ON Q-BITOPOLOGICAL SPACES

Document Type: Research Paper

Authors

1 Department of Mathematics, University of Allahabad, Allahabad-211 002, India

2 DST-Centre for Interdisciplinary Mathematical Sciences, Banaras Hindu University, Varanasi-221 005, India

3 Department of Mathematics, Mahatma Gandhi Central University Bihar, East Champaran-845 401, India

Abstract

We study here $T_{0}$-$Q$-bitopological spaces and sober $Q$-bitopological spaces and their relationship with two particular Sierpinski objects in the category of $Q$-bitopological spaces. The epireflective hulls of both these Sierpinski objects in the category of $Q$-bitopological spaces turn out to be the category of $T_0$-$Q$-bitopological spaces. We show that only one of these Sierpinski objects is sober $Q$-bitopological space and its epireflective hull in the category of $T_0$-$Q$-bitopological spaces turns out to be the category of saturated $T_{0}$-$Q$-bitopological spaces.

Keywords


[1] J. Adamek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories, Wiley, 1990.
[2] G. C. L. Brummer, E. Giuli and H. Herrlich, Epireflections which are completions, Cahiers
Topo. Geom. Diff. Categoriques, 33 (1992), 71{93.
[3] G. Castellini, Closure operators, monomorphisms and epimorphisms in categories of groups,
Cahiers Topo. Geom. Diff. Categoriques, 27 (1986), 151{167.
[4] E. Giuli and S. Salbany, 2T0 spaces and closure operators, Seminarberichte Fachbereich Math.
und Inform., Fern Universitat, Hagen, 29 (1988), 11{40.
[5] N. Jacobson, Basic Algebra II, W.H. Freeman and Company, 1980.
[6] A. S. Khastgir and A. K. Srivastava, On two epireflective subcategories of the category of
2T0-fuzzy bitopological spaces, Quaest. Math., 23 (2000), 163{177.
[7] A. S. Khastgir and A. K. Srivastava, On T0-objects in FTS and BFTS, Fuzzy Sets and
Systems, 109 (2000), 301{304.
[8] E. G. Manes, Compact Hausdorff objects, General Topology Appl., 4 (1974), 341{360.
[9] T. Marny, On epireflective subcategories of topological categories, General Topology Appl.,
10 (1979), 175{181.
[10] S. E. Rodabaugh, Functorial comparisons of bitopology with topology and the case for redun-
dancy of bitopology in lattice-valued mathematics, Appl. Gen. Topol., 9 (2008), 77{108.
[11] S. K. Singh and A. K. Srivastava, A characterization of the category Q-TOP, Fuzzy Sets
and Systems, 227 (2013), 46{50.
[12] S. K. Singh and A. K. Srivastava, On Q-sobriety, Quaest. Math., 39 (2016), 179{188.
[13] S. A. Solovyov, Sobriety and spatiality in varieties of algebras, Fuzzy Sets and Systems, 159
(2008), 2567{2585.