Han, Y., Shi, F. (2018). A NEW WAY TO EXTEND FUZZY IMPLICATIONS. Iranian Journal of Fuzzy Systems, 15(3), 79-97. doi: 10.22111/ijfs.2018.3951
Yuan-Liang Han; Fu-gui Shi. "A NEW WAY TO EXTEND FUZZY IMPLICATIONS". Iranian Journal of Fuzzy Systems, 15, 3, 2018, 79-97. doi: 10.22111/ijfs.2018.3951
Han, Y., Shi, F. (2018). 'A NEW WAY TO EXTEND FUZZY IMPLICATIONS', Iranian Journal of Fuzzy Systems, 15(3), pp. 79-97. doi: 10.22111/ijfs.2018.3951
Han, Y., Shi, F. A NEW WAY TO EXTEND FUZZY IMPLICATIONS. Iranian Journal of Fuzzy Systems, 2018; 15(3): 79-97. doi: 10.22111/ijfs.2018.3951
1School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P.R.China and College of Science, North China Institute of Science and Technology, Langfang 065201, P.R.China
2School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P.R.China
Abstract
The main purpose of this paper is to use a new way to extend fuzzy implications $I$ from a generalized sublattice $M$ to a bounded lattice $L$, such that the extended implications preserve many of the considered properties of fuzzy implications on $M$. Furthermore, as a special case, we investigate the extension of $(S,N)-$implications. Results indicate that the extended implications preserve many of the considered properties of $(S,N)$-implications.
[1] M. Baczynski and B. Jayaram, Fuzzy Implications, Studies in Fuzziness and Soft Computing, Springer, Berlin, 231 (2008). [2] M. Baczynski and B. Jayaram, (S;N)- and R-implications: A state-of-the-art survey, Fuzzy Sets Syst., 159 (2008), 1836{1859. [3] M. Baczynski and B. Jayaram, On the characterization of (S;N)-implications, Fuzzy Sets Syst., 158 (2007), 1713{1737. [4] B. C. Bedregal, H. S. Santos and R. Callejas-Bedregal, T-norms on bounded lattices: t-norm morphisms and operators, in: IEEE International Conference on Fuzzy Systems, (2006), 22{28. [5] B. C. Bedregal, G. Beliakov, H. Bustince, J. Fernandez, A. Pradera and R. Reiser, Advances in fuzzy implication functions, in: M. Baczynski, et al.(Eds.), (S;N)-Implications on Bounded Lattices, Studies in Fuzziness and Soft Computing, Springer, Berlin, 300(3) (2013), 769{777. [6] B. C. Bedregal and A. Takahashi, The best interval representations of t-norms and automor- phisms, Fuzzy Sets Syst., 157 (2006), 3220{3230. [7] G. Birkho, Lattice Theory, American Mathematical Society, Providence, RI, 1973. [8] G. Chen and T. T. Pham, Fuzzy Sets, Fuzzy Logic and Fuzzy Control Systems, CRC Press, Boca Raton, 2001. [9] A. Cruz, B. Bedregal and R. Santiago, On the Boolean-like law I(x; I(y; x)) = 1, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 22(2) (2014), 205{215. [10] C. G. Da Costa, B. R. C. Bedregal and A. D. Doria Neto, Relating De Morgan triples with Atanassov's intuitionistic De Morgan triples via automorphisms, Int. J. Approx. Reason., 52(4) (2011), 473{487. [11] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, 2nd ed., Cambridge University Press, Cambridge, 2002. [12] J. Fodor, On fuzzy implication operators, Fuzzy Sets Syst., 42 (1991), 293{300. [13] Y. L. Han, Study on the extension method of fuzzy implications on generalized sublattices, Journal of North China Institute of Science and Technology, 12(3) (2015), 111{115. [14] A. K. Hans-Peter and L. B. Shapiro, On simultaneous extension of continuous partial func- tions, Proc. Am. Math. Soc., 125(6) (1997), 1853{1859. [15] K. Horiuchi and H. Murakami, Extension of the concept of mappings using fuzzy sets, Fuzzy Sets Syst., 56 (1) (1993), 79{88. [16] B. Jayaram, On the law of importation (x^y)!z(x!(y!z)) in fuzzy logic, IEEE Trans- actions on Fuzzy Systems, 16(1) (2008), 130{144. [17] S. Kasahara, A remark on the contraction principle, Proc. Jpn. Acad., 44(1) (1968), 1009{ 1012. [18] E. P. Klement, R. Mesiar and E. Pap, Triangular Norms, Kluwer Academic Publishers, Dordrecht, 2000. [19] H. W. Liu, Semi-uninorms and implications on a complete lattice, Fuzzy Sets Syst., 191 (2012), 72{82. [20] S. Massanet and J. Torrens, The law of importation versus the exchange principle on fuzzy implications, Fuzzy Sets Syst., 168 (2011), 47{69. [21] E. S. Palmeira, B. C. Bedregal, R. Mesiar and J. Fernandez, A new way to extend t-norms, t-conorms and negations, Fuzzy Sets Syst., 240 (2014), 1{21. [22] E. S. Palmeira, B. C. Bedregal, J. Fernandez and A. Jurio, On the extension of lattice valued implications via retractions, Fuzzy Sets Syst., 240 (2014), 66{85. [23] E. S. Palmeira and B. C. Bedregal, Extension of fuzzy logic operators defined on bounded lattices via retractions, Comput. Math. Appl., 63 (2012), 1026{1038. [24] S. Saminger-Platz, E. P. Klement and R. Mesiar, On extension of triangular norms on bounded lattices, Indag. Math., 19(1) (2008), 135{150. [25] Y. Shi, D. Ruan and E. E. Kerre, On the characterizations of fuzzy implications satisfying I(x; y) = I(x; I(x; y)), Information Sci., 177 (2007), 2954{2970.
[26] Y. Su and Z. Wang, Pseudo-uninorms and coimplications on a complete lattice, Fuzzy Sets Syst., 224 (2013), 53{62. [27] Z. D. Wang and Y. D. Yu, Pseudo t-norms and implication operators on a complete Brouw- erian lattice, Fuzzy Sets Syst., 132 (2002), 113{124.