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FUZZY SUBGROUPS AND CERTAIN EQUIVALENCE RELATIONS 
 
 

A.  JAIN 
 
 

ABSTRACT. In this paper, we study an equivalence relation on the set of fuzzy 
subgroups of an arbitrary group G and give four equivalent conditions each of 
which characterizes this relation. We demonstrate that with this equivalence 
relation each equivalence class constitutes a lattice under the ordering of fuzzy set 
inclusion. Moreover, we study the behavior of  these equivalence classes under the 
action of a group homomorphism. 

 
 

1. Introduction  
 

In 1981, Das [6] defined a level subgroup of a fuzzy subgroup µ of a group G as 
an ordinary subgroup µt of G, where t ∈ [ 0, µ (e)]. This concept earned the 
distinction of being the cutoff point for many authors who formulated and proved 
numerous results in fuzzy algebra based on this definition of level subgroups. 
However, as the theory developed, it was realized that in many situations a 
simplification is obtained if we consider the definition of level subgroups as is 
modified in [1]. The basic difference between the two definitions is that in the latter, 
the choice of  t  is restricted to Image µ. A counterexample to an assertion in Das’s 
paper also appeared in [14].  

In the case of a finite group G, for each t ∈ [0, µ (e)], µt coincides with some µs , 
where s ∈ Im µ. But in the case of an arbitrary group G, for any to ∈ [0, µ (e)], two 
cases arise. If  to ∈ Im µ, then the level subset µto

 is not equal to the strong level 

subset  µto
>. Otherwise we have 
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The reason why the definition of level subgroup given in [1] has more suitable 
applications as compared to Das’s definition is thoroughly discussed in [1] and this 
modified definition has been used very effectively for defining a new category of 
fuzzy subgroups [9]. 
 

In a recent paper [16], the authors have defined an equivalence relation on the 
set of all fuzzy subgroups L(G) of a finite group G which, in fact is an intersection 
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of two equivalence relations on L(G). We shall discuss this in Section 3 and also 
provide a comparison between the equivalence relations on L(G) given in [2, 15, 16]. 
In the same section we shall give four equivalent conditions, each of which can be 
taken as the definition of an equivalence relation on L(G) for an arbitrary group G. 
Thus we delete the condition of finiteness of the given group as mandated in                 
[2, 15, 16]. 
 

The second condition in the definition of equivalence relation in [16] says that 
the supports of the fuzzy subgroups µ and η are identical. The penultimate 
subgroup defined in [2] is an improvement over the concept of support of a fuzzy 
subgroup and can be more suitably applied in fuzzy algebra. Its role has already been 
established in [2]. Here we prove that two fuzzy subgroups in an arbitrary group G, 
equivalent in the sense of [2], necessarily have the same penultimate subgroups. 
However, their supports may be different.  
 

In Section 4, we shall discuss the behavior of equivalence classes under 
homomorphism of groups. Further, we shall prove that [µ], the equivalence class 
consisting of the fuzzy subgroup µ, is a lattice which is closed under the operations 
of meet and join given by the usual intersection and union of fuzzy subgroups 
respectively.  
 

2. Preliminaries 
 

Zadeh [21] defines a fuzzy subset as a function from a nonempty set to a closed 
unit interval. A fuzzy subgroup of a group G is a fuzzy subset of G satisfying                    
µ ( xy)  ≥  min { µ ( x ), µ ( y ) } and µ ( x-1 ) = µ ( x ) ∀  x, y ∈ G. It is known that a 
fuzzy subgroup attains its supremum at the identity element of the group. For a 
fuzzy subset µ of a set X and a real number t in the unit interval [0, 1], the level 
subset µt and the strong level subset µ>

t   are defined as  µt ={x ∈ X| µ (x) ≥ t } and  

µ>
t   ={ x ∈ X| µ (x)>t }. A level subset µt  for  t ≤ µ (e) of a fuzzy subgroup µ of a 

group G is an ordinary subgroup of G and is called a level subgroup of  µ [6].          
A better definition of level subgroup was provided in [1], where the level          
subset µt  for t ∈ Im µ is called a level subgroup of  µ. Here by Im µ we mean the 
range set of  µ, that is Im µ ={ µ (x)|x ∈ G }. Throughout this paper, G will denote 
a group, e the identity element of G and L(G) the collection of all fuzzy subgroups 
of G.  
 

3. A Study of Equivalence Relations on L(G) 
 

Let L1(G) denote the set of all fuzzy subgroups µ of G such that  µ(e)=1. In 
[15], using the notion of level subgroups in the sense of Das [6], a binary relation 
denoted by ‘~’ on L1(G) is defined for a finite group G; this relation is shown to be 
an equivalence relation. 
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Definition 3.1. [15]  Let  G  be a finite group and  µ , η ∈ L1(G).  If  ∀ x, y ∈ G, 
 

),()()()( yxyx ηηµµ >⇔>  
then we say  µ ~ η.   
 

Proposition 3.2. [15]  Let G be a finite group. Then µ ~ η  in L1(G)  if and only if            
Γµ (G) = Γη (G) where Γµ (G) = { µt |  t ∈ [0, 1]}. 
 

In [1], the notion of level subgroup is modified and in [2], this modified notion is 
used to provide a definition of equivalence relations on L(G) for an arbitrary     
group G. 
Definition 3.3. [2] For any group G, let  µ,η ∈ L(G). Then µ is said to be equivalent 
to η  denoted by  µ ≈ η  if  µ and η  have the same chain of level subgroups.      
That is, 
 

{ } { } ηµ ηµ ImIm ∈∈ = sstt  
 

Clearly,  µ ≈η  is an equivalence relation on L(G). 
 

 In a recent paper [16], another definition of equivalence relation on L(G) is 
provided for a finite group G and the authors have attempted to obtain several 
results accordingly. The definition is as follows: 
Definition 3.4. [16]  Let  µ ,η ∈ L(G). Then µ is said to be equivalent to η (µ ≃ η)  
if  ∀  x, y ∈ G,  
 
 

      ),()()()()( yxyxi ηηµµ >⇔> and 
     .0)(0)()( =⇔= xxii ηµ  

 

Notice that the above equivalence relation is an intersection of two equivalences. 
The later one, that is µ (x)=0 ⇔ η (x)= 0 avers that the supports of fuzzy subgroups 
µ and η are identical. The authors in [12], point out that their definition is a 
generalization of the notion of equality of sets. However, the same is true regarding 
the other two equivalences [Definitions 3.1, 3.3]. In [16], the following necessary 
condition has been stated with an incomplete proof. The complete proof is 
provided by C. Degang et al. in [7]. 
 

Proposition 3.5. [Proposition 2.5 in Murali and Makamba [16]]  Suppose µ and ν 
are two fuzzy subsets of X such that µ is equivalent to ν. Then for each  t ∈ [0, 1] there is 
an  s∈ [0, 1] such that µt = νs or  µt =  ν>

s .                                      
 

Moreover, in their remark at the end of Section 2 , the authors in [16] claim that 
they have strong evidence to suggest that  µt = νs  in all  cases but have not been able 
to prove this. They then assert that if the images of fuzzy sets are finite, then µt = νs . 
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{ } { } .ImIm ηµ ηµ ∈∈ = sstt

However both these assertions have been very easily disproved by C. Degang et al. 
[7]. We recall the following example from [7] : 

 

Example 3.6.  Let  X = {a, b, c, d } and for  x∈X,  µ(x) = ½  and  ν (x) = 1. Then 
µ is equivalent to ν in the sense of definition given by Murali and Makamba [16]. 
Take t = ¾, then  µt = φ. For any  s ∈ [0, 1],  νs = X. So the above two assertions 
are not true.                                                                                                        
 

It is also demonstrated by an example in [7] that the converse implication of the 
above assertion is also not true. In other words, two fuzzy sets µ and ν having the 
same chain of level subsets may not be equivalent in the sense of Definition 3.4. 
Here we  emphasize that by giving a little twist to the notion of level subsets or that 
of level subgroups, the whole scenario changes. We state here the following 
proposition whose proof appears later : 
 

Proposition 3.7.  For an arbitrary group G, µ ~ η  in L(G) if and only if  µ and η  have 
the same chain of level subgroups. That is : 
 

 
 

Notice that in the definition of equivalence "~" , it is not assumed that            
supp ( µ ) = supp (η ). Motivated by the above proposition, we adopt the following 
definition of level subgroups [1]. 
 

Definition 3.8.  Let µ be a fuzzy subgroup of a group G. Then each level subset         
µt  for  t ∈ Im µ is a subgroup of G and is called a level subgroup of µ.  
 

The problem arising in the proof of Proposition 2.5 in [16] can be taken care of by 
the fact that  t ∈ Im µ  if and only if  µt ≠ µ>

t   . We prove in Theorem 3.14 that for an 
arbitrary group G,  
 

                          µ ~η  if and only if  µ ≈ η  [Definitions 3.1 and 3.3].           (I) 
 

 

Notice that our definition of equivalence (Definition 3.3) and all further 
investigation is for an arbitrary group G whereas Makamba and Murali [16] defined 
equivalence of two fuzzy subgroups of a finite group G and with the extra condition 
that µ(x)=0 if and only if η (x)=0, that is supports of µ and η are same. The attempt 
of Makamba and Murali was to obtain a level subset characterization of their notion 
of equivalence; however, as exhibited in Example 3.6 due to Degang et al.[7], this is 
not possible, but with the changed definition of level subgroups, we are able to 
obtain (I) immediately and without the assumption that supports of fuzzy subgroups 
are identical (see Definition 3.8 and Theorem 3.14). On the other hand, as discussed 
in [2], the  notion of support can be replaced more fruitfully by the concept of the 
penultimate subgroup P(µ) of  fuzzy subgroup µ. This is basically due to the fact 



Fuzzy Subgroups and Certain Equivalence Relations 79

U
o

o
rr

r

rr
>

∈

> =

µ

µµ

Im

I
o

o
tt

t

tt
<

∈

>=

µ

µµ

Im

that the range set Im µ of the fuzzy subgroup  µ  may not contain the least element 
0 of the evaluation lattice [0, 1]. It follows as a consequence of Definition 3.3 that 
the penultimate subgroups of two equivalent fuzzy subgroups of a group G are 
identical (See Proposition 3.12). We do not assume that the supports of two fuzzy 
subgroups µ and η are identical as Murali and Makamba have done. However, in 
case the images of the fuzzy subgroups µ and η contain the least element 0, then the 
supports of  µ and η coincide with their penultimate subgroups and hence are equal 
by Proposition 3.12.  
 

Definition 3.9. [2]  Let  µ∈L(G). Then, P(µ) ={x∈ G| µ(x) > Inf µ} is a subgroup 
of  G, called the penultimate subgroup of  µ.  

In the above definition, Inf µ  means Inf {µ (x) | x ∈ G }. In case Inf  µ ∉ Im µ, 
we have P(µ)=G. Otherwise P(µ)  is a proper subgroup of G. Now, in order  to 
establish an interesting fact regarding Definition 3.3, we recall the following results 
whose proofs are straightforward and hence are omitted. Here G is an arbitrary 
group. 
 

Lemma 3.10. Let )(GL∈µ . Then,                       for any  ].1,0[∈or                              
 

 
The following lemma has application at later stages of this section.  
 

 

Lemma 3.11. Let ).(GL∈µ Then,                        for each ].1,0[∈ot                            
 
 

Proposition 3.12.  Let )(, GL∈ηµ such that .ηµ ≈ Then, ).()( ηµ PP =  
 

Proof.  It is easy to verify that either both µ and η attain their infimum or neither 
does. In the latter case  we have P(µ) = P(η) = G. Now let us assume that both        
µ and η  attain their infimum. Let Inf  µ = ro ∈ Im µ  and  Inf η = to ∈ Im η.         
Since µ ≈ η, we have 
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By Lemma 3.10, this implies that  µ >
ro

= η >
to
 . We thus have P(µ) = P(η).             

 

The following proposition is an important consequence of equivalence of two 
fuzzy subgroups  µ  and η as given by Definition 3.3. 
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Proposition 3.13.  Let µ ,η ∈ L(G) such that  µ ≈ η. Then, there exists an order 
preserving bijection from Im µ  to Im η.  
 

Proof. Since µ ≈η, by Definition 3.3 for each t ∈ Im µ, there  exists an s∈ Im η 
such that  µ

t = η
s
. Since ηs1

= ηs2
 if and only if  s

1
= s

2 
 for  s

1
, s

2 
∈ Im η , it is clear 

that  s ∈ Im η  is unique. We thus get an obvious association say  α for the elements 
of  Im µ  to the elements of Im η  wherein : 
 

st =)(α and .)( tt αηµ =  
 

Similarly we get an association say β for the elements of Im η with the elements of 
Im  µ  whereby: 

.)(ss βµη =  
 

The explicit structure of the map α is more  clear from the following: 
Since t ∈ Im µ, t = µ (xo) for some xo ∈ G. We claim here that  α (t )= η (xo).       
That is 

)())(( xx ηµα = for each .Gx∈  
 

Suppose that η (xo) =t ׳. Then it is enough to show that  µ
t 
= η

t׳  because   µ
t
=η

t׳   

implies η
t׳ =η

α(t)
 ,which further implies α (t)=t׳ =η (xo) since both α (t) and t׳ 

belong to Im η.  Now to prove  µ
t
=η

t׳   , let  y ∈ µ
t
 . 

If µ (y) = µ (xo), then since η (xo) = t׳ , we have xo ∈ η
t׳ = µ

β ( t׳ ). This implies 
 

).()()( 'txy o βµµ ≥=  
i.e. .'' )( tty ηµ

β
=∈  

If  µ( y ) ≠ µ(xo ) , then y ∈ µ
t 
 implies  

 

).()( oxty µµ =>  
 

Let  µ (y) = t
0
 . Then  

)( oo tty αηµ =∈ whereas .)( oo ttox αηµ =∉  
 

Thus η(y)≥ α (t
0
) and t׳ =η (xo)< α (t

0
). Hence η(y)>t׳ . This gives y∈η

t׳ . Therefore 

µ
t
⊆η

t׳ . We get  η
t׳ ⊆ µ

t
  by a similar argument, thus implying   µ

t
 = η

t׳  .  



Fuzzy Subgroups and Certain Equivalence Relations 81

It is easy to verify that this correspondence α from Im µ  onto Im η is one to one . 
In the case that the bijection α is not order preserving, there exist  ti , tj ∈ Im µ  such 
that  

     ji tt < but  ).()( ji tt αα >                     (1) 
 

Now  ti < tj  implies  µtj
⊊ µti   

and hence η
α (t j )

⊊ η
α (t i )

 . This gives  α( ti )<α( tj ) 
which contradicts (1). Hence α is the required order preserving bijection from Im µ          
to Im η.                                            
 

In the above proposition, the process of shifting of image sets of fuzzy   
subgroups [2] is used. The next theorem gives four equivalent conditions for        
the equivalence relation µ ≈η of two fuzzy subgroups µ and η of an arbitrary    
group G. 
 

Theorem 3.14.  Let  µ, η ∈ L(G). Then the following are equivalent:  
 

(i) ηµ ≈  
(ii) )()()()(,, yxyxGyx ηηµµ >⇔>∈∀  
(iii) )()()()(,, yxyxGyx ηηµµ ≥⇔≥∈∀  
(iv) { } { } .ImIm ηµ ηµ ∈

>
∈

> = sstt
 

 

Proof.  (i)  ⇒  (ii)   Let x, y ∈ G such that  µ (x) >µ (y). Suppose that  µ (x) =t1  and  
µ(y)=t2.  Then  x∈ µt1

,  y ∈ µt2  and  y ∉ µt1
. By (i) we have  µt1

=ηr1  
for some       

r
1
∈ Im η. Now,  x ∈ µt1 

= ηr1  
and  y ∉ µt1 

= ηr1   
imply  that η (x) ≥ r

1
 andη (y) < r

1
. 

Thus,  η (x)>η (y). Similarly it can be proved that η (x)>η (y) implies µ (x)> µ (y). 
This proves (ii).  
 

(ii) ⇒ (i)  To prove { µt }t ∈ I m µ = {ηr }r ∈ I m  η , let  µt  o
∈{ µt  }t ∈ I m  µ . 

 

If  µt o
=G, then clearly to= Inf ( Im µ ). Since  to∈ Im  µ,  µ attains its infimum. Also 

to=µ (xo) for some  xo∈ G. We first prove that η also attains its infimum. Suppose η 
does not attain its infimum. Let  Inf (Im η) = t

1
. Then η (x) >t

1  
for each x ∈ G. In 

particular η (xo)>t
1
. Thus there exists some x

1
∈ G such that η(xo)>η (x

1
)>t

1
.
  
By the 

given condition, it follows that µ (xo)>µ (x
1
). This contradicts µ (xo)= Inf (Im µ) 

thereby implying that η also attains its infimum. Let Inf ( Im η )=ro. Then ro∈Im η 
and thus  
 

{ } .Imηηηµ ∈∈== rrrt oo
G  
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On the other hand if  µt o
≠G, then for to∈ Im µ, there exists  xo∈G such               

that to =µ (xo). We take ro =η (xo). Now,  y ∈ G ∼ µt  o
 ⇔ µ (y)<to = µ(xo)  ⇔                 

η (y)<η (xo) = ro  ⇔ y ∈ G ∼ η ro
. Thus,  µt o

 = ηro
 ∈ { ηr }r ∈ Im η.  This proves        

that  
 

{ } { } .ImIm ηµ ηµ ∈∈ ⊆ rrtt
 

 
 

The other side can be proved similarly. Hence µ ≈ η. 
 

(ii) ⇒ (iii)  Let  x , y ∈G such that µ(x)≥ µ(y). Suppose, if possible, that η(x)<η(y). 
Then by (ii), µ(x) <µ(y). This contradiction implies η(x)≥η(y). Similarly, η(x) ≥ η(y) 
implies µ (x) ≥ µ (y). This proves (iii).  
 

(iii)⇒(ii)  Let  x, y∈G such that µ (x) > µ (y). Suppose, if possible, that η (x) ≤ η (y). 
Then by (iii), µ(x)≤ µ(y). This contradiction implies η (x)>η (y). Similarly,                
η (x)>η (y) implies µ (x) > µ (y). This proves (ii). 
 

(i) ⇒ (iv)  Since  µ ≈ η,  by Proposition 3.12, there exists a bijective order preserving 
map α : Im µ → Im η  such that  µt = ηα ( t ) ∀ t ∈ Im µ. Let  to ∈ Im µ . Then, by 
Lemma 3.9 we have  

               
.
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                        (1) 

 

If  so=α (to), then  so∈ Im η  and  t > to implies  s = α (t) > α (to)= so . We then have  
µt = ηα ( t )=ηs . This special correspondence induced by α, when applied to (1),  
gives 
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Thus, {µ>
t 
}

t ∈ I m µ
 ⊆ {η>

s     
}

s ∈ I m η
. Similarly, we have {η> 

s   
}

s ∈ I m η  
⊆{µ> 

t   
}

t ∈ I m µ
   and 

thus (iv) is verified.  
 

(iv) ⇒ (i)  Here,  it is assumed that  {µ>
t    
}

t ∈ I m µ
= {η >

s     
}

s ∈ I m η
. As in Proposition 

3.13, it can be established that there exists a bijective  order preserving                
map β : Im µ → Im η such that .)(

>> = tt βηµ   If  to ∈ Im µ, then by   Lemma 3.11,  
 

    .

Im

I
µ

µµ

∈
<

>=

t
tt

tt
o

o

                          (2) 

 



Fuzzy Subgroups and Certain Equivalence Relations 83

Taking so = β ( to ), so ∈ Im η and t <t o implies  s = β ( t ) < β ( to ) = so.  Therefore  
 

.)(
>>> == stt ηηµ β  

 
This correspondence induced by β, when applied to (2) gives 
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We thus have{µt}t ∈Im µ ⊆{ηs }s ∈Imη . A similar verification gives{ηs  }s ∈Imη ⊆{µt }t∈Im µ. 
Hence (i) holds.                                                                          

In [16], the authors have tried to compare the concepts of fuzzy isomorphism 
[12,13] and fuzzy equivalence [16] and observed that equivalence is finer than 
isomorphism. A more concrete comparison appears in [7].  
 

4. Action of Group Homomorphisms on Equivalence Classes 
 

For any group G, [µ] denotes the equivalence class consisting of the             
fuzzy subgroup µ of G. In this section, we study the behavior of equivalence    
classes of fuzzy subgroups under group homomorphisms. These equivalence  
classes are the ones obtained under the action of equivalence relation as given        
by definition 3.3. As pointed out by one of the referees, such studies were initiated 
by Murali and Makamba in [16] where the definition of equivalence relation            
is different from that of ours. Moreover, their studies were carried out for         
finite groups and hence the fuzzy subgroups which were considered in their       
work are all with finite range sets, whereas, in this paper, we study the action          
of homomorphisms on equivalence classes of fuzzy subgroups of arbitrary        
groups under the condition of the sup property, which is a generalization of       
fuzzy subgroups with finite range sets. Fuzzy subgroups with finite images        
surely have the sup property but, as is shown in  Example 4.2, the converse is not 
true. 

 
 

 

Definition 4.1.  A fuzzy subgroup µ of G is said to have the sup property if,        
for each nonempty subset A of G, )()(sup ax

Ax
µµ =

∈
 for some  a ∈ A.             

  

Here we provide an example of a fuzzy subgroup with the sup property with 
infinite range set. 
 

Example 4.2.  Let G be the group of positive real numbers under the composition 

of multiplication. Let us denote by <3 1/2 n
> the subgroup generated by 3 1/2 n

  
where n is a fixed positive integer. Define a fuzzy set µ in G as follows: 
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1 if x ∈ <3 
1/2

>  , 
 

µ (x) =                     ½ (1 +  1/2
n )       if  x ∈ <3 

1/2 n+1
> - <3 

1/2 n
> , 

             n = 1, 2, 3, ……., 
 
                  ∞ 

         ½            if  x ∈ G   -   ∪  <3 
1/2 n

>. 
     n=1 
 

 
Here, Im  µ = { 1, 3|4, 5|8, …., 1|2 }. Clearly for each t ∈ Im µ,  µt  is a subgroup 
of G.   Therefore µ is a fuzzy subgroup of G. Now it can be seen that any subset of 
Im µ contains its supremum. Thus µ has the sup property. Also, ½  is a cluster point 
of Im µ.                                                                                                                          
 

The following facts about the sup property are worth noticing. In particular, we 
note that if the equivalence relation is as defined in Definition 3.3, the sup property 
is invariant. 
Lemma 4.3.  If  µ∈ L (G ) and µ  has the sup property, then each η∈ [µ] also has the 
sup property. 
Proof.  Let µ  be a fuzzy subgroup of G with the sup property and let η ∈ [µ ]. If A 
is any nonempty subset of G, then since µ has the  sup property, there exists an      
xo∈A such that   
 

).()(sup oxx
Ax

µµ =
∈

 

Let    
 

.)(sup sx
Ax

=
∈

η  

 

Since µ (x) ≤ µ (xo) ∀ x ∈ A , therefore η (x) ≤ η (xo) ∀ x ∈ A  as µ ≈η  ( By 
Theorem 3.14 (iii) ). This implies that  s ≤ η ( xo).  Also,  

 

,)(sup sx
Ax

=
∈

η and .Axo ∈  

Therefore  η ( xo) ≤ s. We thus get that there exists an  xo∈ A such that  
   

),()(sup oxx
Ax

ηη =
∈

 

thereby implying that η has the sup property.                    
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For the sake of completeness we recall here that the sup property is also preserved 
under the action of a group homomorphism and under the inverse of a group 
homomorphism. 

 

Proposition 4.4.  If f  is a  group homomorphism from a group G to a group H and if     
µ∈ L(G) has the sup property, then  f (µ) ∈ L(H)  also has the sup property.                
 

Proposition 4.5.  If f is a group homomorphism from a group G to a group H and if     
η∈ L(H) has the sup property, then  f –1(η ) ∈ L (G ) also has the sup property. 
 
 

Proof.   Suppose η ∈ L(H) has the sup property. Let A be a nonempty subset of G. 
Consider  

).(sup

))((sup))((sup 1

h
Ah

gf
Ag

gf
Ag

η

ηη

∗

−

∈
=

∈
=

∈  

  
where A* = f ( A ). A* is clearly a nonempty subset of H. Therefore, since η has the 
sup property, 

.)()(sup ∗

∗
∈=

∈
Ahsomeforhh

Ah
ooηη  

 

Now ho∈A*  implies that ho= f ( g
o
) for some g

o
∈ A. Thus we have 
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Hence  f –1( η ) has the sup property.                                                
 

The following is the main result of this section. In order to arrive at this result, we 
make use Lemma 4.3. We remark here that Makamba and Murali did not use the sup 
property since their results are derived for a restricted class of fuzzy subgroups of 
finite groups, i.e. fuzzy subgroups having finite range sets. 
 

Proposition 4.6.  Let f be a surjective group homomorphism from a group G to a 
group H and let  µ∈ L(G) have the sup property. Then  f ( [µ]

 
)⊆ [ f (µ) ].  

 

Proof.  Let µ∈L(G) have the sup property. It is enough to prove that if µ ≈η in  
L(G), then f (µ) ≈ f (η)  in L(H). µ ≈η in L(G) implies that{µt }t ∈Im µ={ηs  }s∈Im η  and 
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by Lemma 4.3, both µ  and η have the sup property. Let t ∈ Im f ( µ ). Since µ  has 
the sup property and f  is surjective, we have the following: 
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Thus  t ∈ Im µ . If α is the order preserving bijection from Im µ  to Im η, then  
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Also for each i ∈ Λ, α (t
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). Since η has the sup property, therefore we have 

 

.)(

)(sup)(sup

Λ∈=
Λ∈

=
Λ∈

ksomeforg

g
i

t
i

k

ii

η

ηα
 

 

We prove here that  η ( g
k
)=η ( g

j 
). Since )()(sup ji gg
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, we have 
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Hence  η ( g
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). Also,  j ∈ Λ implies that η ( g
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) ≤ η ( g
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). We thus have      
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This implies that α ( t )∈ Im f ( η ). We shall now prove that  f ( µ )
t
= f ( η )

α ( t )
.  

If  x ∈ f ( µ )
t
  , then   

).())(( jgtxf µµ =≥  
This implies 
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µµ ≥
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However, since µ has the sup property,  sup µ ( g )= µ ( g
o 

) for some g
o
∈ f -1(x). 

Therefore we have  g ∈ f -1(x). 
 

Now µ ( g
o 
) ≥  µ ( g

j 
), which gives η ( g

o 
) ≥ η ( g

j 
) as µ ≈ η. By an argument similar 

to that used to prove α ( t )∈ Im f ( η ), it can be shown that  
 

).(
)(

sup)(
1

g
xfg

g o ηη
−∈

=  

 

Thus 
).()(

)(
sup

1
jgg

xfg
ηη ≥

∈ −

 

 
That is 

).()())(( tgxf j αηη =≥  
 

This proves that  x ∈ f (η )
α( t )

. We thus have the containment f ( µ )
t
 ⊆ f (η )

α( t )
. It 

can be shown similarly that  f (η )
α ( t ) 

⊆  f ( µ )
t
 . Therefore, for each t ∈ Im f ( µ ), 

there exists  α (t ) ∈ Im f ( η ), such that  f ( µ )
t
= f (η )

α( t )
. This gives 

  
{ } { } .)()( )(Im)(Im ηµ ηµ fssftt ff ∈∈ ⊆  

 

The proof of the other side of the containment is similar. Hence  f ( µ) ≈  f (η ).      
 

For our definition of equivalence relation (Definition 3.3), we state the following 
proposition (Proposition 4.7) without proof. This proposition is true in general and 
without any restriction on fuzzy subgroups; Makamba and Murali have used their 
definition to establish a similar result for finite groups.  

 
 

Proposition 4.7.  Let  f  be a group homomorphism from a group G to a group H and 
let  η ∈ L(H). Then    f -1 ( [η ] ) ⊆  [ f –1(η )].                 
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Proposition 4.8.  Let f  be a bijective group homomorphism from a group G to a group 
H and  let  µ∈ L(G) have the sup property. Then  f ([µ])= [f (µ)].                            
 
Proposition 4.9.  Let f be a bijective group homomorphism from a group G to a group 
H and  let η ∈ L(H). Then  f -1( [η ] ) = [ f –1(η )].                      

 
5. The Lattice Structure of an Equivalence Class 

 

The construction of new lattices of fuzzy subgroups of a group is a peculiarity 
of fuzzy setting [3, 4, 5, 11]. In this section we shall show that the fuzzy subgroups 
of a group belonging to same equivalence class obtained under Definition 3.3 
constitute a lattice under a join operation which is simply fuzzy set theoretic union. 
This makes the study of lattice structure different from that of earlier authors. The 
equivalence class [ µ ] is clearly a poset with respect to the order relation of fuzzy set 
inclusion. In the following theorem, the meet ∧ and the join ∨ are given by 
minimum and maximum operators respectively. 
 

Proposition 5.1.  If  µ  is a fuzzy subgroup of a group G, then [µ ] forms a lattice 
under the ordering of fuzzy set inclusion.  
 

Proof.   We shall first prove that if  η ∊ [µ ], then  µ∧η ∊ [µ ]. Since η ∈ [µ ],  we 

have µ ≈ η thereby implying that {µt }t ∈ Im µ ={ηs  }s∈Imη . We shall use the following  
obvious statements: 
(µ ∧ η )

t
 = µ

t
∩ η

t
 ∀ t ∈ [0 , 1],  and  t ∈ Im ( µ ∧ η ) ⇒ t ∈ Im µ  or  t ∈ Im η. 

Now let  t ∈ Im ( µ ∧ η ).  
 

Case 1: t ∈ Im µ  and t ∈ Im η.  
Since t ∈ Im µ , there exists s∈ Im η such that  µ

t
=η

s
 . Now, if t ≤ s then η

s
 ⊆ η

t 
. 

Therefore η
s 
 ∩ η

t 
 = η

s
. As  s∈ Im η, this gives  
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And if  t >s then η
t 
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s 
 implies that  η

t 
 ∩ η

s
 = η

t
 . Therefore, as t ∈ Im η, 
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Thus { } .Im µµηµ ∈∈∩ rrtt  
 

Case 2:  t ∈ Im µ  and t ∉ Im η.  



Fuzzy Subgroups and Certain Equivalence Relations 89

Since t ∈ Im (µ∧η), therefore for some x∈G, t = min {µ (x), η (x)}. Now t ∉ Im η 
implies that t = µ (x) <η (x). Let η (x)= t׳. Since µ ≈η, there exists an order 
preserving bijection say α from Im µ  to Im η and hence 
 

,)())(()( 'txxt === ηµαα and .')( ttt ηηµ α ==  
 

Now  t < t׳ implies that η
t׳ ⊆ η

t 
. Thus, η

t׳ ∩ η
t
 =η

t׳ ∈ {µr }r ∈ I m µ  as  t׳ ∈ Im η. 
Hence we have  
 

{ } .Im µµηµ ∈∈∩ rrtt  
 

Case 3:  t ∈ Im η and t ∉ Im µ . 
This case is similar to Case 2. 
We thus get that  

             { } { } .)( Im)Im( µηµ µηµ ∈∧∈ ⊆∧ rrtt                               (1) 
 

On the other hand,  if  t ∈ Im µ, then  t = µ (x) for some  x∈G. Then  α (t ) = η (x) 
where α is the order preserving  bijection from Im µ to Im η  as  µ ≈ η and              
µ

t
 = η

α ( t )
 . Let  min { µ (x), η (x) }= r . Then  r ∈ Im ( µ ∧ η ). We claim that   

 

.)( rrrt ηµηµµ ∩=∧=  
 

If µ ( x) ≤ η ( x), then we have 
 

).()()( txtxr αηµ =≤==  
 

 Now  t ≤ α (t) implies that  η
α ( t )
⊆ η

t
 . This gives  
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and hence 
.rrt ηµµ ∩=  

 

If  µ (x)>η(x), then  
.)()()( txxtr =<== µηα  

This implies µ
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 ⊆ µ

r
 . Now  

.)( rtt ηηµ α ==  

Therefore η
r 
⊆ µ

r
  , which implies  
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We thus get that for each  t ∈ Im µ , there exists an r ∈ Im ( µ∧η ) such that                         
µ

t
= ( µ ∧η )

r
. Therefore, 

            { } { } .)( )Im(Im ηµµ ηµµ ∧∈∈ ∧⊆ rrtt                            (2) 
 

From (1) and (2) , it is evident that µ∧η ≈ µ . A similar procedure shows that if       
η ∊[ µ], then  µ∨ η ∊[ µ ]. We thus have the lattice structure of [µ], the equivalence 
class of the fuzzy subgroup  µ of  G.                                           
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