ON TOPOLOGICAL EQ-ALGEBRAS

Document Type: Research Paper

Authors

1 School of Mathematics, Northwest University, Xi'an,710127, China

2 School of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710119, China

Abstract

In this paper, by using a special family of filters $\mathcal{F}$ on an EQ-algebra $E$, we construct a topology $\mathcal{T}_{\mathcal{\mathcal{F}}}$ on $E$ and show that $(E,\mathcal{T}_{\mathcal{F}})$ is a topological EQ-algebra. First of all, we give some properties of topological EQ-algebras and investigate the interaction of topological EQ-algebras and quotient topological EQ-algebras. Then we obtain the form of closure of each subset and show that $(E,\mathcal{T}_{\mathcal{F}})$ is a zero-dimensional space. Finally, we introduce the concept of convergence of sequences on topological EQ-algebras and give a condition under which the limit of a sequence is unique.

Keywords


[1] R. A. Borzooei and G. R. Rezaei, Metrizability on (semi)topological BL-algebras, Soft Com-
put., 16(10) (2012), 1681-1690.
[2] R. A. Borzooei, G. R. Rezaei and N. Kuhestani, Separation axioms in (semi)topol-ogical
quotient BL-algebras, Soft Comput., 16 (2012), 1219{1227.
[3] C. C. Chang, Algebraic analysis of many valued logics, Trans. Am. Math. Soc., 88 (1958),
467{490.
[4] L. C. Ciungu, Convergences in perfect BL-algebras, Mathware and Soft Comput., 14 (2007),
67{80.
[5] B. A. Davey and H. A. Priestley, Introduction to Lattice and Order, Cambridge University
Press, London, 2002.
[6] A. Di Nola and L. Leustean, Compact representations of BL-algebras, Arch. Math. Log.,
42(8) (2003), 737{761.
[7] M. El-Zekey, Representable good EQ-algebras, Soft Comput., 14 (2010), 1011{1023.
[8] M. El-Zekey, V. Novak and R. Mesiar, On good EQ-algebras, Fuzzy Sets and Systems, 178
(2011), 1{23.
[9] F. Esteva and L. Godo, Monoidal t-norm based logic: towards a logic for left-continuous
t-norms, Fuzzy Sets and Systems, 124 (2001), 271{288.
[10] S. Ghorbani and A. Hasankhani, Some properties of quotient topology on residuated lattices,
PU. M. A., 21 (2010), 15{26.
[11] M. Haveshki, E. Eslami and A. Borumand Saeid, A topology inducd by uniformity on BL-
algebras, Math. Log. Q., 53(2) (2007), 162{169.
[12] P. Hajek, Metamathematics of Fuzzy Logic, Kluwer, Dordrecht, 1998.
[13] C. S. Hoo, Topological MV -algebras, Topol. Appl., 81 (1997), 103{121.
[14] Y. B. Jun and S. Z. Song, Hesitant Fuzzy fre lters and lters of EQ-algebras, Applied Math-
ematical Sciences, 9 (2015), 515{532.
[15] L. Z. Liu and X. Y. Zhang, Implicative and positive implicative pre lters of EQ-algebras,
Journal of Intelligent and Fuzzy Systems, 26 (2014), 2087{2097.
[16] Z. M. Ma and B. Q. Hu, EQ-algebras from the point of view of generalized algebras with fuzzy
equalities, Fuzzy Sets and Systems, 236 (2014), 104{112.
[17] J. Mi Ko and Y. C. Kim, Closure operators on BL-algebras, Commun. Korean Math. Soc.,
19 (2004), 219{232.
[18] J. R. Munkres, Topology a First Course, Prentice-Hall, Englewood Cli s, 1974.
[19] M. Naja , G. R. Rezaei and N. Kouhestani, On (para, quasi) topological MV -algebras, Fuzzy
Sets and Systems, 313 (2017), 93{104.
[20] J. B. Nganou and S. F. T. Tebu, Topological FLew-algebras, Journal of Applied Logic, 13
(2015), 259{269.
[21] V. Novak and B. Daets, EQ-algebras, Fuzzy Sets and Systems, 160 (2009), 2956{2978.
[22] L. A. Zadeh, Is there a need for fuzzy logic?, Inform Sci., 178 (2008), 2751{2779.
[23] O. Zahiri and R. A. Borzooei, Topology on BL-algebras, Fuzzy Sets and Systems, 289 (2016),
137{150.
[24] H. J. Zhou and B. Zhao, Stone-like representation theorems and three-valued lters in R0-
algebras(nilpotent minimum algebras), Fuzzy Sets and Systems, 162 (2011), 1{26.