9720.12
400 0.2373 0.4725 0.7022 0.7208 2.559593 8712.77
500 0.0551 0.4725 0.6564 0.7208 2.550977 9828.23
600 0.1204 0.4725 0.7046 0.7208 2.394250 8820.79
700 0.0704 0.4725 0.6461 0.7208 2.379471 11232.54
800 0.2275 0.4725 0.6454 0.7208 2.224468 10584.95
900 0.1550 0.4725 0.6346 0.7208 2.001175 9540.15
1000 0.1581 0.4725 0.6374 0.7208 2.009705 8748.96

Table 10. The Results of the Proposed GA with Arithmetic

Crossover on Example 5.5

Also, Figure 7 shows the performance of the proposed GA with two crossovers
in Example 5.5.

Figure 7. The Performance of the Proposed GA for Example 5.5

6. Discussion About the Results of the Test Problems

In this section, we discuss and analyze the obtained results from implementation
of the five test problems.
Example 5.1 is a maximization problem. As Figure 2 and Tables 1 and 2 show
the GA with N-points crossover in generations 300, 400, 500, 600, 700, 800, 900, and
1000, have produced values of objective function more than the GA with Arithmetic
crossover. Only in generations 100 and 200, the GA with Arithmetic crossover has
obtained better results. Table 11 confirms this fact. On the other hand, the results
of GA with more generations have more reliability. Overall, it is concluded that the
performance of the GA with N-points crossover is better and more exact than the
GA with Arithmetic crossover. Moreover, the following table shows that the GA
with N-points and Arithmetic crossover converge to the exact solution of the prob-
lem. The exact optimal solution of the problem is as:x̃∗(exact) = (x∗1, x

∗
2) = (0.3, 1)

with f(x∗) = 6.6 [6]. Table 12 shows the difference between the exact optimal
objective function value, i.e.,f∗(exact) = f(x∗) = 6.6 and the approximate optimal
objective function value in each generation for the GA with N-points crossover and
Arithmetic crossover, respectively.
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Example5.1 x1 x2 f̃∗ = f(x) |f∗(exact) − f̃∗|
Approximate solution resulted

from N-points crossover

0.2999 0.9981 6.5884 0.0116

Approximate solution resulted
from Arithmetic crossover

0.2993 0.9974 6.5827 0.0173

Table 11. This Table Shows the Results for Generation 1000 and

Compares the Results with Exact Optimal Solution on Example 5.1

Generations f̃∗(NP ) f̃∗(Ar) |f̃∗(exact) − f̃∗(NP )| |f̃∗(exact) − f̃∗(Ar)|
100 6.1488 6.2833 0.4512 0.3167

200 6.5271 6.5547 0.0729 0.0453

300 6.5773 6.5716 0.0227 0.0284

400 6.5030 6.4757 0.097 0.1243

500 6.5923 6.5516 0.0077 0.0484

600 6.5735 6.5026 0.0265 0.0974

700 6.5761 6.5497 0.0239 0.0503

800 6.5637 6.5194 0.0363 0.0806

900 6.5768 6.5470 0.0232 0.053

1000 6.5884 6.5827 0.0116 0.0173

Table 12. f̃∗(NP ) and f̃∗(Ar) Denote the Values of Approxi-
mate Optimal Objective Function Obtained by GA with N-points
Crossover and Arithmetic Crossover, Respectively, on Example 5.1

Example 5.2 is a minimization problem. As Figure 4 and Tables 3 and 4 show
the GA with N-points crossover in generations 100, 300, 400, 500, 700, 800, and 900
has values of objective function less than the GA with Arithmetic crossover. Only
in generation 200 and 600, the GA with Arithmetic crossover has obtained a better
result. In generation 1000, the results are the same for the GA with N-points and
Arithmetic crossover. In this test problem, the GA with N-points crossover has
obtained better results with respect to the GA with Arithmetic crossover. The
exact optimal solution of the problem is as: x̃∗(exact) = (x∗1, x

∗
2, x
∗
3) = (0, 0.5, 0.159)

or (0, 0.5, 0.007) with f̃∗(exact) = f(x∗) = 1083.333[6]. Moreover, Table 13 shows
that the GA with N-Points and Arithmetic crossover converge to the exact solution
of the problem. Tables 14 show the difference between the exact optimal objective

Example5.2 x1 x2 x3 f̃∗ = f(x) |f∗(exact) − f̃∗|
Approximate solution resulted
from N-points crossover

0 0.500 0.223 1083.333375 0

Approximate solution resulted

from Arithmetic crossover

0 0.500 0.277 1083.333375 0

Table 13. This Table Shows the Results for Generation 1000 and

Compares the Results with Exact Optimal Solution on Example 5.2

function value, i.e.,f∗(exact) = f(x∗) = 1083.3333 and the approximate optimal
objective function value in each generation for the GA with N-points crossover and
Arithmetic crossover, respectively. Example 5.3 is a minimization problem. As
Figure 5 and Tables 5 and 6 show the results of GA with N-points crossover and
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Generations f̃∗(NP ) f̃∗(Ar) |f̃∗(exact) − f̃∗(NP )| |f̃∗(exact) − f̃∗(Ar)|
100 1089.333383 1094.585432 6.000383 11.25243

200 1089.333383 1087.862361 6.000383 4.529361

300 1086.010091 1086.333376 2.677091 3.000376

400 1084.839131 1086.333376 1.506131 3.000376

500 1084.013869 1086.333376 0.680869 3.000376

600 1084.183784 1083.838205 0.850784 0.505205

700 1083.333375 1083.976601 0.000375 0.643601

800 1083.333375 1083.963706 0.000375 0.630706

900 1083.333375 1083.493867 0.000375 0.160867

1000 1083.333375 1083.333375 0.000375 0.000375

Table 14. f̃∗(NP ) and f̃∗(Ar) Denote the Values of Approximate Op-

timal Objective Function Obtained by GA with N-points Crossover and

Arithmetic Crossover, Respectively, on Example 5.2

Arithmetic crossover are approximately the same. In each generation, the GA with
N-points crossover produces the approximate optimal objective value of zero and the
GA with Arithmetic crossover produces the optimal objective value of zero except
generation 100. In this test problem, the results are the same. The exact optimal
objective function value of the problem is as: x∗ = (0.010, 0.310, 0.120, 0.300, 0)

or x∗ = (0.036, 0.310, 0.154, 0.120, 0) with f̃∗(exact) = f(x∗) = 0. In this ex-
ample, the difference between the exact optimal objective function value, i.e.,
f̃∗(exact) = f(x∗) = 0 and the approximate optimal objective function value in
each generation for the GA with N-points crossover and Arithmetic crossover are
the same approximately. Of course, the GA with Arithmetic crossover is more exact
than the GA with N-points crossover, in this example. Table 16 shows the differ-

Example5.3 x1 x2 x3 x4 x5 f̃∗ =
f(x)

|f∗(exact) − f̃∗|

Approximate
solution resulted
from N-points
crossover

0.036 0.310 0.154 0.120 1.2143e-
17

2.5043e-
21

2.5043e-21

Approximate
solution resulted
from Arithmetic
crossover

0.010 0.310 0.120 0.300 0 0 0

Table 15. This Table Shows the Results for Generation 1000 and

Compares the Results with Exact Optimal Solution on Example 5.3

ence between the exact optimal objective function value, i.e.,f∗(exact) = f(x∗) = 0
and the approximate optimal objective function value in each generation for the
GA with N-points crossover and Arithmetic crossover, respectively.
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Generations f̃∗(NP ) f̃∗(Ar) |f̃∗(exact) − f̃∗(NP )| |f̃∗(exact) − f̃∗(Ar)|
100 9.0055e-21 0.000030 9.0055e-21 0.000030

200 5.5354e-08 0 5.5354e-08 0

300 2.0534e-07 0 2.0534e-07 0

400 1.8005e-08 0 1.8005e-08 0

500 2.4664e-21 0 2.4664e-21 0

600 1.4907e-21 0 1.4907e-21 0

700 1.7856e-08 0 1.7856e-08 0

800 1.1696e-22 0 1.1696e-22 0

900 9.3518e-21 0 9.3518e-21 0

1000 2.5043e-21 0 2.5043e-21 0

Table 16. f̃∗(NP ) and f̃∗(Ar) Denote the Values of Approxi-
mate Optimal Objective Function Obtained by GA with N-points
Crossover and Arithmetic Crossover, Respectively, on Example 5.3

Example 5.4 is a maximization problem. As Figure 6 and Tables 7 and 8 show the
GA with N-points crossover in all the generations has values of objective function
more than the GA with Arithmetic crossover. In this test problem, the GA with N-
points crossover has obtained better results with respect to the GA with Arithmetic
crossover, in all the generations. In this example, we have no the exact solution.
Hence, we cannot present the table of comparison between the approximate optimal
solution and the exact optimal solution.
Example 5.5 is a minimization problem. This example is exactly the given example
in [19]. Its aim is to show that the proposed GA with two crossovers can solve the
given problems in [19]. Also, the approximate optimal objective function values
obtained by the proposed GA with two crossovers are very better than the obtained
results in [19]. In the following, a comparison among the proposed GA with two
crossovers with the GA presented in [19] has been provided.

Generations fLu−Fang

1 25.66289115677

2 24.92549240573

10 24.48538689294

13 24.44449063700

26 24.39455537353

27 24.05118705966

120 24.04365588515

383 24.03526445700

679 23.99371873073

788 23.98606775704

1079 23.98359498123

Table 17. fLu−Fang Denotes the Values of Approximate

Optimal Objective Function in [19] on Example 5.5
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Generations fNP fAr

100 3.211402 3.676057

200 2.775089 3.433574

300 2.622769 2.704444

400 2.592573 2.559593

500 2.273279 2.550977

600 2.068840 2.394250

700 2.035064 2.379471

800 2.003492 2.224468

900 2.001897 2.001175

1000 1.999701 2.009705

Table 18. fNP and fAr Denote the Values of Approximate Op-
timal Objective Function on Example 5.5 Obtained by GA with
N-points Crossover and Arithmetic Crossover, Respectively

In generation 120, the approximate optimal objective function value in Lu and
Fang’s GA is fLu−Fang = 24.04365588515 and the approximate optimal objective
function value in the proposed GA with N-points crossover is fNP = 3.211402 and
the proposed GA with Arithmetic crossover is fAr = 3.676057 in generation 100.
In two current cases, the algorithm has obtained the less approximate optimal ob-
jective values with respect to Lu and Fang’s GA. In the other generations, e.g.,
generations 383 and 300, generations 679 and 600, generations 788 and 700, gener-
ations 1079 and 1000, respectively, from Lu and Fang’s GA and the proposed GA
with two crossover, the approximate optimal objective function values obtained by
the proposed GA with two crossovers are very less than the approximate optimal
objective function values resulted by Lu and Fang’s GA with less generations. Since
the objective of the problem is minimization, the proposed GA with two crossovers
is more efficient from Lu and Fang’s GA. As Figure 7 and Tables 9 and 10 show the
GA with N-points crossover in generations 100, 200, 300, 500, 600, 700, 800, and 1000
has values of objective function less than the GA with Arithmetic crossover. Only
in generations 400 and 900, the GA with Arithmetic crossover has obtained better
results. Overall, the GA with N-points crossover is more efficient with respect to
the GA with Arithmetic crossover.

7. Conclusions

The nonlinear programming problems subject to bipolar fuzzy relation equation
constraints were studied in this paper. Their feasible domain were investigated and
the lower and upper bound of each variable were determined. A genetic algorithm
with two crossovers: N-points and Arithmetic was designed to solve the problems.
Some test problems were solved by the algorithm with two crossovers. Their results
were compared to each other and the exact optimal solution. This comparative
analysis shows the efficiency of the algorithm genetic with two crossover operations.
Moreover, the GA with two crossovers was compared with Lu and Fang’s GA [19].
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