COUNTABLY NEAR PS-COMPACTNESS IN L-TOPOLOGICAL SPACES

Document Type: Research Paper

Author

Department of Mathematics, Wuyi University, Guangdong 529020, P.R.China

Abstract

In this paper, the concept of countably near PS-compactness in
L-topological spaces is introduced, where L is a completely distributive lattice
with an order-reversing involution. Countably near PS-compactness is defined
for arbitrary L-subsets and some of its fundamental properties are studied.

Keywords


[1] S. Z. Bai, The SR-compactness in L-fuzzy topological spaces, Fuzzy Sets and Systems, 87
(1997), 219-225.
[2] S. Z. Bai, L-fuzzy PS-compactness, IJUFKS, 10 (2002), 201-209.
[3] S. Z. Bai, Near PS-compact L-subsets, Information Sciences, 115 (2003), 111-118.
[4] S. Z. Bai, Pre-semiclosed sets and PS-convergence in L-fuzzy topological spaces, J. Fuzzy
Math. 9 (2001), 497-509.
[5] C. L. Chang, Fuzzy topological spaces, J.Math.Anal.Appl. 24 (1968), 182-190.
[6] B. Hutton, Products of fuzzy topological spaces, Topology Appl. 11 (1980), 59-67.
[7] Y. M. Liu and M. K. Luo, Induced spaces and fuzzy Stone-Cech compactifications, Scientia
Sinica (A), 30 (1987), 1034-1044.
[8] Y. M. Liu and M. K. Luo, Fuzzy topology, World Scientific Publishing, Singapore, 1998.
[9] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J.Math.Anal.Appl. 56 (1976),
621-633.
[10] F. G. Shi, Countable compactness and Lindeloff property of L-fuzzy sets, Iranian journal of
fuzzy systems, 1 (2004), 79-88.
[11] B. M. Pu and Y. M. Liu, Fuzzy topological,I.Neighborhood structure of a fuzzy point and
Moore-Smith convergence0, J. Math. Anal. Appl. 76 (1980), 571-599.
[12] G. J. Wang, A new fuzzy compactness defined by fuzzy nets, J.Math.Anal.Appl. 94 (1983),
1-23.
[13] G. J. Wang, Theory of L-fuzzy topological spaces, Shaanxi Normal University, Xian, 1988.
[14] D. S. Zhao, The N-compactness in L-fuzzy topological spaces, J. Math. Anal. Appl. 128
(1987), 64-79.