[1] B. F. Arnold, An approach to fuzzy hypothesis testing, Metrika, 44 (1996), 119–126.
[2] B. F. Arnold, Testing fuzzy hypothesis with crisp data, Fuzzy Sets Syst., 9 (1998), 323–333.
[3] J. Behboodian and A. Mohammadpour, Using fuzzy knowledge of a nuisance parameter for
hypothesis testing, Iranian J. Sci. Tech. (Sciences), 29(3) (2005), 433–454.
[4] A. Blanco-Fern´andez, M. R. Casals, A. Colubi, N. Corral, M. Garc´ıa-B´arzana, M. ´A. Gil, G.
Gonz´alez-Rodr´ıguez, M. T. L´opez, M. A. Lubiano, M. Montenegro, A. B. Ramos-Guajardo,
S. De La Rosa de Sa´a and B. Sinova, Random fuzzy sets: a mathematical tool to develop
statistical fuzzy data analysis, Iranian Journal of Fuzzy Systems, 10(2) (2013), 1–28.
[5] A. Blanco-Fern´andez, M. R. Casals, A. Colubi, N. Corral, M. Garc´ıa-B´arzana, M. ´A. Gil, G.
Gonz´alez-Rodr´ıguez, M. T. L´opez, M. A. Lubiano, M. Montenegro, A. B. Ramos-Guajardo,
S. De La Rosa de S´aa and B. Sinova, A distance-based statistical analysis of fuzzy number
valued data, Int. J. Approx. Reason., 55 (2014), 1601–1605.
[6] J. Chachi and S. M. Taheri, Fuzzy confidence intervals for mean of Gaussian fuzzy random
variables, Expert Syst. Appl., 38 (2011), 5240–5244.
[7] J. Chachi, S. M. Taheri and R. Viertl, Testing statistical hypotheses based on fuzzy confidence
intervals, Austrian J. Stat., 41 (2012), 267–286.
[8] S. De La Rosa de Sa´a, M. ´A. Gil, G. Gonz´alez-Rodr´ıguez, M. T. L´opez and M. A. Lubiano,
Fuzzy rating scale-based questionnaires and their statistical analysis, IEEE Tran. Fuzzy Syst.,
23(1) (2015), 111–126.
[9] P. Filzmoser and R. Viertl, Testing hypotheses with fuzzy data: the fuzzy p-value, Metrika,
59 (2004), 21–29.
[10] M. ´A. Gil, M. Montenegro, G. Gonz´alez-Rodr´ıguez, A. Colubi M. R. Casals, Bootstrap approach
to the multi-sample test of means with imprecise data, Comput. Stat. Data Anal., 51
(2006), 148–162.
[11] G. Gonz´alez-Rodr´ıguez, M. Montenegro, A. Colubi and M. ´A. Gil, Bootstrap techniques and
fuzzy random variables: Synergy in hypothesis testing with fuzzy data, Fuzzy Sets Syst., 157
(2006), 2608–2613.
[12] P. Grzegorzewski, Statistical inference about the median from vague data, Control and Cybernetics,
27 (1998), 447–464.
[13] P. Grzegorzewski, Testing statistical hypotheses with vague data, Fuzzy Sets Syst., 112 (2000),
501–510.
[14] P. Grzegorzewski, K-Sample median test for vague data, Int. J. Intell. Syst., 24 (2009),
529–539.
[15] O. Hryniewicz, Goodman-Kruskal measure of dependence for fuzzy ordered categorical data,
Comput. Stat. Data Anal., 51 (2006), 323–334.
[16] O. Hryniewicz, Possibilistic decisions and fuzzy statistical tests, Fuzzy Sets Syst., 157 (2006),
2665–2673.
[17] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice-Hall,
NJ, 1995.
[18] R. Kruse and K. D. Meyer, Statistics with Vague Data, Riedel Publishing, NY, 1987.
[19] E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses, 3th ed., Springer, 2005.
[20] M. A. Lubiano, S. De La Rosa De S´aa, M. Montenegro, B. Sinova and M. ´A. Gil, Descriptive
analysis of responses to items in questionnaires. Why not using a fuzzy rating scale?, Inf.
Sci., 360 (2016), 131–148.
[21] M. A. Lubiano, M. Montenegro, B. Sinova, S. De La Rosa De S´aa and M.´A. Gil, Hypothesis
testing for means in connection with fuzzy rating scale-based data: algorithms and applications,
Europ. J. Oper. Res., 251 (2016), 918–929.
[22] M. A. Lubiano, A. Salas and M. ´A. Gil, A hypothesis testing-based discussion on the sensitivity
of means of fuzzy data with respect to data shape, Fuzzy Sets Syst., 328 (2017),
54-69.
[23] M. Montenegro, M. R. Casals, M. A. Lubiano and M. ´A. Gil, Two-sample hypothesis tests of
means of a fuzzy random variable, Inf. Sci., 133 (2001), 89–100.
[24] M. Montenegro, A. Colubi, M. R. Casals and M. ´A. Gil, Asymptotic and Bootstrap techniques
for testing the expected value of a fuzzy random variable, Metrika, 59 (2004), 31–49.
[25] A. Parchami, S. M. Taheri and M. Mashinchi, Fuzzy p-value in testing fuzzy hypotheses with
crisp data, Stat. Papers, 51 (2010), 209–226.
[26] A. Parchami, S. M. Taheri, B. Sadeghpour Gildeh and M. Mashinchi, A simple but efficient
approach for testing fuzzy hypotheses, J. Uncertainty Anal. Appl., 4(2) (2016), 1–16.
[27] M. L. Puri and D. A. Ralescu, Fuzzy random variables, J. Math. Anal. Appl., 114 (1986),
409–422.
[28] P. Royston, An extension of Shapiro and Wilk’s W test for normality to large samples, Appl.
Stat., 31 (1982), 115–124.
[29] S. M. Taheri, Trends in fuzzy statistics, Austrian J. Stat., 32 (2003), 239–257.
[30] S. M. Taheri and M. Arefi, Testing fuzzy hypotheses based on fuzzy test statistic, Soft Computing,
13 (2009), 617–625.
[31] S. M. Taheri and J. Behboodian, Neyman-Pearson Lemma for fuzzy hypothesis testing,
Metrika, 49 (1999), 3–17.
[32] S. M. Taheri and J. Behboodian, A Bayesian approach to fuzzy hypotheses testing, Fuzzy
Sets Syst., 123 (2001), 39–48.
[33] S. M. Taheri and G. Hesamian, Goodman-Kruskal measure of association for fuzzycategorized
variables, Kybernetika, 47 (2011), 110–122.
[34] S. M. Taheri and G. Hesamian, A generalization of the Wilcoxon signed-rank test and its
applications, Stat Papers, 54 (2013), 457–470.
[35] H. Torabi, J. Behboodian and S. M. Taheri, Neyman-Pearson Lemma for fuzzy hypothesis
testing with vague data, Metrika, 64 (2006), 289–304.
[36] W. Trutschnig, M. A. Lubiano and J. Lastra, SAFD: An R package for statistical analysis
of fuzzy data, in: Borgelt C., Gil M., Sousa J., Verleysen M. (eds.), Towards Advanced Data
Analysis by Combining Soft Computing and Statistics. Heidelberg, Germany: Springer, 285
(2013), 107-118.
[37] R. Viertl, Univariate statistical analysis with fuzzy data, Comput. Stat. Data Anal., 51
(2006), 133–147.
[38] R. Viertl, Statistical Methods for Fuzzy Data, John Wiley and Sons, Chichester, 2011.
[39] X. Wang and E. E. Kerre, Reasonable properties for the ordering of fuzzy quantities (II),
Fuzzy Sets Syst., 118 (2001), 387–405.
[40] H. C. Wu, Statistical hypotheses testing for fuzzy data, Inf. Sci., 175 (2005), 30–57.
[41] H. C. Wu, Statistical confidence intervals for fuzzy data, Expert Syst. Appl., 36 (2009),
2670–2676.
[42] S. Yosefi, M. Arefi and M. G. Akbari, A new approach for testing fuzzy hypotheses based on
likelihood ratio statistic, Stat Papers, 57 (2016), 665–688.
[43] Y. Yuan, Criteria for evaluating fuzzy ranking methods, Fuzzy Sets Syst., 43 (1991), 139–157.
[44] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353.