GENERALIZED STATES ON \(EQ\)-ALGEBRAS

X. L. XIN, M. KHAN, Y. B. JUN

Abstract. In this paper, we introduce a notion of generalized states from an \(EQ\)-algebra \(E_1 \) to another \(EQ\)-algebra \(E_2 \), which is a generalization of internal states (or state operators) on an \(EQ\)-algebra \(E \). Also we give a type of special generalized state from an \(EQ\)-algebra \(E_1 \) to \(E_1 \), called generalized internal states (or GI-state). Then we give some examples and basic properties of generalized (internal) states on \(EQ\)-algebras. Moreover we discuss the relations between generalized states on \(EQ\)-algebras and internal states on other algebras, respectively. We obtain the following results: (1) Every state-morphism on a good \(EQ\)-algebra \(E \) is a G-state from \(E \) to the \(EQ\)-algebra \(E_0 = ([0, 1], \land_0, \lor_0, \trianglerighteq_0, 1) \). (2) Every state operator \(\mu \) satisfying \(\mu(x) \trianglerighteq \mu(y) \in \mu(E) \) on a good \(EQ\)-algebra \(E \) is a GI-state on \(E \). (3) Every state operator \(\tau \) on a residuated lattice \((L, \land, \lor, \trianglerighteq, 0, 1) \) can be seen a GI-state on the \(EQ\)-algebra \((L, \land, \trianglerighteq, 1) \), where \(x \trianglerighteq y := (x \rightarrow y) \land (y \rightarrow x) \). (4) Every GI-state \(\sigma \) on a good \(EQ\)-algebra \((L, \land, \trianglerighteq, 1) \) is a internal state on equality algebra \((L, \land, 1) \). (5) Every GI-state \(\sigma \) on a good \(EQ\)-algebra \((L, \land, \trianglerighteq, 1) \) is a left state operator on BCK-algebra \((L, \land, \rightarrow, 1) \), where \(x \rightarrow y = x \trianglerighteq x \land y \).

1. Introduction

Every many-valued logic is uniquely determined by the algebraic properties of the structure of its truth values. At present, it is generally accepted that in fuzzy logic, the algebraic structure should be a residuated lattice, possibly fulfilling some additional properties. \(BL\)-algebras, \(MTL\)-algebras, \(MV\)-algebras, etc., are the best known classes of residuated lattices [12, 16, 28]. Note that the typical operations on these algebras are multiplication \(\trianglerighteq \) and implication \(\rightarrow \) which are closely tied by adjointness property.

Fuzzy type theory [25, 26] whose basic connective is a fuzzy equality was developed as a counterpart of the classical higher-order logic (type theory in which identity is a basic connective, see [1]). Since the algebra of truth values is no longer a residuated lattice, a specific algebra called an \(EQ\)-algebra [27] for fuzzy type theory was proposed by Novák and De Baets. \(EQ\)-algebras are interesting and important algebras from many points of view. First, the above residuated lattices based logical algebras are all particular cases of \(EQ\)-algebras. Second, the adjointness property which strictly couples \(\trianglerighteq \) and \(\rightarrow \) on residuated lattices based logical algebras is relaxed. Indeed, in \(EQ\)-algebras, \(\rightarrow \) is defined directly from fuzzy equality by the

Received: 2017; Revised: 2017; Accepted: 2018

Key words and phrases: \(EQ\)-algebra, generalized state, internal state, residuated lattice, equality algebra, BCK-algebra.
formula \(x \rightarrow y = (x \wedge y) \sim x \). But the fuzzy equality \(\sim \) cannot be reconstructed from the implication \(\rightarrow \) in \(EQ \)-algebras in general. Third, \(EQ \)-algebras open a possibility to develop a fuzzy logic with a non-commutative conjunction but a single implication only \([27]\). From these points of view, it is meaningful to study \(EQ \)-algebras.

A state on \(MV \)-algebras \([24]\) or \(BL \)-algebras \([29]\) is an analogue of a probability measure, and it serves as an averaging process for formulas in Lukasiewicz logic or basic fuzzy logic, respectively. We note that states were introduced also in many different algebraic structures and they are intensively studied by many authors, e.g. \([8, 15, 20, 4, 6, 22, 21]\) and others. Recently, Flaminio and Montagna \([13, 14]\) have presented a new approach to states on \(MV \)-algebras: they added a unary operation \(\tau \) to the language of \(MV \)-algebras as an internal state. It preserves the usual properties of states. It generalizes the state, as a function on the algebra taking values in the interval \([0, 1]\) with the addition property, as well as Hájek’s approach to fuzzy logic with modality \(Pr \) (interpreted as probably). In the first case if \(s \) is a state and \(a \) an event, \(s(a) \) denotes average of appearing the event \(a \) while in the second case, \(Pr(a) \) is presented as truth value of appearing \(a \). Consequently, the concepts of a state \(BL \)-algebra, a state equality algebra and a state \(BCK \)-algebra were introduced by Ciungu et al.\([7, 5]\), by Borzooei et al.\([2]\) respectively, as an extension of the concept of a state \(MV \)-algebra. Subsequently, the concept was extended by Dvurečenskij et al.\([9]\) to \(Rl \)-monoids (not necessarily commutative). As a generalization of the notion of internal states for \(MV \)-algebras, \(BL \)-algebras and \(Rl \)-monoids, etc., the concept of a state residuated lattice was introduced by He et al.\([17]\). Especially the authors of this manuscript introduced the notions of states and internal states into hyper algebras, and established theories of states and internal states on hyper \(BCK \)-algebras\([33, 32]\). Recently Borzooei et al.\([3]\) introduced the notion of state operators for \(EQ \)-algebras and studied some basic properties of it. But this state operators on \(EQ \)-algebras is not a generalization of the notion of internal states on residuated lattices.

In order to give a unified model of states and internal states of \(EQ \)-algebras, residuated lattices, equality algebras and \(BCK \)-algebras, we shall establish generalized state theory on \(EQ \)-algebras and discuss the relations between it and internal states of above-mentioned algebras in this paper.

This paper is organized as follows: In Section 2, we review some basic definitions and results about \(EQ \)-algebras, residuated lattices, equality algebras and \(BCK \)-algebras. In Section 3, we introduce the notion of generalized states on \(EQ \)-algebras and investigate some related properties of generalized states. In Section 4, we discuss the relation between generalized states and state-morphisms and internal states on \(EQ \)-algebras, respectively. In Section 5, we study the relation between generalized states on \(EQ \)-algebras and internal states on residuated lattices. In Section 6, we give the relations between generalized states on \(EQ \)-algebras and internal states on equality algebras and \(BCK \)-algebras.
2. Preliminaries

Definition 2.1. ([27]) An EQ-algebra is an algebra $\mathcal{E} := (E, \wedge, \circ, \sim, 1)$ of type \((2,2,2,0)\) such that, for all \(x, y, z, t \in E:\)

(E1) \((E, \wedge, 1)\) is a \(\wedge\)-semilattice with top element 1,
(E2) \((E, \circ, 1)\) is a commutative monoid and \(\circ\) is isotone w.r.t. \(\leq\) (where \(x \leq y\) is defined as \(x \wedge y = x\)),
(E3) \(x \sim x = 1\), (reflexivity axiom)
(E4) \((x \wedge y) \sim z \circ (t \sim x) \leq z \sim (t \wedge y)\), (substitution axiom)
(E5) \((x \sim y) \circ (z \sim t) \leq (x \sim z) \sim (y \sim t)\), (congruence axiom)
(E6) \((x \wedge y) \sim z \sim x \leq (x \wedge y) \sim x\), (monotonicity axiom)
(E7) \(x \circ y \leq x \sim y\). (boundedness axiom)

Definition 2.2. ([11]) Let \mathcal{E} be an EQ-algebra. We say that it is

- semiseparated if for all \(a, b \in E\), \(a \sim 1 = 1\) implies \(a = 1\).
- separated if for all \(a, b \in \mathcal{E}\), \(a \sim b = 1\) implies \(a = b\).
- good if for all \(a \in E\), \(a \sim 1 = a\).
- residuated if for all \(a, b, c \in E\),
 \((a \circ b) \wedge c = a \circ b\) iff \(a \wedge ((b \wedge c) \sim b) = a\). (1)
- idempotent it satisfies \(x \circ x = x\) for all \(x \in \mathcal{E}\).

Let \(\mathcal{E}\) be an EQ-algebra and \(x \rightarrow y := (x \wedge y) \sim x\). Then we have the following:

for all \(a, b, c \in E\),
(a) Symmetry: \(a \sim b = b \sim a\),
(b) Transitivity: \((a \sim b) \circ (b \sim c) \leq a \sim c\),
(c) Transitivity of implication: \((a \rightarrow b) \circ (b \rightarrow c) \leq a \rightarrow c\).

Note that if the EQ-algebra is good then it is separated, but not vice-versa. Clearly, (1) can be written classically as \(a \circ b \leq c\) iff \(a \leq b \rightarrow c\).

Example 2.3. ([27]) Let \(\mathcal{L} = (L, \vee, \wedge, \circ, \rightarrow, 0, 1)\) be a residuated lattice and \(f : L \rightarrow L\) be a \(\wedge\)-homomorphism such that \(a \leftrightarrow b \leq f(a) \leftrightarrow f(b)\), holds for all \(a, b \in L\), where \(\leftrightarrow\) is the biresidual operation defined by
\[
a \leftrightarrow b = (a \rightarrow b) \wedge (b \rightarrow a).
\] (2)
If we define the binary operation \(\sim\) by \(a \sim b = f(a) \leftrightarrow f(b)\), then \((L, \wedge, \circ, \sim, 1)\) is an EQ-algebra.

Example 2.4. ([27]) Let \(E = [0, 1], x \circ y = 0 \vee (x + y - 1)\) be the Lukasiewicz conjunction and define \(f_k : [0, 1] \rightarrow [0, 1]\) by \(f_k(x) = 1 \wedge (x + k)\), for some fixed \(k \in [0, 1]\). It can be verified that \(f_k\) is a \(\wedge\)-homomorphism, i.e. \(f_k(x \wedge y) = f_k(x) \wedge f_k(y)\). Moreover, \(f_k(x) - f_k(y) \leq |x - y|\). Therefore, we may define
\[
x \sim y = 1 - |f_k(x) - f_k(y)|\] (3)
for all \(x, y \in [0, 1]\). Since (3) is the biresidual operation (2) based on the Lukasiewicz implication, we conclude from Example 2.3 that \(\mathcal{E} = ([0, 1], \wedge, \circ, \sim, 1)\) is an EQ-algebra in which \(\hat{x} = f_k(x)\). This algebra is clearly not separated.

Especially taking \(k = 0\), we define \(x \sim_0 y = 1 - |x - y|\) for \(x, y \in [0, 1]\). Then \(([0, 1], \wedge, \circ, \sim_0, 1)\) is an EQ-algebra, which is denoted by \(\mathcal{E}_0 = ([0, 1], \wedge_0, \circ_0, \sim_0, 1)\).

We list below some of the properties of EQ-algebras from [11] that will be used in the paper.
Proposition 2.5. ([27],[11]) Let \mathcal{E} be an EQ-algebra and $\overline{x} = x \sim 1$. Then the following properties hold, for all $x, y, z \in E$,

1. $x \circ y \leq x \wedge y \leq x, y,$
2. $z \circ (x \wedge y) \leq (z \circ x) \wedge (z \circ y),$
3. $x \sim y \leq x \Rightarrow y,$
4. $x \Rightarrow x = 1,$
5. $x \leq \overline{x}, \overline{1} = 1,$
6. $x \circ (x \sim y) \leq \overline{y},$
7. $(z \sim (x \wedge y)) \circ (x \sim t) \leq z \Rightarrow (t \wedge y),$
8. $(x \sim y) \circ (y \Rightarrow x) \leq x \sim y,$
9. if $x \leq y \Rightarrow z,$ then $x \circ y \leq \overline{z},$
10. if $x \leq y \leq z,$ then $z \sim x \leq z \sim y$ and $x \sim z \leq x \sim y,$
11. $x \Rightarrow y \leq (x \wedge z) \Rightarrow y,$
12. $x \sim y \leq (x \wedge z) \sim (y \wedge z),$
13. if $x \leq y,$ then $x \Rightarrow y = 1$ and $x \sim y = y \Rightarrow x,$
14. if $x \leq y,$ then $z \sim x \leq z \sim y$ and $y \Rightarrow z \leq x \Rightarrow z,$
15. $x \Rightarrow y \leq (z \Rightarrow x) \Rightarrow (z \Rightarrow y),$
16. $x \Rightarrow y \leq (y \Rightarrow z) \Rightarrow (x \sim z).$

Proposition 2.6. ([27]) (1) In every good EQ-algebra \mathcal{E}, the following inequality holds for all $a, b \in E, a \sim (a \sim b) \sim b,$

(2) Each residuated EQ-algebra is good (and thus separated).

Proposition 2.7. ([11]) Let \mathcal{E} be a good EQ-algebra. Then the following hold:

1. $x = 1 \Rightarrow x,$
2. $x \leq y \Rightarrow x = y \sim (x \wedge y),$
3. $x \leq (x \Rightarrow y) \Rightarrow y,$
4. $x \Rightarrow (y \Rightarrow z) = y \Rightarrow (x \sim z).$

Proposition 2.8. Let \mathcal{E} be a good EQ-algebra. Then the following hold for all $x, y, z \in E$:

1. $((x \sim x \wedge y) \sim y) \sim y = x \sim (x \wedge y),$
2. $x \Rightarrow y = ((x \Rightarrow y) \Rightarrow y) \Rightarrow y,$
3. if $x \leq y,$ then $x \leq x \sim y,$
4. $x \sim y \leq (x \sim z) \sim (y \sim z),$
5. $x \leq (x \sim x \wedge y) \sim y,$
6. $y \leq (x \sim x \wedge y) \sim y,$
7. $x \circ (x \sim x \circ y) \leq x \circ y,$
8. if \mathcal{E} is a residuated EQ-algebra, then
9. $(x \sim y) \Rightarrow ((x \circ z) \Rightarrow (y \circ z)) = 1,$
10. $(x \circ y) \Rightarrow z = x \Rightarrow (y \Rightarrow z).$

Proof. (1) Applying Proposition 2.6(1), we get $x \sim x \wedge y \leq ((x \sim x \wedge y) \sim y) \sim y.$ From Proposition 2.6(1) we have $x \wedge y \leq x \leq (x \sim y) \sim y$ and applying Proposition 2.5(12) we get $x \wedge y \sim ((x \sim y) \sim y) \leq x \wedge y \sim x,$ that is, $((x \sim y) \sim y) \sim x \wedge y \leq x \sim x \wedge y.$ We conclude that $((x \sim x \wedge y) \sim y) \sim y = x \sim x \wedge y.$

(2) By Proposition 2.7(3), $x \Rightarrow y \leq ((x \Rightarrow y) \Rightarrow y) \Rightarrow y.$ On the other hand, by
Proposition 2.7(3) again, we have \(x \leq (x \to y) \to y \). Using Proposition 2.5(16) we get \(x \to y \geq ((x \to y) \to y) \to y \). Therefore \(x \to y = ((x \to y) \to y) \to y \).

(3) It follows Proposition 2.7(2) that \(x \leq y \iff x = y \iff x \leq y \).

(4) Taking \(z = t \) in (E5), we get \((x \sim y) \circ 1 \leq (x \sim z) \sim (y \sim z) \). That is \(x \sim y \leq (x \sim z) \sim (y \sim z) \).

(5) Applying (4), we have \(x = x \sim 1 \leq (x \sim x \wedge y) \sim (1 \sim x \wedge y) = (x \sim x \wedge y) \sim x \wedge y \). By (2) we have \(x \wedge y \leq y \leq x \sim x \wedge y \). Applying Proposition 2.5(12) we get \(x \wedge y \leq y \sim (x \sim x \wedge y) \), and so \(x \leq (x \sim x \wedge y) \sim y \).

(6) By Proposition 2.7(2), we have \(y \leq x \sim x \wedge y \). Using (3) we get \(y \leq y \sim (x \sim x \wedge y) \).

(7) Note that \(x \circ (x \to x \circ y) = x \circ (x \sim (x \wedge x \circ y)) = x \circ (x \sim (x \circ y)) = (1 \sim x) \circ (x \sim (x \circ y)) \leq 1 \sim x \circ y = x \circ y \).

(8) Let \(E \) be a residuated \(EQ \)-algebra. Then \((x \to y) \to ((x \circ z) \to (y \circ z)) = 1 \) iff \((x \to y) \leq ((x \circ z) \to (y \circ z)) \) iff \((x \circ z) \circ (x \to y) \leq y \circ z \) iff \(x \circ (x \to y) \leq y \) iff \(x \to y \leq x \to y \).

(9) Let \(E \) be a residuated \(EQ \)-algebra. Then \(x \circ (x \circ y) \leq x \circ (y \circ z) \) \(\leq y \to z \) and hence \((x \circ y \to z) \leq (x \to (y \to z)) \). Conversely \((x \to (y \to z)) = (x \circ (x \circ y) \circ y \leq z) \), which implies \(x \to (y \to z) \leq (x \circ y) \to z \).

Definition 2.9. ([11]) Let \(E \) be an \(EQ \)-algebra and \(\emptyset \neq F \subseteq E \). \(F \) is called a prefilter in \(E \) if it satisfies for any \(x, y \in E \),

1. \(1 \in F \),
2. If \(x \in F \) and \(x \to y \in F \), then \(y \in F \).

A prefilter \(F \) is said to be a filter if it satisfies

1. If \(x \in F \), then \((x \circ y) \to (y \circ z) \in F \) for any \(x, y, z \in E \).

Now we recall some notions and results of residuated lattices, equality algebras and \(BCK \)-algebras.

Definition 2.10. ([16], [31]) An algebraic structure \((L, \wedge, \vee, \circ, \to, 0, 1) \) of type \((2, 2, 2, 0, 0) \) is called a residuated lattice if it satisfies the following conditions:

1. \((L, \wedge, \vee, 0, 1) \) is a bounded lattice,
2. \((L, \circ, 1) \) is a commutative monoid,
3. \(x \circ y \leq z \) if and only if \(x \leq y \to z \), for all \(x, y, z \in L \), where \(\leq \) is the partial order of the lattice \((L, \wedge, \vee, 0, 1) \).

Proposition 2.11. ([30], [31], [34]) In any residuated lattice \((L, \wedge, \vee, \circ, \to, 0, 1) \),

the following properties hold:

1. \(1 \to x = x, x \to 1 = 1 \),
2. \(x \leq y \iff x \to y = 1 \),
3. \(x \circ x^* = 0, x \circ y = 0 \) if and only if \(x \leq y^* \), where \(x^* = x \to 0 \),
4. If \(x \leq y \), then \(y \to z \leq x \to z, z \to x \leq z \to y \) and \(x \circ z \to y \leq z \).
5. \(x \circ (x \to y) \leq y \),
6. \(x \circ y \leq x \wedge y, x \leq y \to x, \)
7. \(x \to (y \to z) = (x \circ y) \to z = y \to (x \to z), \)
8. \(0^* = 1, 1^* = 0, x \leq x^{**}, x^{***} = x^* \),
9. \(x \circ (y \to z) \leq y \to (x \circ z) \leq (x \circ y) \to (x \circ z) \),
We call \(µ \) if \(\mu(x) \) hold: for all \(x,y \) satisfy:

\[
\begin{align*}
(10) & \quad x \odot (y \lor z) = (x \odot y) \lor (x \odot z), \\
(11) & \quad x \lor (y \odot z) \geq (x \lor y) \odot (x \lor z), \\
(12) & \quad x \rightarrow (x \land y) = x \rightarrow y, \\
(13) & \quad x \odot y = x \odot (x \rightarrow x \odot y), \\
(14) & \quad ((x \rightarrow y) \rightarrow y) \rightarrow y = x \rightarrow y, \\
(15) & \quad x \lor y \leq (x \rightarrow y) \rightarrow y, \\
& \quad \text{for any } x,y,z \in L.
\end{align*}
\]

Definition 2.12. ([19]) An equality algebra is an algebra \(E = (X, \sim, \land, 1) \) of type \((2, 2, 0)\) such that the following axioms are fulfilled for all \(x, y, z \in X \):

- (e1) \((A, \land, 1)\) is a meet-semilattice with top element 1,
- (e2) \(x \sim y = y \sim x \),
- (e3) \(x \sim x = 1 \),
- (e4) \(x \sim 1 = x \),
- (e5) \(x \leq y \leq z \) implies \(x \sim z \leq y \sim z \) and \(x \sim z \leq x \sim y \),
- (e6) \(x \sim y \leq (x \land z) \sim (y \land z) \),
- (e7) \(x \sim y \leq (x \sim z) \sim (y \sim z) \).

Definition 2.13. ([18]) A \(BCK \)-algebra is an algebra \(B = (X, \rightarrow, 1) \) of type \((2, 0)\) with the following axioms:

- (BCK1) \((a \rightarrow b) \rightarrow ((b \rightarrow c) \rightarrow (a \rightarrow c)) = 1 \),
- (BCK2) \(1 \rightarrow a = a \),
- (BCK3) \(a \rightarrow 1 = 1 \),
- (BCK4) \(a \rightarrow b = 1 \) and \(b \rightarrow a = 1 \) imply \(a = b \).

For any \(BCK \)-algebra one can define a partial ordering relation (called the underlying partial order of \(B \)) by \(a \leq b \) iff \(a \rightarrow b = 1 \).

Definition 2.14. ([19]) A \(BCK^-\)algebra with meet \(B = (X, \rightarrow, \land, 1) \) is an algebra of type \((2, 2, 0)\) such that \((X, \rightarrow, 1)\) is a \(BCK \)-algebra and the underlying partial order of \((X, \rightarrow, 1)\) is a \(\land \)-semilattice. The equivalence operation \(\leftrightarrow \) of \(B \) is defined by \(a \leftrightarrow b = (a \rightarrow b) \land (b \rightarrow a) \).

Definition 2.15. ([3]) A state \(EQ \)-algebra is a pair \((E, \mu)\) such that \(E \) is an \(EQ \)-algebra and \(\mu : E \rightarrow E \) is a unary operation on \(E \) satisfying the following conditions, for all \(x, y \in E \):

- (SO1) \(\mu(x) \leq x \),
- (SO2) \(\mu(x) \leq \mu(\mu(x)) \),
- (SO3) \(\mu(x \sim y) = \mu(x) \sim \mu(y) \),
- (SO4) \(\mu(x \land y) = \mu(x) \land \mu(y) \),
- (SO5) if \(x \lor y \) and \(\mu(x) \lor \mu(y) \) exist, then \(\mu(x \lor y) \leq \mu(x) \lor \mu(y) \).

We call \(\mu \) a state operator on \(E \).

Lemma 2.16. ([3]) Let \((E, \mu)\) be a state \(EQ \)-algebra. Then the following conditions hold: for all \(x, y \in E \),

1. \(\mu(1) = 1 \),
2. \(\mu(0) = 0 \),
3. if \(x \leq y \), then \(\mu(x) \leq \mu(y) \),
4. \(\mu(x \rightarrow y) = \mu(x) \rightarrow \mu(y) \).
Lemma 2.17. ([3]) Let \((\mathcal{E}, \mu)\) be a state EQ-algebra such that \(\mathcal{E}\) is a good EQ-algebra. Then the following conditions hold: for all \(x \in \mathcal{E}\),

(i) \(\mu(\mu(x)) = \mu(x)\),
(ii) \(\text{Im}(\mu) = \{x \in \mathcal{E} | \mu(x) = x\}\).

Definition 2.18. ([2]) Let \((X, \rightarrow, 1)\) be a BCK-algebra. A map \(\mu : X \rightarrow X\) is called a left (right) state operator on \(X\) if it satisfies the following conditions:

(S1) \(x \rightarrow y = 1\) implies \(\mu(x) \rightarrow \mu(y) = 1\),
(S2) \(\mu(x \rightarrow y) = \mu((x \rightarrow y) \rightarrow y) \rightarrow \mu(y)\) (\(\mu(x \rightarrow y) = \mu((y \rightarrow x) \rightarrow x) \rightarrow \mu(y)\)),
(S3) \(\mu(\mu(x) \rightarrow \mu(y)) = \mu(x) \rightarrow \mu(y)\).

A left (right) state BCK-algebra is a pair \((X, \mu)\), where \(X\) is a BCK-algebra and \(\mu\) is a left (right) state operator on \(X\).

3. Generalized states on EQ-algebras

In this section we introduce and study a notion of generalized states from an EQ-algebra \(X\) to an EQ-algebra \(Y\), which are the generalization of states, and internal states of EQ-algebras. Also we give some types of special generalized states according to the structures of \(Y\) and discuss relations among them.

Definition 3.1. Let \((X, \sim_1, \wedge_1, \odot_1, 1_1)\) and \((Y, \sim_2, \wedge_2, \odot_2, 1_2)\) be two EQ-algebras. A map \(\sigma : X \rightarrow Y\) is called a generalized state from \(X\) to \(Y\), which is denoted simply G-state, if it is satisfies the following conditions:

for all \(x, y, z \in X\),
(GS1) \(x \leq_1 y\) implies \(\sigma(x) \leq_2 \sigma(y)\),
(GS2) \(\sigma(x \sim_1 x \wedge_1 y) = \sigma((x \sim_1 x) \wedge_1 y) \sim_2 \sigma(y)\),
(GS3) \(\sigma(x) \odot_2 \sigma(x \rightarrow_1 (x \odot_1 y)) \leq \sigma(x \odot_1 y)\),
(GS4) for all \(x, y \in X\), \(\sigma(x) \sim_2 \sigma(y) \in \sigma(X)\), where \(\sigma(X) = \{\sigma(x) : x \in X\}\),
(GS5) for all \(x, y \in X\), \(\sigma(x) \wedge_2 \sigma(y) \in \sigma(X)\),
(GS6) for all \(x, y \in X\), \(\sigma(x) \odot_2 \sigma(y) \in \sigma(X)\).

Moreover, if \(X = Y\) and \(\sigma^2 = \sigma\), then \(\sigma\) is called a generalized internal state on \(X\), simply GI-state on \(X\).

Remark 3.2. (1) In the notion of internal states on residuated lattices (BL-algebras, BCK-algebras etc.), an internal state satisfies the condition \(\sigma(\sigma(x) * \sigma(y)) = \sigma(x) * \sigma(y)\), where \(* \in \{\odot, \rightarrow, \wedge, \vee\}\). But in case of EQ-algebras, for a map \(\sigma : X \rightarrow Y\), \(\sigma(\sigma(x) * \sigma(y))\) is not well-defined. Hence in Definition 3.1, we use (GS4), (GS5) and (GS6) to define G-states on EQ-algebras.

(2) The condition (GS2) of Definition 3.1 is inspired by the condition (S2) in the definition of state operators on BCK-algebras.

Example 3.3. Let \(\mathcal{E}_1\) and \(\mathcal{E}_2\) be two EQ-algebras. Then the map \(1_\mathcal{E}\), defined by \(1_\mathcal{E}(x) = 1_2\) for all \(x \in \mathcal{E}_1\), is a G-state from \(\mathcal{E}_1\) to \(\mathcal{E}_2\).

Example 3.4. If \(\mathcal{E}\) is a good EQ-algebra, then the identity map \(Id_\mathcal{E} : \mathcal{E} \rightarrow \mathcal{E}\) is a GI-state on \(\mathcal{E}\).
Proof. Indeed, it is obvious that (GS1), (GS4), (GS5) and (GS6) are verified. By Proposition 2.8(7), we have (GS3). By Proposition 2.7(1), we can prove (GS2). Moreover it is clear that \(\sigma^2 = \sigma \). Therefore \(\text{Id}_E \) is a GI-state. \[\square\]

Example 3.5. Let \(\mathcal{E} = (E, \land, \ominus, \sim, 1) \) be a linearly ordered good \(EQ \)-algebra. Then we can check that \(\mathcal{E} \times \mathcal{E} = (E \times E, \land \times \land, \ominus \times \ominus, \sim \times \sim, 1 \times 1) \) is a good \(EQ \)-algebra, where the operations on \(E \times E \) are defined according to the coordinate components. On \(E \times E \) we define two operators, \(\sigma_1 \) and \(\sigma_2 \) as follows

\[\sigma_1(a, b) = (a, a), \quad \sigma_2(a, b) = (b, b), \quad (a, b) \in E \times E.\]

Then \(\sigma_1 \) and \(\sigma_2 \) are two GI-states on \(E \times E \) that are also endomorphisms such that \(\sigma_i^2 = \sigma_i, i = 1, 2 \). Moreover, \((\mathcal{E} \times \mathcal{E}, \sigma_1) \) and \((\mathcal{E} \times \mathcal{E}, \sigma_2) \) are isomorphic state \(EQ \)-algebras under the isomorphism \((a, b) \mapsto (b, a) \).

Example 3.6. Let \(\mathcal{E}_1 = \{0_1, a_1, b_1, 1_1\} \) and \(\mathcal{E}_2 = \{0_2, a_2, b_2, 1_2\} \) be two chains with Cayley tables as follows respectively:

\[
\begin{array}{cccc|cccc}
\odot_1 & 0_1 & a_1 & b_1 & 1_1 & \sim_1 & 0_1 & a_1 & b_1 & 1_1 & \rightarrow_1 & 0_1 & a_1 & b_1 & 1_1 \\
0_1 & 0_1 & 0_1 & 0_1 & 0_1 & 0_1 & 0_1 & 0_1 & 0_1 & 0_1 & 0_1 & 0_1 & 0_1 & 0_1 \\
a_1 & a_1 \\
b_1 & b_1 \\
1_1 & 1_1 & 1_1 & 1_1 & 1_1 & 1_1 & 1_1 & 1_1 & 1_1 & 1_1 & 1_1 & 1_1 & 1_1 & 1_1 \\
\odot_2 & 0_2 & a_2 & b_2 & 1_2 & \sim_2 & 0_2 & a_2 & b_2 & 1_2 & \rightarrow_2 & 0_2 & a_2 & b_2 & 1_2 \\
0_2 & 0_2 & 0_2 & 0_2 & 0_2 & 0_2 & 0_2 & 0_2 & 0_2 & 0_2 & 0_2 & 0_2 & 0_2 & 0_2 \\
a_2 & a_2 \\
b_2 & b_2 \\
1_2 & 1_2 & 1_2 & 1_2 & 1_2 & 1_2 & 1_2 & 1_2 & 1_2 & 1_2 & 1_2 & 1_2 & 1_2 & 1_2 \\
\end{array}
\]

Then \((\mathcal{E}_1, \wedge, \odot_1, \sim_1, 1_1) \) is an \(EQ \)-algebra but is not a good \(EQ \)-algebra, and \((\mathcal{E}_2, \wedge, \odot_2, \sim_2, 1_2) \) is a good \(EQ \)-algebra ([23]).

One can easily check that the map \(\sigma : \mathcal{E}_1 \rightarrow \mathcal{E}_2 \), defined as follows: \(\sigma(0_1) = 0_2, \sigma(a_1) = a_2, \sigma(b_1) = 1_2, \sigma(1_1) = 1_2 \) is a G-state from \(\mathcal{E}_1 \) to \(\mathcal{E}_2 \).

Remark 3.7. (1) In Example 3.6, we can see that G-state \(\sigma \) can not be seen a state or an internal state on \(EQ \)-algebra \(\mathcal{E}_1 \), and hence it can not be seen a state or an internal state on a residuated lattice. It follows that the notion of G-state on \(EQ \)-algebras is a non-trivial generalization of one of states on residuated lattices.

(2) An internal state on a residuated lattice \(E \) can be seen a G-state from \(E \) to \(E \) (see Proposition 5.3).

(3) In general, for G-state \(\sigma \) of \(EQ \)-algebras \(\text{Ker}(\sigma) \) is a prefilter, but it may not be a filter (see Example 3.5). As a result, it is different from the related result of residuated lattice. However, we can prove that whenever \(\sigma : \varepsilon_1 \rightarrow \varepsilon_2 \) is a G-state and \(\varepsilon_1 \) is residuated, then \(\text{Ker}(\sigma) \) is a filter(3.18).

Proposition 3.8. Let \(\sigma \) be a G-state from a good \(EQ \)-algebra \(\mathcal{E}_1 \) to an \(EQ \)-algebra \(\mathcal{E}_2 \). Then

(1) \(\sigma(1_1) = 1_2 \),

(2) \(\sigma(x \rightarrow_1 y) = \sigma((x \rightarrow_1 y) \rightarrow_1 y) \rightarrow_2 \sigma(y) \),

(3) \(\sigma(\mathcal{E}_1) \) is a subalgebra of \(\mathcal{E}_2 \),

(4) \(\sigma(x \rightarrow_1 y) \leq_2 \sigma(x) \rightarrow_2 \sigma(y) \),
Let $\sigma \in E_1$, where $\text{Ker}(\sigma) = \{x \in E_1 | \sigma(x) = 1\}$.

(5) If E_2 is good, Ker(σ) is a prefilter of E_1, where Ker$(\sigma) = \{x \in E_1 | \sigma(x) = 1\}$.

Proof. (1) Consider (GS2) for $y = x$, we have $\sigma(1_1) = \sigma(1_1 \sim x) \sim \sigma(x) = \sigma(x) \sim \sigma(x) = 1_2$.

(2) By (GS2), $\sigma(x \rightarrow y) = \sigma((x \rightarrow y) \sim y) \sim \sigma(y)$. By Proposition 2.5(15) and Proposition 2.8(2), we have $(x \rightarrow y) \sim y = (x \rightarrow y) \rightarrow y$ and hence $\sigma(x \rightarrow y) = \sigma((x \rightarrow y) \rightarrow y) \sim \sigma(y)$. By Proposition 2.7(2), $\sigma(y) \leq \sigma((x \rightarrow y) \rightarrow y) \sim y$.

(3) It follows from (1), and (GS2), (GS5) and (GS6).

(4) By (1) and (GS2), we have $\sigma(1_1) = \sigma(1_1 \sim 1_1) \sim 1_1$. Then by (GS2), we have $\sigma(x \rightarrow y) = \sigma(x \sim 1_1 y) = \sigma(x \sim x \sim 1_1 y) \sim 1_1 \sim \sigma(y)$. Using (15) and (16) of Proposition 2.5, we get $\sigma(x \sim x \sim 1_1 y) \sim 1_1 \sim \sigma(y) \leq \sigma((x \sim x \sim 1_1 y) \sim 1_1) \sim 1_1 \sim \sigma(y) \leq \sigma(x) \sim \sigma(y)$.

(5) By (1), we have $1 \in \text{Ker}(\sigma)$. Let $a \in \text{Ker}(\sigma)$ and $a \rightarrow b \in \text{Ker}(\sigma)$. Then $\sigma(a) = 1_2$ and $1_2 \leq \sigma(a \rightarrow b) \leq \sigma(a) \rightarrow \sigma(b)$ by (4). Thus $1_2 = \sigma(a) \rightarrow \sigma(b) = 1 \rightarrow \sigma(b) = \sigma(b)$. Therefore $b \in \text{Ker}(\sigma)$.

(6) By (1) and (GS2), we have $\sigma(1_1) = \sigma(1_1 \sim 1_1) = \sigma(1_1 \sim (1_1 \sim 1_1)) = \sigma((1_1 \sim (1_1 \sim 1_1)) \sim 1_1 \sim \sigma(x) = \sigma(x \sim 1_1) \sim \sigma(x) = \sigma(x) = \sigma(x)$. □

Proposition 3.9. Let σ be a GI-state on an EQ-algebra E. Then

(1) $\sigma(\sigma(x) \sim \sigma(y)) = \sigma(x) \sim \sigma(y)$,
(2) $\sigma(\sigma(x) \land \sigma(y)) = \sigma(x) \land \sigma(y)$,
(3) $\sigma(\sigma(x) \lor \sigma(y)) = \sigma(x) \lor \sigma(y)$,
(4) $\sigma(\sigma(x) \rightarrow \sigma(y)) = \sigma(x) \rightarrow \sigma(y)$,
(5) $\sigma(E) = \{x \in E | x = \sigma(x)\}$.

Moreover if E is good, we have the following:

(6) $\sigma(1) = 1$,
(7) $\sigma(E)$ is a subalgebra of E.

Proof. (1) By (GS4), there is $a \in E$ such that $\sigma(x) \sim \sigma(y) = \sigma(a)$. Hence $\sigma(\sigma(x) \sim \sigma(y)) = \sigma(\sigma(\sigma(a))) = \sigma(\sigma(x) \sim \sigma(y)$ since σ is a GI-state.

(2) They are similar to (1).

(5) Clearly, $\{x \in E | x = \sigma(x)\} \subseteq \sigma(E)$. Let $x \in \sigma(E)$, that is there exists $x_1 \in E$ such that $x = \sigma(x_1)$. Since $\sigma^2 = \sigma$, we have $x = \sigma(x_1) = \sigma(\sigma(x_1)) = \sigma(x_1)$, that is, $x \in \{x \in E | x = \sigma(x)\}$. Thus $\sigma(E) \subseteq \{x \in E | x = \sigma(x)\}$ and we conclude that $\sigma(E) = \{x \in E | x = \sigma(x)\}$.

(6) It follows from Proposition 3.8(1).

(7) It follows from Proposition 3.8(3).

Proposition 3.10. Let σ be a G-state from a good EQ-algebra E_1 to a good EQ-algebra E_2 and $x, y \in E_1$ such that $y \leq x$. Then the following hold:

(1) $\sigma(x \sim y) \leq \sigma(x) \sim \sigma(y)$,
(2) $\sigma(x) \sim \sigma(y) = \sigma(x) \rightarrow \sigma(y)$.

Proof. (1) By Proposition 2.8(5), we have $y \leq x \sim (x \sim y) \sim y$. It follows that $\sigma(y) \leq \sigma(x) \sim \sigma((x \sim y) \sim y)$. Applying Proposition 2.5(10) we
have \(\sigma(y) \sim_2 \sigma((x \sim_1 x \land_1 y) \sim_1 y) \leq_2 \sigma(y) \sim_2 \sigma(x) \), and so by (GS2) we get
\[\sigma(x \sim_1 y) \leq_2 \sigma(x) \sim_2 \sigma(y). \]

(2) Since \(y \leq_1 x \), we have \(\sigma(y) \leq_2 \sigma(x) \) and \(\sigma(x) \sim_2 \sigma(y) = \sigma(x) \sim_2 \sigma(x) \land_2 \sigma(y) = \sigma(y) = \sigma(x) \sim_2 \sigma(y). \)

Proposition 3.11. Let \(\sigma \) be a \(G \)-state from a residuated \(EQ \)-algebra \(E_1 \) to an \(EQ \)-algebra \(E_2 \). Then for all \(x, y \in E \), \(\sigma(x) \circ_2 \sigma(y) \leq_2 \sigma(x \circ_1 y) \).

Proof. Since \(E_1 \) is a residuated \(EQ \)-algebra and \(x \circ_1 y \leq_1 x \circ_1 y \), we have \(y \leq_1 x \rightarrow_1 x \circ_1 y \). By (GS1), we have \(\sigma(y) \leq_2 \sigma(x \rightarrow_1 (x \circ_1 y)) \). Applying (GS3) and (E2), we get
\[\sigma(x \circ_1 y) \geq_2 \sigma(x) \circ_2 \sigma(x \rightarrow_1 (x \circ_1 y)) \geq_2 \sigma(x) \circ_2 \sigma(y). \]

Remark 3.12. (1) Prefilters and filters coincide in residuated \(EQ \)-algebras([23]).
(2) Then, from logical point of view, the prefilters in \(EQ \)-algebras correspond to provable formulas, so that it is necessary to study
them. However, from prefilters we can not induce congruences on \(EQ \)-algebras (see [10]). In order to induce congruences on
\(EQ \)-algebras one needs to introduce the notion of filters on \(EQ \)-algebras.

We will denote by \(F(\mathcal{E}) \) the set of all filters of \(\mathcal{E} \). Clearly, \(\mathcal{E} \in F(\mathcal{E}) \) and \(F(\mathcal{E}) \) is
closed under arbitrary intersections. As a consequence, \((F(\mathcal{E}), \subseteq) \) is a lattice.

Lemma 3.13. ([11]) Let \(F \) be a prefilter of a separated \(EQ \)-algebra \(\mathcal{E} \). For all
\(a, b \in E \), it holds that
(1) if \(a \in F \) and \(a \leq b \), then \(b \in F \),
(2) if \(a, a \sim b \in F \), then \(b \in F \),
(3) if \(a, b \in F \), then \(a \land b \in F \),
(4) if \(a \sim b \in F \) and \(b \sim c \in F \), then \(a \sim c \in F \),
(5) \(1 \sim b \in F \) iff \(b \in F \),
(6) \(F = \{ b \in E | b \sim 1 \in F \} \).

Lemma 3.14. ([11]) Let \(F \) be a prefilter of a separated \(EQ \)-algebra \(\mathcal{E} \), \(a \sim b \in F \) and
\(a' \sim b' \in F \). Then the following hold:
(1) \((a \land a') \sim (b \land b') \in F \),
(2) \((a \sim a') \sim (b \sim b') \in F \),
(3) \((a \rightarrow a') \sim (b \rightarrow b') \in F \).

Lemma 3.15. ([11]) Let \(F \) be a filter of a separated \(EQ \)-algebra \(\mathcal{E} \). For all \(a, b \in E \),
(1) if \(a, b \in F \), then \(a \circ b \in F \),
(2) if \(a \sim b \in F \), then \(a \circ c \sim (b \circ c) \in F \) for all \(c \in E \).

Given a prefilter \(F \subseteq E \), usually, the following relation on \(\mathcal{E} \) is an equivalence relation but not a congruence:
\(a \approx_F b \) iff \(a \sim b \in F \).
We shall denote by \([a]_F \) the equivalence class of \(a \in E \) with respect to \(\approx_F \) and by \(E/F \) the quotient set associated with \(\approx_F \).

By Lemma 3.14 and 3.15, we can get the following proposition.

Proposition 3.16. ([27]) Let \(F \) be a filter of a separated \(EQ \)-algebra \(\mathcal{E} \). Then the relation \(\approx_F \) is a congruence relation on \(\mathcal{E} \).
Proposition 3.17. Every filter of a good EQ-algebra \mathcal{E} is a subalgebra of \mathcal{E}.

Proof. Let \mathcal{E} be a good EQ-algebra and F be a filter of \mathcal{E}. By (F1), $1 \in F$. Consider $x, y \in F$. By Proposition 2.6(1), $x \leq (x \sim y) \sim y$. It follows from Lemma 3.13(1) that $(x \sim y) \sim y \in F$. So $y \sim (x \sim y) \in F$. From Lemma 3.13(2) and $y, y \sim (x \sim y) \in F$ we get $x \sim y \in F$. Since a good EQ-algebra is separated, so $x \land y \in F$ and $x \circ y \in F$ by Lemma 3.13(3) and Lemma 3.15(1). Thus F is a subalgebra of \mathcal{E}. \hfill \square

Proposition 3.18. Let σ be a G-state from a residuated EQ-algebra \mathcal{E}_1 to a good EQ-algebra \mathcal{E}_2. Then the following hold:

(1) $\text{Ker}(\sigma) \in F(\mathcal{E}_1)$,
(2) $\text{Ker}(\sigma)$ is a subalgebra of \mathcal{E}_1.

Proof. (1) It follows from Proposition 3.8(5) and Lemmas 3.12.
(2) It is a corollary of (1) and Proposition 3.17. \hfill \square

Proposition 3.19. Let σ be a G-state from a residuated EQ-algebra \mathcal{E}_1 to a good EQ-algebra \mathcal{E}_2. Denote $K = \text{Ker}(\sigma)$.

(1) \approx_K is a congruence on \mathcal{E}_1,
(2) $\mathcal{E}_1 / \approx_K$ is a good EQ-algebra,
(3) $[x]_K \leq [y]_K$ iff $x \rightarrow y \in K$.

Proof. (1) It follows from Propositions 3.18 and 3.16.
(2) It follows from (1) that the quotient algebra $\mathcal{E}_1 / \approx_K$ is an EQ-algebra. Moreover for all $x \in \mathcal{E}_1$, note that $[1]_K \sim [x]_K = [1 \sim_1 x]_K$. Since \mathcal{E}_1 is residuated, and thus it is good, we get $1 \sim_1 x = x$. Therefore $[1]_K \sim [x]_K = [1 \sim_1 x]_K = [x]_K$. This shows that $\mathcal{E}_1 / \approx_K$ is a good EQ-algebra.
(3) Note that $[x]_K \leq [y]_K$ iff $[x]_K \land [y]_K = [x]_K$ iff $x \land y \sim_1 x \in K$ iff $x \rightarrow_1 y \in K$. \hfill \square

Definition 3.20. Let σ be a G-state from an EQ-algebra \mathcal{E}_1 to an EQ-algebra \mathcal{E}_2.

(1) σ is called strong if it satisfies $\sigma(x \sim_1 y) = \sigma(x) \sim_2 \sigma(y)$ for all $x, y \in \mathcal{E}_1$,
(2) σ is called residuated if it satisfies $\sigma((x \circ_1 y) \land_1 z) = \sigma(x \circ_1 y) \land_1 (\sigma(y \land_1 z) \sim_1 y) = \sigma(x)$, for all $x, y, z \in \mathcal{E}_1$,
(3) σ is called divisible if it satisfies $\sigma(x \land x) = \sigma(x) \circ (\sigma(x) \rightarrow y)$ for all $x, y \in \mathcal{E}_1$.
(4) σ is called idempotent if it satisfies $\sigma(x \circ x) = \sigma(x)$ for all $x \in \mathcal{E}_1$.

Remark 3.21. (1) Recall a strong internal state σ of BL-algebra L which is internal state of L satisfying the condition $(3)_BL : \sigma(x \circ y) = \sigma(x) \circ (\sigma(x) \lor y)$ (see [7]). It is easy to check that when an internal state σ of BL-algebra L satisfying $\sigma(x \rightarrow y) = \sigma(x) \rightarrow \sigma(y)$ for all $x, y \in L$, it is a strong internal state. Hence the notion of strong G-sates on EQ-algebras is a generalization of strong internal state on BL-algebras.

(2) If an internal state σ of BL-algebra L satisfies $\sigma(x \rightarrow y) = \sigma(x) \rightarrow \sigma(y)$ for all $x, y \in L$, then it is an endomorphism of L (see [7]). In the following we will get some corresponding result for strong G-states on EQ-algebras.
Proposition 3.22. Let σ be a strong G-state from a residuated EQ-algebra \mathcal{E}_1 to a good EQ-algebra \mathcal{E}_2 and denote $K = \text{Ker}(\sigma)$. Then the following hold.

(1) \mathcal{E}_1/\approx_K is residuated if and only if σ is residuated.

(2) \mathcal{E}_1/\approx_K is idempotent if and only if σ is idempotent.

Proof. (1) Let σ be residuated. Then we have $[(x)_K \circ [y]_K) \land [z]_K = [x]_K \circ [y]_K$ iff $[(x \circ_1 y)_K) \land [z]_K = [x \circ_1 y]_K$ iff $x \circ_1 y \in K$ iff $(x \circ_1 y) \rightarrow_1 (x \circ_1 y) \land z \in K$ iff $\sigma((x \circ_1 y) \rightarrow_1 (x \circ_1 y) \land z) = 1_2$. Since σ is strong, we have that $\sigma((x \circ_1 y) \rightarrow_1 (x \circ_1 y) \land z) = 1_2$ iff $\sigma((x \circ_1 y) \rightarrow_2 \sigma((x \circ_1 y) \land z) = 1_3$ iff $\sigma((x \circ_1 y)_K) \land z = \sigma(x \circ_1 y)_K$). Since σ is residuated, we have that $\sigma((x \circ_1 y)_K) \land z = \sigma(x \circ_1 y)_K$ iff $\sigma(x \land_1 (y \land_1 z) \sim_1 y) = \sigma(x \land_1 (y \land_1 z) \sim_1 z)$ if $\sigma(x \rightarrow_1 (x \land_1 (y \land_1 z) \sim_1 z)) = 1_2$ if $\sigma(x \rightarrow_1 (x \land_1 (y \land_1 z) \sim_1 y)) = 1_2$ if $x \sim_1 (x \land_1 (y \land_1 z) \sim_1 y) \in K$ iff $[x]_K = [(x \land_1 (y \land_1 z) \sim_1 y)]_K$ iff $[x]_K = [x]_K \land ([y]_K \land [z]_K \sim [y]_K)$. Similarly we can prove that if \mathcal{E}_1/\approx_K is residuated, then σ is residuated.

(2) The proof is similar to one of (1).

Now we introduce a notion of divisible EQ-algebras.

Definition 3.23. An EQ-algebra \mathcal{E} is called divisible if it satisfies the following condition: for all $x, y \in \mathcal{E}$, $x \land y = x \circ (x \rightarrow y)$.

Proposition 3.24. Let σ be a strong G-state from a residuated EQ-algebra \mathcal{E}_1 to a residuated EQ-algebra \mathcal{E}_2. Then we have the following:

(1) if σ is divisible and \mathcal{E}_2 is divisible, $\sigma(x \land_1 y) = \sigma(x) \land_2 \sigma(y)$ for all $x, y \in \mathcal{E}_1$.

(2) $\sigma(x \rightarrow_1 y) = \sigma(x) \rightarrow_2 \sigma(y)$ for all $x, y \in \mathcal{E}_1$.

(3) $\sigma(x \circ_1 y) = \sigma(x) \circ_2 \sigma(y)$ for all $x, y \in \mathcal{E}_1$.

Proof. (1) Since σ is divisible and \mathcal{E}_2 is a divisible EQ-algebra, we have $\sigma(x \land_1 y) = \sigma(x) \circ_2 (\sigma(x) \rightarrow_2 \sigma(y)) = \sigma(x) \land_2 \sigma(y)$.

(2) Since σ is strong, we have $\sigma(x \rightarrow_1 y) = \sigma(x \sim_1 (x \land_1 y)) = \sigma(x) \sim_2 \sigma(x \land_1 y)$.

Since \mathcal{E}_2 is a divisible EQ-algebra and by (1), we have $\sigma(x \rightarrow_1 y) = \sigma(x) \sim_2 (\sigma(x) \land_2 \sigma(y)) = \sigma(x) \rightarrow_2 \sigma(y)$.

(3) Note that

$\sigma(x \circ_1 y) \rightarrow_2 \sigma(z) = \sigma((x \circ_1 y) \rightarrow_1 z)$ (by (2))

$= \sigma(x \rightarrow_1 (y \rightarrow_1 z))$ (by (9) in Proposition 2.8)

$\sigma(x) \rightarrow_2 (\sigma(x) \rightarrow_2 \sigma(y))$ (by (2))

$= \sigma(x) \circ_2 \sigma(y)$ (by (9) in Proposition 2.8)

On the other hand, by (GS6) of Definition 3.1, $\sigma(x) \circ_2 \sigma(y) = \sigma(z)$ for some $z \in \mathcal{E}_1$. Hence $\sigma(x \circ_1 y) \rightarrow_2 (\sigma(x) \rightarrow_2 \sigma(y)) = \sigma(x \circ_1 y) \rightarrow_2 \sigma(z) = (\sigma(x) \circ_2 \sigma(y)) \rightarrow_2 \sigma(z) = (\sigma(x) \circ_2 \sigma(y)) \rightarrow_2 1_2$. This shows that $\sigma(x \circ_1 y) \leq \sigma(x) \circ_2 \sigma(y)$. Combining Proposition 3.11, we have $\sigma(x \circ_1 y) = \sigma(x) \circ_2 \sigma(y)$.

Theorem 3.25. Let σ be a strong divisible G-state from a residuated EQ-algebra \mathcal{E}_1 to a divisible residuated EQ-algebra \mathcal{E}_2.

(1) If the map $\nu : \mathcal{E}_1 \rightarrow \mathcal{E}_1/\text{ker}(\sigma)$ is defined by $\nu(x) = x/\text{ker}(\sigma)$, then there is an unique map $\eta : \mathcal{E}_1/\text{ker}(\sigma) \rightarrow \mathcal{E}_2$ such that the following figure is commutative,
(2) $\mathcal{E}_1/\ker(\sigma) \cong \sigma(\mathcal{E}_2)$.

Proof. (1) Define a map $\eta : \mathcal{E}_1/\ker(\sigma) \to \mathcal{E}_2$ by $\eta(x/\ker(\sigma)) = \sigma(x)$. Then we can check that η is well-defined. Indeed, let $x/\ker(\sigma) = y/\ker(\sigma)$, then $x \to_1 y, y \to_1 x \in \ker(\sigma)$. Hence $\sigma(x \to_1 y) = 1, \sigma(y \to_1 x) = 1$. Since σ is strong, then $\sigma(x) \to_2 \sigma(y) = 1, \sigma(y) \to_2 \sigma(x) = 1$, that is $\sigma(x) = \sigma(y)$. Now we prove $\sigma = \eta \nu$. For any $x \in \mathcal{E}_1$, $(\eta \nu)(x) = \eta(\nu(x)) = \eta(x/\ker(\sigma)) = \sigma(x)$, that is, $\sigma = \eta \nu$. Then we shows that η is unique. Assume there is $\xi : \mathcal{E}_1/\ker(\sigma) \to \mathcal{E}_2$ such that $\xi \nu = \sigma$. Then for any $x/\ker(\sigma) \in \mathcal{E}_1/\ker(\sigma)$, we have $\xi(x/\ker(\sigma)) = \xi(\nu(x)) = (\xi \nu)(x) = (\eta \nu)(x) = \eta(x/\ker(\sigma))$.

(2) We only need to prove that η is an EQ-isomorphism from $\mathcal{E}_1/\ker(\sigma)$ to $\sigma(\mathcal{E}_2)$. From Proposition 3.24, we can check that η is an EQ-homomorphism from $\mathcal{E}_1/\ker(\sigma)$ to $\sigma(\mathcal{E}_2)$. Now we prove that η is injective. Let $x/\ker(\sigma) \neq y/\ker(\sigma)$. If $\eta(x/\ker(\sigma)) = \eta(y/\ker(\sigma))$, then $\sigma(x) = \sigma(y)$ and so $\sigma(x \to y) = \sigma(x) \to \sigma(y) = 1$ and $\sigma(y \to x) = \sigma(y) \to \sigma(x) = 1$. This shows that $x \to y, y \to x \in \ker(\sigma)$, and hence $x/\ker(\sigma) = y/\ker(\sigma)$. This contradicts to $x/\ker(\sigma) \neq y/\ker(\sigma)$. Clearly η is surjective.

4. Generalized states and (internal) states on EQ-algebras

In [3], R.A. Borzooei introduced (internal) states on EQ-algebras. Now we discuss the relations between generalized states and (internal) states on EQ-algebras. In this section, we suppose that EQ-algebras are with a bottom element 0.

Definition 4.1. ([3]) Bosbach state on an EQ-algebra \mathcal{E} is a function $s : \mathcal{E} \to [0,1]$ such that the following conditions hold:

- (BS1) $s(x) + s(x \to y) = s(y) + s(y \to x)$, for all $x, y \in \mathcal{E}$,
- (BS2) $s(0) = 0$ and $s(1) = 1$.

Proposition 4.2. ([3]) Let s be a Bosbach state on an EQ-algebra \mathcal{E}. Then the following properties hold, for all $x, y, z \in \mathcal{E}$:

1. $x \leq y$ implies $s(x) \leq s(y)$,
2. $x \leq y$ implies $s(y \to x) = 1 - s(y) + s(x) = s(x \sim y)$.

Proposition 4.3. Let σ be a strong G-state from an EQ-algebra \mathcal{E}_1 to an EQ-algebra \mathcal{E}_2. If s is a Bosbach state on \mathcal{E}_2 then $s \sigma$ is a Bosbach state on \mathcal{E}_1.

Proof. First we prove (BS1). For $x, y \in \mathcal{E}_1$, $(s \sigma)(x) + (s \sigma)(x \to_1 y) = s(\sigma(x)) + s(\sigma(x \to_1 y)) = s(\sigma(x)) + s(\sigma(x) \to_2 \sigma(y)) = s(\sigma(y)) + s(\sigma(x \to_1 y)) = (s \sigma)(y) + (s \sigma)(x \to_1 y)$.

\square
Definition 4.4. ([3]) A state-morphism on an EQ-algebra E is a function $m : E \to [0,1]$ such that:

(SM1) $m(0) = 0$.
(SM2) $m(x \to y) = \min\{1, 1 - m(x) + m(y)\}$.

Proposition 4.5. ([3]) Every state-morphism on an EQ-algebra E is a Bosbach state.

Note that if m is a state-morphism on an EQ-algebra E. Then $m(x^*) = 1 - m(x)$, and $m(x^{**}) = m(x)$ where $x^* = x \to 0$.

Proposition 4.6. Every state-morphism on a good EQ-algebra E is a G-state from E to the EQ-algebra $E_0 = ([0,1], \land_0, \lor_0, \sim_0, 1)$ given in Example 2.4.

Proof. Assume m is a state-morphism on E. By Propositions 4.2(1) and 4.5, (GS1) holds.

Now we check (GS2). Let $x, y \in X$. By Proposition 2.8(6), $y \leq (x \sim x \land y) \sim y$.

By Proposition 4.2(2), we have

$m((x \sim x \land y) \sim y) \sim_0 m(y) = 1 - (m((x \sim x \land y) \sim y) - m(y)) = 1 + m(y) - m((x \sim x \land y) \sim y)$. (*)

By Proposition 2.8(2), $y \leq x \sim x \land y$ and hence

$m((x \sim x \land y) \sim y) = m((x \sim x \land y) \to y) = 1 + m(y) - m(x \sim x \land y)$. (**)

Taking (**) into (*) we can get $m((x \sim x \land y) \sim y) \sim_0 m(y) = m(x \sim x \land y)$. This shows that (GS2) holds.

For (GS3), we have

$m(x) \lor_0 m(x \to x \lor y) = 0 \lor (m(x) + m(x \to x \lor y) - 1) = 0 \lor (m(x) + (1 - m(x) + m(x \lor y)) - 1) = 0 \lor m(x \lor y) = m(x \lor y)$.

Let $x, y \in E$ and $m(x) \leq m(y)$. Then $m(x) \sim_0 m(y) = 1 - |m(x) - m(y)| = 1 - m(y) + m(x) = \min\{1, 1 - m(y) + m(x)\} = m(y \to x)$ and hence $m(x) \sim_0 m(y) \in m(E)$. This shows that (GS4) holds.

(GS5) is obviously true.

For (GS6), we have

$m((x^{**} \to y^{*})^*) = 1 - m(x^{**} \to y^*) = 1 - (1 - m(x^{**}) + m(y^*)) = m(x) + m(y) - 1$. So $m(x) \lor_0 m(y) = 0 \lor (m(x) + m(y) - 1) = 0$ or $m((x^{**} \to y^*)^*)$. It follows that $m(x) \lor_0 m(y) \in m(E)$, that is (GS6).

Example 4.7. Consider the EQ-algebra E_2 given in Example 3.6 and define a map $\sigma : E_2 \to E_2$ by $\sigma(0_2) = 0_2, \sigma(a_2) = a_2, \sigma(b_2) = 1_2, \sigma(1_2) = 1_2$. Then we can see that σ is a GI-state but it is not a state operator. This shows that a GI-state need not be a state operator on an EQ-algebra.

Now we discuss the relations between G-states and state operators on EQ-algebras.
Example 4.8. Consider the EQ-algebra E_1 given in Example 3.6 and the identity map Id_{E_1}. Obviously Id_{E_1} is a state operator of E_1 but it is not a GI-state of E_1 since $1 \odot 1 (1 \rightarrow 1) 1 \odot 1 b = 1 \not\preceq 1 \odot 1 b = b$, that is, (GS3) does not hold. This shows that a state operator need not be a GI-state on an EQ-algebra.

Proposition 4.9. Let E be a good EQ-algebra and μ be a state operator on E. Then μ is a strong GI-state if and only if it satisfies (GS6).

Proof. The necessity is obvious. We prove the sufficiency. Let μ satisfy (GS6). By Lemma 2.16(iii), (GS1) holds.

By (SO3), (GS4) holds.

By (SO4), (GS5) holds.

For (GS3), using Proposition 2.5(5), we have

$\mu(x) \odot \mu(x \rightarrow (x \odot y))$

$= \mu(x) \odot (\mu(x) \sim (\mu(x) \wedge (x \odot y)))$

$= \mu(x) \odot (\mu(x) \sim \mu(x \odot y))$

$= (1 \sim \mu(x)) \odot (\mu(x) \sim \mu(x \odot y))$

$\leq 1 \sim \mu(x \odot y)$

$= \mu(x \odot y)$.

This shows that (GS3) holds.

To prove (GS2), let us consider the following. By Lemma 2.16(iv) and Proposition 2.7(3), $\mu((x \sim x \wedge y) \sim y) \sim \mu(y) = \mu((x \rightarrow y) \rightarrow \mu(y) = ((\mu(x) \rightarrow \mu(y)) \rightarrow \mu(y)) \rightarrow \mu(y) = \mu(x \rightarrow \mu(y) = \mu(x \rightarrow y) = \mu(x \sim x \wedge y)$. This shows that (GS2) holds. Moreover by Lemma 2.17 $\mu^2 = \mu$. Therefore μ is a GI-state. By (SO3), μ is strong.

Proposition 4.10. Let σ be a G-state from a residuated EQ-algebra E_1 to a residuated EQ-algebra E_2.

1. If μ is a state operator on E_1 satisfying (GS6), then $\sigma \mu$ is a G-state from E_1 to E_2.

2. If μ is a state operator on E_1 satisfying (GS6) and σ is strong, then $\sigma \mu$ is a strong G-state from E_1 to E_2.

Proof. (1) It is clear that $\sigma \mu$ satisfies (GS1). For (GS2), we have

$(\sigma \mu)(x \sim_1 (x \wedge_1 y))$

$= \sigma(\mu(x \sim_1 (x \wedge_1 y))$

$= \sigma(\mu(x \rightarrow_1 y))$ (by Lemma 2.16(iv))

$= \sigma(\mu(x) \sim_1 (\mu(x) \wedge (y)))$

$= \sigma((\mu(x) \rightarrow_1 \mu(y)) \sim_1 \mu(y)) \sim_2 \sigma(\mu(y))$ (satisfies (GS2))

$= \sigma(\mu(x) \rightarrow_1 \mu(y)) \sim_2 \sigma(\mu(y))$

$= (\sigma \mu)(x \rightarrow_1 y) \sim_2 (\sigma \mu)(y)$.

Now we check (GS3). Since μ satisfies (GS6), by Proposition 4.9, μ is a strong GI-state on E_1. By proposition 3.24(3), we have $\mu(x \odot_1 y) = \mu(x) \odot_1 \mu(y)$. Hence we have

$(\sigma \mu)(x) \odot_2 (\sigma \mu)(x \rightarrow_1 (x \odot_1 y))$.
Proposition 5.2. \(\text{residuated lattice with internal state.} \)

For any \(\mu \) we have:

\[L(x, y) \]

(\text{Proposition 5.3. \text{eralization of the notion of state residuated lattices.}}

It is easy to check that \(\sigma \mu \) satisfies (GS4),(GS5) and (GS6). Hence \(\sigma \mu \) is a \(G \)-state from \(E_1 \) to \(E_2 \).

Straightforward. \(\square \)

5. Generalized states on \(\text{EQ-algebras and internal states on residuated lattices} \)

In [17], the internal states on residuated lattices are introduced and studied. In this section we discuss the relations between generalized states on \(\text{EQ-algebras} \) and internal states on residuated lattices.

Definition 5.1. ([17]) Let \((L, \wedge, \vee, \odot, \rightarrow, 0, 1) \) be a residuated lattice. A mapping \(\tau : L \rightarrow L \) is called a state operator on \(L \) if it satisfies the following conditions:

(\text{L1}) \(\tau(0) = 0 \),
(\text{L2}) \(x \rightarrow y = 1 \) implies \(\tau(x) \rightarrow \tau(y) = 1 \),
(\text{L3}) \(\tau(x \rightarrow y) = \tau(x) \rightarrow \tau(x \wedge y) \),
(\text{L4}) \(\tau(x \odot y) = \tau(x) \odot \tau(x \rightarrow (x \odot y)) \),
(\text{L5}) \(\tau(\tau(x) \odot \tau(y)) = \tau(x) \odot \tau(y) \),
(\text{L6}) \(\tau(\tau(x) \rightarrow \tau(y)) = \tau(x) \rightarrow \tau(y) \),
(\text{L7}) \(\tau(\tau(x) \vee \tau(y)) = \tau(x) \vee \tau(y) \),
(\text{L8}) \(\tau(\tau(x) \wedge \tau(y)) = \tau(x) \wedge \tau(y) \),

for any \(x, y \in L \).

The pair \((L, \tau) \) is said to be a state residuated lattice, or more precisely, a residuated lattice with internal state.

Proposition 5.2. ([17]) Let \((L, \tau) \) be a state residuated lattice, then for any \(x, y \in L \) we have:

(\text{1}) \(\tau(1) = 1 \),
(\text{2}) \(x \leq y \) implies \(\tau(x) \leq \tau(y) \),
(\text{3}) \(\tau^2(x) = \tau(x) \),
(\text{4}) \(\tau(x \odot y) \geq \tau(x) \odot \tau(y) \) and if \(x \odot y = 0 \), then \(\tau(x \odot y) = \tau(x) \odot \tau(y) \),
(\text{5}) \(\tau(x \odot y^*) \geq \tau(x) \odot (\tau(y)^*)^* \) and if \(x \leq y \), then \(\tau(x \odot y^*) = \tau(x) \odot (\tau(y)^*)^* \),
(\text{6}) \(\tau(x \rightarrow y) \leq \tau(x) \rightarrow \tau(y) \). In particular, if \(x, y \) are comparable, then \(\tau(x \rightarrow y) = \tau(x) \rightarrow \tau(y) \).

The following proposition shows that the notion of state \(\text{EQ-algebras} \) is a generalization of the notion of state residuated lattices.

Proposition 5.3. Let \((L, \wedge, \vee, \odot, \rightarrow, 0, 1) \) be a residuated lattice and \((L, \tau) \) be a state residuated lattice. Then we have the following.

(1) \(\mathcal{E} = (L, \wedge, \odot, \sim, 1) \) is an \(\text{EQ-algebra} \), where the operator \(\sim \) is defined by
\[x \sim y := (x \to y) \land (y \to x), \]

(2) \(\tau \) is a GI-state on the EQ-algebra \(\mathcal{E} \).

Proof. (1) It follows from [27].

(2) It only need to prove that (GS2) holds. Note that \(\tau(x \sim x \land y) = \tau((x \to x \land y) \land (x \land y \to x)) = \tau((x \to x \land y) \land 1) = \tau(x \to x \land y) = \tau(x \to y) \) by Proposition 2.11(12). On the other hand, \(\tau(x \sim x \land y) \sim y \sim \tau(y) = \tau((x \to y) \sim y) \sim \tau(y) = \tau((x \to y) \to y) \sim \tau(y) = \tau((x \to y) \to y) \to \tau(y) = \tau((x \to y) \to y) \to y = \tau(x \to y) \) by Proposition 2.5(15) and Proposition 5.2(6). This shows that (GS2) holds.

Example 5.4. Let \(L = [0,1] \) be the real unit interval. For all \(x, y \in L \), we define \(x \odot y = \min\{x,y\} \) and \(x \to y = \begin{cases} 1, & x \leq y \\ y, & \text{otherwise} \end{cases} \), then \((L,\min,\max,\odot,\to,0,1) \) becomes a residuated lattice, which is called Gödel structure. Now, for any \(a \in L \), we define a map \(\tau_a \) on \(L \) as follows:

\[
\tau_a(x) = \begin{cases} x, & x \leq a \\ 1, & \text{otherwise} \end{cases}.
\]

One can check that \(\tau_a \) is a state operator on \(L \). Therefore, \((L,\tau_a) \) is a state residuated lattice. Denote \(\mathcal{E} = (L,\min,\odot,\to,1) \), where

\[
x \sim y := \min\{x \to y,y \to x\} = \begin{cases} x, & x \leq y \\ 1, & x = y \\ y, & y < x \end{cases}.
\]

By Proposition 5.3, we have that \(\tau_a \) is a GI-state on the EQ-algebra \(\mathcal{E} \).

6. Conclusions

In this paper, we introduced a notion of generalized states on EQ-algebras. We gave a unified model of states and internal states on some important logic algebras. By the arguments in the paper we can see that generalized states on an EQ-algebra not only are generalization of states and internal states on EQ-algebras, but also are generalization of internal states on residuated lattices. Moreover generalized states on an EQ-algebra are state operators on their reductions, as equality algebras and BCK-algebras. Indeed let \((\mathcal{E},\land,\land,\odot,\sim,1) \) be a good EQ-algebra and \(\sigma \) be a GI-state on \(\mathcal{E} \). Then we can get the following results: (1) \((\mathcal{E},\land,\land,\sim,1) \) is an equality algebra and (2) \((\mathcal{E},\land,\sim,\sigma,1) \) is a state equality algebra. At the same time let \((\mathcal{E},\land,\odot,\sim,1) \) be a good EQ-algebra and \(\sigma \) be a GI-state on \(\mathcal{E} \), then we have the following: (3) \((\mathcal{E},\land,\to,1) \) is a BCK-algebra with meet, where \(x \to y = x \sim (x \land y) \), and (4) \((\mathcal{E},\land,\to,\sigma,1) \) is a left state BCK-algebra.

In the next work, it is worthy to portray some types of logic algebras and corresponding logics by use of generalized states.

Acknowledgements. The authors are very grateful to the editor and the anonymous referees for their careful reading and valuable suggestions, which helped to
improve this paper. This research is supported by a grant of National Natural Science Foundation of China (11571281).

References

Generalized states on EQ-algebras

Xiao Long Xin*, School of Mathematics, Northwest University, Xi’an, 710127, China
E-mail address: xlxin@nwu.edu.cn

Madad Khan, Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan
E-mail address: xlxin@nwu.edu.cn

Young Bae Jun, Department of Mathematics Education, Gyeongsang National University, Jinju 660-701, Korea
E-mail address: xlxin@nwu.edu.cn