A PRIMER ON FUZZY OPTIMIZATION MODELS AND METHODS

Document Type: Research Paper

Authors

1 Departamento de Ingenier´ıa de la Informaci´on y las Comunicaciones. Facultad de Inform´atica., Universidad de Murcia., Campus de Espinardo. 30071-Espinardo. Murcia, Spain

2 Departamento de Ciencias de la Computaci´on e Inteligencia Artificial. E.T.S. de Ingenier´ıa Inform´atica, Universidad de Granada., 18071. Granada, Spain

Abstract

Fuzzy Linear Programming models and methods has been one of
the most and well studied topics inside the broad area of Soft Computing. Its
applications as well as practical realizations can be found in all the real world
areas. In this paper a basic introduction to the main models and methods in
fuzzy mathematical programming, with special emphasis on those developed
by the authors, is presented. As a whole, Linear Programming problems with
fuzzy costs, fuzzy constraints and fuzzy coefficients in the technological matrix
are analyzed. Finally, future research and development lines are also pointed
out by focusing on fuzzy sets based heuristic algorithms.

Keywords


[1] R. E. Bellman and L. A. Zadeh, Decision making in a fuzzy environment, Management
Science, 17 (B) 4 (1970), 141–164.
[2] A. Blanco, D. Pelta and J. L. Verdegay, Applying a fuzzy sets-based Heuristic to the protein
structure prediction problem, Int’l Journal of Intelligent Systems, 17 (2002), 629–643.
[3] A. Blanco, D. Pelta and J. L. Verdegay, A fuzzy valuation-based local search framework for
combinatorial problems, Fuzzy Optimization and Decision Making, 1 (2002), 177–193.
[4] J. M. Cadenas and J. L. Verdegay, Using fuzzy numbers in linear programming, IEEE Transactions
on Systems, Man, and Cybernetics, 27 (B) 6 (1997), 1017–1022.
[5] J. M. Cadenas and J. L. Verdegay, Modelos de optimizaci´on con datos i mprecisos, Univesidad
de Murcia, Servicio de Publicaciones, 1999.
[6] L. Campos, Modelos de la PLD para la resoluci´on de juegos matriciales imprecisos, Tesis
doctoral, Universidad de Granada, 1986.
[7] L. Campos and J. L. Verdegay, Linear programming problems and ranking of fyzzy numbers,
Fuzzy Sets and Systems, 32 (1989), 1–11.
[8] M. Delgado, J. L. Verdegay and M. A. Vila, Imprecise costs in mathematical programming
problems, Control and Cybernet, 16 (2)(1987), 113–121.
[9] M. Delgado, J. L. Verdegay and M. A. Vila, A general model for fuzzy linear programming,
Fuzzy Sets and systems, 29 (1989), 21–29.
[10] M. Delgado, J. L. Verdegay and M. A. Vila, Relating different approaches to solve linear
programming problems with imprecise costs, Fuzzy Sets and Systems, 37 (1990), 33–42.
[11] M. Delgado, F. Herrera, J. L. Verdegay and M. A. Vila, Post-optimality analisys on the
membership function of a fuzzy linear programming problema, Fuzzy Sets and Systems, 53
(1993), 289–297.
[12] D. Dubois and H. Prade, Operations on fuzzy numbers, International Journal Systems Science,
9 (1978), 613–626.
[13] D. Dubois and H. Prade, Fuzzy sets and systems. theory and applications, Academic Press,
1980.
[14] D. Dubois and H. Prade, Ranking of fuzzy numbers in the setting of possibility theory, Information
Science, 30 (1983), 183–244.
[15] D. Dubois and H. Prade, The mean value of a fuzzy number, Fuzzy Sets and Systems, 24
(1987), 279–300.
[16] M. Fedrizzi, J. Kacprzyk and J. L. Verdegay, A survey of fuzzy optimization and fuzzy
mathematical programming, In: Fedrizzi M, Kacprzyk J, Roubens M (eds) Interactive Fuzzy
Optimization, Springer Verlag, Berlin, 1991.
[17] A. Gonz´alez, M´etodos subjetivos para la comparaci´on de N´umeros difusos, Tesis doctoral,
Universidad de Granada, 1988.
[18] A. Gonz´alez, A studing of the ranking function approach through mean values, Fuzzy Sets
and Systems, 35 (1990), 29–41.
[19] F. Herrera, M. Kovacs and J. L. Verdegay, Fuzzy linear programming problems with homogeneous
linear fuzzy functions, Presented to IPMU’92, 1992.
[20] H. Ishibuchi and H. Tanaka, Multipleobjective programming in optimization of the interval
objective function, EJOR, 48 (1990), 219–225.
[21] D. Pelta, A. Blanco and J. L. Verdegay, Fuzzy adaptive neighborhood search: Examples of
application, In J. L. Verdegay, editor, Fuzzy Sets based Heuristics for Optimization, Studies
in Fuzziness and Soft Computing ,Physica-Verlag, 2003.

[22] I. Requena, Redes neuronales en problemas de decisi´on con ambiente difuso, Tesis doctoral,
Universidad de Granada, 1992.
[23] H. Rommelfanger, R. Hanuscheck and J. Wolf, Linear programming with fuzzy objectives
Fuzzy Sets and Systems, 29 (1990), 31–48.
[24] A. Sancho-Royo, J. L. Verdegay and E. Vergara, Some practical problems in fuzzy sets-based
DSS, MathWare and Soft Computing VI, 2-3 (1999), 173–187.
[25] H. Tanaka, T. Okuda and K. Asai, On fuzzy mathematical programming, Journal of Cybernetics,
3 (4) (1974), 37–46.
[26] H. Tanaka, H. Ichihashi and F. Asai, A formulation of fuzzy linear programming problems
based a comparison of fuzzy numbers, Control and Cybernet, 13 (1984), 185–194.
[27] J. L. Verdegay, Fuzzy mathematical programming In: Gupta MM , Sanchez E (eds) Fuzzy
Information and Decisi´on Processes, 1982.
[28] J. L. Verdegay and E. Vergara, Fuzzy termination criteria in knapsack problem algorithms,
Mathware and Soft Computing, 2-3 (2000), 89–97.
[29] J. L. Verdegay and E. Vergara, Fuzzy sets-based control rules for terminating algorithms,
Comp. Science Journal, 10 (1) (2002), 9–27.
[30] J. L. Verdegay, Fuzzy sets based heuristics for optimization, Studies in Fuzziness and Soft
Computing, Springer Verlag, 2003.
[31] X. Wang and E. Kerre, On the classification and the dependencies of the ordering methods,
In: Ruan D (ed) Fuzzy Logic Foundation and Industrial Applications, International Series in
Intelligent Technologies. Kluwer, 1996.
[32] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353.
[33] L. A. Zadeh, The concept of a linguistic variable and its applications to approximate reasoning,
Part I, Information Sciences, 8 (1975), 199–249. Part II, Information Sciences, 8 (1975),
301–357. Part III, Information Sciences, 9 (1975), 43–80.
[34] Q. Zhu and E. S. Lee, Comparison and ranking of fuzzy numbers, In: Kacprzyk J, Fedrizzi
M (eds) Fuzzy Regression Analysis, Onmitech Press Warsan and Physica-Verlag, 1992.
[35] H. J. Zimmermann, Optimization in fuzzy environments. Presentado al XXI International
TIMS and 46th ORSA Conference, San Juan, Puerto Rico, 1974.
[36] H. J. Zimmermann, Description and optimization of fuzzy systems, International Journal of
General Systems, 2(1976), 209–215.
[37] H. J. Zimmermann, Fuzzy sets, decision making and expert systems, Kluwer Academic Publishers,
Boston, 1987.