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A TRANSITION FROM TWO-PERSON ZERO-SUM GAMES TO

COOPERATIVE GAMES WITH FUZZY PAYOFFS

A. C. CEVIKEL AND M. AHLATCIOGLU

Abstract. In this paper, we deal with games with fuzzy payoffs. We proved

that players who are playing a zero-sum game with fuzzy payoffs against Nature

are able to increase their joint payoff, and hence their individual payoffs by
cooperating. It is shown that, a cooperative game with the fuzzy characteristic

function can be constructed via the optimal game values of the zero-sum games
with fuzzy payoffs against Nature at which players’ combine their strategies

and act like a single player. It is also proven that, the fuzzy characteristic

function that is constructed in this way satisfies the superadditivity condition.
Thus we considered a transition from two-person zero-sum games with fuzzy

payoffs to cooperative games with fuzzy payoffs. The fair allocation of the

maximum payoff (game value) of this cooperative game among players is done
using the Shapley vector.

1. Introduction

Game theory has been used as a powerful analytical tool for such decision mak-
ing problems of the organizations or competitive systems [9, 10, 19]. When a game
theoretic approach is used as a resolution method for decision making problems, it
is important to examine which solution concept we should employ, and the corre-
sponding computational methods for obtained the solutions are also indispensable
for implementing the results of the examination.

The results of analysis and resolution of decision making problems are not always
appropriate and suitable for the real life problems if parameters of mathematical
models for the decision making problems are determined without considering the
uncertainty and the imprecision likely to occur in the competitive systems. There-
fore, taking into the uncertainty and the imprecision of information of the deci-
sion making problem in the competitive systems and the ambiguity in the decision
makers’ judgments, analysts of the decision making problem may be requested to
formulate the mathematical models under fuzzy environments.

With the develop of the fuzzy theory [8, 16, 17, 18, 24, 25], ambiguous events
which are not probability events can be represented as fuzzy sets. As a result,
the ambiguity in decision makers’ judgments and the uncertainty, as well as, the
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imprecision of information in competitive systems can be treated explicitly in op-
timization problems with a single decision maker.

Research of game theory in fuzzy environments has been accumulating since
the mid 1970s. In noncooperative fuzzy games, ambiguity for a player’s choice of
a strategy, vagueness of preference for a payoff and imprecision of payoff repre-
sentation have been represented as a fuzzy sets. Cooperative fuzzy games, games
with fuzzy coalitions, mean that players are admitted to participating partially in
a coalition and games with fuzzy payoffs have been also considered.

Butnariu was the first to study two-person noncooperative games in a fuzzy
environment [5], claiming that all of one player’s strategies are not equally possible
and the grade of membership of a strategy is dependent on the behavior of the
opponent. He also considered the case where the set of strategies of the player
could be seen as a fuzzy set. Buckley analyzed the behavior of decision makers
using two-person fuzzy games similar to Butnariu’s [4].

Campos examined maximin problems of the two-person zero-sum fuzzy games,
in which the elements of the payoff matrix were represented as fuzzy numbers, and
employed the fuzzy linear programming methods in order to compute the maximin
solutions [6]. Later extended by Nishizaki and Sakawa for the multiobjective sit-
uation [14, 15, 20, 21]. In the literature there are many models of the two-person
zero-sum fuzzy games with fuzzy payoffs [3, 7, 11, 12, 13].

The research of cooperative fuzzy games began with introducing fuzzy coalitions.
Aubin and Butnariu have been studying cooperative fuzzy games independently
from about the same time. Aubin investigated the core and Shapley value [23]
for n-person cooperative games with fuzzy coalitions in his book [1], after he had
published some articles on the related topics [1, 2].

This paper is related to the research fields both of zero-sum games with fuzzy
payoff and cooperative games with fuzzy payoff. We proved that players who are
playing a zero-sum game with fuzzy payoffs against nature are able to increase their
joint payoff, and hence their individual payoffs by cooperating. It is shown that, a
cooperative game with the fuzzy characteristic function can be constructed via the
optimal game values of the zero-sum games with fuzzy payoffs against nature at
which players’ combine their strategies and act like a single player. It is also proven
that, the fuzzy characteristic function that is constructed in this way satisfies the
superadditivity condition. Thus we considered a transition from two-person zero-
sum games with fuzzy payoffs to cooperative games with fuzzy payoffs. The fair
allocation of the maximum payoff (game value) of this cooperative game among
players is done using the Shapley vector.

2. A Transition from Two-person Zero-sum Games with Fuzzy Payoffs
to Cooperative Games with Fuzzy Payoffs

Definition 2.1. (Zero-sum game with fuzzy payoffs): When Player I chooses a
pure strategy i ∈ I and Player II chooses a pure strategy j ∈ J , let ãij be fuzzy
payoff for Player I. The fuzzy payoff ãij is represented by the triangular fuzzy
number

ãij = ((aij)l , aij , (aij)u) (1)

where aij is a mean value, (aij)l is a left spread and (aij)u is a right spread.
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The two-person zero-sum fuzzy game can be represented as a fuzzy payoff matrix

Ã =

 ã11 ... ã1n

... ... ...
ãm1 ... ãmn

 .
(2)

The game defined by (2) is called a two-person zero-sum game with fuzzy
payoffs.

When each of the players chooses a strategy, a payoff for each of them is repre-
sented as a fuzzy number, but an outcome of the game has a zero-sum structure
such that, when one player receives a gain the order player suffers an equal loss
[22].

Let Player A’s strategies are Ai, (i = 1, ...,m), Player B’s strategies are Bj ,
(j = 1, ..., n), Nature’s strategies are Nk, (k = 1, ..., l) and

HA(Ai, Nk) = ãik, i = 1, ...,m, k = 1, ..., l (3)

and

HB(Bj , Nk) = b̃jk, j = 1, ..., n, k = 1, ..., l (4)

be payoff matrices of Player A and B, respectively.
Let the probability in which A chooses be Ai xi, (i = 1, ...,m), the probability

in which B chooses be Bj yj , (j = 1, ..., n), the probability in which D chooses be
Dk zk, (k = 1, ..., l) and the payoff functions of the players A and B be

HA (x, z) =
∑
i

∑
k

xiãikzk (5)

and
HB (y, z) =

∑
j

∑
k

yj b̃jkzk, (6)

respectively. Here xi, yj , zk ≥ 0, i = 1, ...,m, j = 1, ..., n, k = 1, ..., l and
m∑
i=1

xi = 1,

n∑
j=1

yj = 1,

l∑
k=1

zk = 1. (7)

Also each of the vectors

x = (x1, ..., xm) , y = (y1, ..., yn) and z = (z1, ..., zl) (8)

represents one probability distribution.
Let

max
x

min
z
HA (x, z) = HA

(
x0, zA

)
= ṽ ({A}) (9)

and

max
y

min
z
HB (y, z) = HB

(
y0, zB

)
= ṽ ({B}) . (10)

Hence
(
x0, zA

)
and

(
y0, zB

)
, refer the equilibrium solutions Player A and Player

B play in the game against Nature, respectively. We have the following inequalities
since the player who changes the equilibrium solution loses. When the Nature
player changes its strategy, namely changing the equilibrium, the gain of the Nature
decreases while the gain of the opponents increase.

HA

(
x0, zA

)
≤ HA

(
x0, z

)
(11)
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and

HB

(
y0, zB

)
≤ HB

(
y0, z

)
(12)

The ranking here can change according to the preference of the decision maker.
The decision maker, according to the ranking of prefers

(Mean value, Right spread, Left spread) ,

(Mean value, Left spread, Right spread) ,

(Right spread, Mean value, Left spread) ,

(Right spread, Left spread, Mean value) ,

(Left spread, Mean value, Right spread) ,

(Left spread, Right spread, Mean value) ,

any of those ranking. When player D (Nature) uses Dk strategy, let player A play

Ai and player B play Bj . In this case, coalition A ∪B gets the value of ãik + b̃jk.
Let the probability to be played for the strategies Ai, Bj and Dk, respectively,

be xi, yj and zk. Thus, the payoff function of the coalition is

HA∪B (xΘy, z) =
∑
i

∑
j

∑
k

xiyj

(
ãik + b̃jk

)
zk. (13)

Here the vector xΘy = (x1y1, ..., xiyj , ..., xmyn) is the probability distribution vec-
tor.

That is,

xi ≥ 0, yj ≥ 0⇒ xiyj ≥ 0, and

m∑
i

n∑
j

xiyj =

m∑
i

xi

n∑
j

yj = 1 , for ∀i, j.
(14)

Let the maximum gain that player A and B would get against Nature be

max
xΘy

min
z
HA∪B (xΘy, z) = HA∪B (x∗Θy∗, z∗) = ṽ ({A} ∪ {B}) . (15)

Here (x∗Θy∗, z∗) is the equilibrium solution of the game. The player who changes
the equilibrium loses.
S is a coalition and let the mixed vector of the coalition strategies of S be w,

then the maximum gain that coalition S would get against Nature is

max
w

min
z
HS (w, z) = ṽ ({S}) . (16)

Definition 2.2. (The characteristic function of the cooperative game): As shown
above, the gain player A and B would get against Nature are

max
x

min
z
HA (x, z) = ṽ ({A}) (17)

max
y

min
z
HB (y, z) = ṽ ({B}) (18)

respectively. Let the vector

xΘy = (x1y1, ..., xiyj , ..., xmyn) (19)
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be probability distribution vector, then the value of the game that players A and
B can be obtained. Similarly, let the mixed vector of the S ⊂ I coalition be w. In
this case, the gain that S ⊂ I coalition would obtain is

max
w

min
z
HS (w, z) = ṽ ({S}) . (20)

Hence the optimal value of the game of the zero-sum games played against Nature
determines the ṽ fuzzy characteristic function of the cooperative games with fuzzy
payoffs.

Theorem 2.3. ṽ fuzzy characteristic function cooperative game is a supperadditive
game, that is;

ṽ ({A} ∪ {B}) ≥ ṽ ({A}) + ṽ ({B}) . (21)

Proof. Here whichever ranking criteria the decision maker prefers, the theory is
valid under the condition in which the decision maker uses the same ranking in all
the steps of the operations.

If the coalition changes the equilibrium the gain of the coalition decreases be-
cause the equilibrium solution of the game is (x∗Θy∗, z∗). If Nature changes the
equilibrium, the gain of the coalition increases.

Then,

HA∪B
(
x0Θy0, z∗

)
≤ HA∪B (x∗Θy∗, z∗) = ṽ ({A} ∪ {B}) ≤ HA∪B (x∗Θy∗, z) ,

HA∪B (x∗Θy∗, z) =
∑
i

∑
j

∑
k

x∗i y
∗
j

(
ãik + b̃jk

)
zk ≥

∑
i

∑
j

∑
k

x0i y
0
j

(
ãik + b̃jk

)
zk

=
∑
k

[∑
i

∑
j

x0i y
0
j ãik +

∑
i

∑
j

x0i y
0
j b̃jk

]
zk

=
∑
k

[∑
i

x0i ãik

(∑
j

y0j

)
+
∑
j

y0j b̃jk

(∑
i

x0i

)]
zk

=
∑
k

[∑
i

x0i ãik +
∑
j

y0j b̃jk

]
zk

=
∑
k

∑
i

x0i ãikzk +
∑
k

∑
j

y0j b̃jkzk

= HA

(
x0, z

)
+HB

(
y0, z

)
,

HA∪B (x∗Θy∗, z) ≥ HA

(
x0, z

)
+HB

(
y0, z

)
.

If we make the minimum of the both sides of the inequality according to z, then

min
z
HA∪B (x∗Θy∗, z) ≥ min

z
{HA

(
x0, z

)
+HB

(
y0, z

)
}

≥ min
z
HA

(
x0, z

)
+ min

z
HB

(
y0, z

)
ṽ ({A} ∪ {B}) ≥ ṽ ({A}) + ṽ ({B}) .

This proves that the ṽ fuzzy characteristic function cooperative game is a supper-
additive. �
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3. The Fair Share Among Players of the Maximum Gain by Zero-sum
Games with Fuzzy Payoffs Against Nature

In this section, we study the fair share of the maximum profit by zero-sum
games with fuzzy payoffs against Nature at the rate that players contribute. The
fair share of the maximum gain by the coalition among the players is done using
Shapley vector.

Let the set of the players against Nature be I = {A,B,C} and the strategies of
A be Ai (i = 1, ...,m), the strategies of B be Bj (j = 1, ..., n), the strategies of C
be Ck (k = 1, ..., l) and the strategies of Nature be Dr (r = 1, ..., s). The gain that
they would get against Nature together or alone is

ṽ ({∅}) , ṽ ({A}) , ṽ ({B}) , ṽ ({C}) , ṽ ({A,B}) ,
ṽ ({A,C}) , ṽ ({B,C}) , ṽ ({A,B,C}) . (22)

The fair share of the maximum gain by the coalition among the players will be done
using the Shapley vector. Here, for the fuzzy value of ṽ ({A,B,C}) according to
the vl left spread, v medium and vu right spread values are

φi (vl) =
∑
i∈S

(n− |S|)!
n!

[vl (S)− vl (S \ {i})] ,

φi (v) =
∑
i∈S

(n− |S|)!
n!

[v (S)− v (S \ {i})] ,

φi (vu) =
∑
i∈S

(n− |S|)!
n!

[vu (S)− vu (S \ {i})] (23)

respectively. Shapley vectors are calculated as follows.
The share of the player A is

φA (vl) =
1

3
[vl ({A})− vl ({∅})] +

1

6
[vl ({A,B})− vl ({B})] +

1

6
[vl ({A,C})− vl ({C})] +

1

3
[vl ({A,B,C})− vl ({B,C})] ,

φA (v) =
1

3
[v ({A})− v ({∅})] +

1

6
[v ({A,B})− v ({B})] +

1

6
[v ({A,C})− v ({C})] +

1

3
[v ({A,B,C})− v ({B,C})] ,

φA (vu) =
1

3
[vu ({A})− vu ({∅})] +

1

6
[vu ({A,B})− vu ({B})] +

1

6
[vu ({A,C})− vu ({C})] +

1

3
[vu ({A,B,C})− vu ({B,C})] .

The share of the player B is

φB (vl) =
1

3
[vl ({B})− vl ({∅})] +

1

6
[vl ({A,B})− vl ({A})] +

1

6
[vl ({B,C})− vl ({C})] +

1

3
[vl ({A,B,C})− vl ({A,C})] ,
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φB (v) =
1

3
[v ({B})− v ({∅})] +

1

6
[v ({A,B})− v ({A})] +

1

6
[v ({B,C})− v ({C})] +

1

3
[v ({A,B,C})− v ({A,C})] ,

φB (vu) =
1

3
[vu ({B})− vu ({∅})] +

1

6
[vu ({A,B})− vu ({A})] +

1

6
[vu ({B,C})− vu ({C})] +

1

3
[vu ({A,B,C})− vu ({A,C})] .

The share of the player C is

φC (vl) =
1

3
[vl ({C})− vl ({∅})] +

1

6
[vl ({A,C})− vl ({A})] +

1

6
[vl ({B,C})− vl ({B})] +

1

3
[vl ({A,B,C})− vl ({A,B})] ,

φC (v) =
1

3
[v ({C})− v ({∅})] +

1

6
[v ({A,C})− v ({A})] +

1

6
[v ({B,C})− v ({B})] +

1

3
[v ({A,B,C})− v ({A,B})] ,

φC (vu) =
1

3
[vu ({C})− vu ({∅})] +

1

6
[vu ({A,C})− vu ({A})] +

1

6
[vu ({B,C})− vu ({B})] +

1

3
[vu ({A,B,C})− vu ({A,B})] .

Example 3.1. Let the strategies of the player A be A1, A2, A3 the strategies of
the player B be B1, B2 the strategies of the player C be C1, C2 the strategies of
the player Nature be D1, D2, D3, D4 and let the payoff matrices of the players A,B
and C against Nature be

(A,D) =

 (5.9, 6, 6.1) (6.8, 7, 7.1) (2.8, 3, 3.1) (8.8, 9, 9.1)
(8.7, 9, 9.2) (8.8, 9, 9.3) (6.9, 7, 7.1) (6.9, 7, 7.2)
(1.7, 2, 2.2) (5.8, 6, 6.2) (6.8, 7, 7.1) (6.7, 7, 7.1)

 ,
(24)

(B,D) =

(
(6.8, 7, 7.1) (7.9, 8, 8.2) (7.9, 8, 8.2) (3.9, 4, 4.2)
(5.7, 6, 6.2) (7.8, 8, 8.1) (5.8, 6, 6.1) (2.8, 3, 3.1)

)
, (25)

(C,D) =

(
(1.9, 2, 2.2) (7.9, 8, 8.2) (3.8, 4, 4.1) (0.9, 1, 1.2)
(2.8, 3, 3.1) (0.7, 1, 1.2) (8.8, 9, 9.1) (4.8, 5, 5.2)

)
, (26)

respectively.

Let the ranking preference of the decision maker be (medium, right spread, left
spread). When players A,B and C play individually against Nature, the optimal
values of the games are respectively,

ṽ ({A}) = (6.9, 7, 7.1) , (27)

ṽ ({B}) = (3.9, 4, 4.2) , (28)

ṽ ({C}) = (2.5, 2.75, 2.875) . (29)
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The game matrix when players A and B set coalition against Nature is

(A ∪B,D) =
(12.7, 13, 13.2) (14.7, 15, 15.3) (10.7, 11, 11.3) (12.7, 13, 13.3)
(11.6, 12, 12.3) (14.6, 15, 15.2) (8.6, 9, 9.2) (11.6, 12, 12.2)
(15.5, 16, 16.3) (16.7, 17, 17.5) (14.8, 15, 15.3) (10.8, 11, 11.4)
(14.4, 15, 15.4) (16.6, 17, 17.4) (12.7, 13, 13.2) (9.7, 10, 10.3)

(8.5, 9, 9.3) (13.7, 14, 14.4) (14.7, 15, 15.3) (10.6, 11, 11.3)
(7.4, 8, 8.4) (13.6, 14, 14.3) (12.6, 13, 13.2) (9.5, 10, 10.2)


(30)

Here, pure strategies correspond to the rows and the columns of matrix for
A1B1, A1B2, A2B1, A2B2, A3B1, A3B2 and D1, D2, D3, D4, respectively.

The game matrix when players A and C set coalition against Nature is

(A ∪ C,D) =
(7.8, 8, 8.3) (14.7, 15, 15.3) (6.6, 7, 7.2) (9.7, 10, 10.3)
(8.7, 9, 9.2) (7.5, 8, 8.3) (11.6, 12, 12.2) (13.6, 14, 14.3)

(10.6, 11, 11.4) (16.7, 17, 17.5) (10.7, 11, 11.2) (7.8, 8, 8.4)
(11.5, 12, 12.3) (9.5, 10, 10.5) (15.7, 16, 16.2) (11.7, 12, 12.4)

(3.6, 4, 4.4) (13.7, 14, 14.4) (10.6, 11, 11.2) (7.6, 8, 8.3)
(4.5, 5, 5.3) (6.5, 7, 7.4) (15.6, 16, 16.2) (11.5, 12, 12.3)


(31)

Here, pure strategies correspond to the rows and the columns of matrix for
A1C1, A1C2, A2C1, A2C2, A3C1, A3C2 and D1, D2, D3, D4, respectively.

The game matrix when players B and C set coalition against Nature is

(B ∪ C,D) =
(8.7, 9, 9.3) (15.8, 16, 16.4) (11.7, 12, 12.3) (4.8, 5, 5.4)

(9.6, 10, 10.2) (8.6, 9, 9.4) (16.7, 17, 17.3) (8.7, 9, 9.4)
(7.6, 8, 8.4) (15.7, 16, 16.3) (9.6, 10, 10.2) (3.7, 4, 4.3)
(8.5, 9, 9.3) (8.5, 9, 9.3) (14.6, 15, 15.2) (7.6, 8, 8.3)


(32)

Here, pure strategies correspond to the rows and the columns of matrix for
B1C1, B1C2, B2C1, B2C2 and D1, D2, D3, D4, respectively.

The game matrix when players A,B and C set coalition against Nature is

(A ∪B ∪ C,D) =

(14.6, 15, 15.4) (22.6, 23, 23.5) (14.5, 15, 15.4) (13.6, 14, 14.5)
(15.6, 16, 16.3) (15.4, 16, 16.5) (19.5, 20, 20.4) (17.5, 18, 18.5)
(13.5, 14, 14.5) (22.5, 23, 23.4) (12.4, 13, 13.3) (12.5, 13, 13.4)
(14.4, 15, 15.4) (15.3, 16, 16.4) (17.4, 18, 18.3) (16.4, 17, 17.4)
(17.4, 18, 18.5) (24.6, 25, 25.7) (18.6, 19, 19.4) (11.7, 12, 12.6)
(18.3, 19, 19.4) (17.4, 18, 18.7) (23.6, 24, 24.4) (15.6, 16, 16.6)
(16.3, 17, 17.6) (24.5, 25, 25.6) (16.5, 17, 17.3) (10.6, 11, 11.5)
(17.2, 18, 18.5) (17.3, 18, 18.6) (21.5, 22, 22.3) (14.5, 15, 15.5)
(10.4, 11, 11.5) (21.6, 22, 22.6) (18.5, 19, 19.4) (11.5, 12, 12.5)
(11.3, 12, 12.4) (14.4, 15, 15.6) (23.5, 24, 24.4) (15.4, 16, 16.5)
(9.3, 10, 10.6) (21.5, 22, 22.5) (16.4, 17, 17.3) (10.4, 11, 11.4)
(10.2, 11, 11.5) (14.3, 15, 15.5) (21.4, 22, 22.3) (14.3, 15, 15.4)


(33)

Here, pure strategies correspond to the rows and the columns of matrix for
A1B1C1, A1B1C2, A1B2C1, A1B2C2, A2B1C1, A2B1C2, A2B2C1, A2B2C2,
A3B1C1, A3B1C2, A3B2C1, A3B2C2, and D1, D2, D3, D4, respectively.
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The value of the game when players A and B set coalition from the matrix
(A ∪B,D) is

ṽ ({A,B}) = (12.06666, 12.33333, 12.63334) . (34)

Similarly, the value of the game when players A and C set coalition from the matrix
(A ∪ C,D) is

ṽ ({A,C}) = (10.89534, 11.34884, 11.65818) , (35)

and from the matrix (B ∪ C,D) the value of the game when players B and C set
coalition is

ṽ ({B,C}) = (8.6, 9, 9.4) , (36)

from the matrix (A ∪B ∪ C,D) the value of the game when players A,B and C set
coalition is

ṽ ({A,B,C}) = (16.47906, 17.06977, 17.41167) . (37)

The mixed probabilities vector of this coalition which obtains the maximum value
is

x1y1z1 = 0, x1y1z2 = 0.62789, x1y2z1 = 0, x1y2z2 = 0,

x2y1z1 = 0.04651, x2y1z2 = 0.3256, x2y2z1 = 0, x2y2z2 = 0,

x3y1z1 = 0, x3y1z2 = 0, x3y2z1 = 0, x3y2z2 = 0.

Then,

x∗ = (0.62789, 0.37211, 0) , y∗ = (1, 0) , z∗ = (0.04651, 0.95349) (38)

the characteristic function of the fuzzy cooperative game that is set with the coali-
tion of the players A,B and C which play games with fuzzy payoffs against Nature
is

ṽ ({∅}) = (0, 0, 0) , ṽ ({A}) = (6.9, 7, 7.1) ,
ṽ ({B}) = (3.9, 4, 4.2) , ṽ ({C}) = (2.5, 2.75, 2.875) ,
ṽ ({A,B}) = (12.06666, 12.33333, 12.63334) ,
ṽ ({A,C}) = (10.89534, 11.34884, 11.65818) ,
ṽ ({B,C}) = (8.6, 9, 9.4) ,
ṽ ({A,B,C}) = (16.47906, 17.06977, 17.41167) .

(39)

As understand from above, each player obtain additive profit from the coalitions
they set. the sum of the values of the game that players A,B and C obtained
individually is

ṽ ({A}) + ṽ ({B}) + ṽ ({C}) = (13.3, 13.75, 14.175) . (40)

When they play together against Nature profit is

ṽ ({A,B,C}) = (16.47906, 17.06977, 17.41167) . (41)

Hence, from the coalition additive profit

ṽ ({A,B,C})− [ṽ ({A}) + ṽ ({B}) + ṽ ({C})] = (2.30406, 3.31977, 4.11167)

is obtained.
The shares of the player A,B and C, with the help of the Shapley vector

φA (ṽ) = (7.68668667, 7.845285, 7.906643333) ,

φB (ṽ) = (5.039016667, 5.170865, 5.327553333) ,
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φC (ṽ) = (3.753356667, 4.05362, 4.177473333)

are obtained. However, the gain when the players A,B and C play individually
would be

ṽ ({A}) = (6.9, 7, 7.1) ,

ṽ ({B}) = (3.9, 4, 4.2) ,

ṽ ({C}) = (2.5, 2.75, 2.875) ,

respectively. Here for the individually gain increase the players will obtain from
the coalition for A is

φA (ṽ)− ṽ ({A}) = (0.586686667, 0.845285, 1.006643333) ,

for B is
φB (ṽ)− ṽ ({B}) = (0.839016667, 1.170865, 1.427553333) ,

and for C is

φC (ṽ)− ṽ ({C}) = (0.878356667, 1.30362, 1.677473333) .

4. Conclusion

In this paper, we have considered games with fuzzy payoffs. We proved that
players who are playing a zero-sum game with fuzzy payoffs against Nature are able
to increase their joint payoff, and hence their individual payoffs by cooperating. It
is shown that, a cooperative game with the fuzzy characteristic function can be
constructed via the optimal game values of the zero-sum games with fuzzy payoffs
against Nature at which players’ combine their strategies and act like a single
player. It is also proven that, the fuzzy characteristic function that is constructed
in this way satisfies the superadditivity condition. Thus we considered a transition
from two-person zero-sum games with fuzzy payoffs to cooperative games with fuzzy
payoffs. The fair allocation of the maximum payoff (game value) of this cooperative
game among players is done using the Shapley vector.
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