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Abstract

This paper considers a bi-objective model for a scheduling problem of unrelated parallel batch processing machines to
minimize the makespan and maximum tardiness, simultaneously. Each job has a specific size and the data corresponding
to its ready time, due date and processing time-dependent machine are uncertain and determined by trapezoidal
fuzzy numbers. Each machine has a specific capacity, in which the number of jobs assigned to each batch on the
machine does not violate the machine capacity. The batch processing time, the batch ready time and the batch
due date are presented by the longest processing time, the longest ready time and the shortest due date of the jobs
that belong to the batch, respectively. To determine the longest and shortest time, the method suggested by Jimnez
et al.[18] is used for ranking the fuzzy numbers. A bi-objective fuzzy mixed-integer linear programming model is
proposed and solved by two exact methods (i.e., two-phase fuzzy and ϵ-constraint) for small-sized problems to obtain
a set of Pareto solutions. Because the problem belongs to the class NP-hard, two meta-heuristics, namely fuzzy non-
dominated sorting genetic algorithm (FNSGA-II) and fuzzy multi-objective discrete teachinglearning-based optimization
(FMODTLBO), are proposed. Then, the comparison of results is illustrated to show their performances. Furthermore,
a new representation of the solutions is a matrix with two rows and N columns (i.e., jobs) used to assign the jobs to
the batches that processed on the machines.

Keywords: Batch processing, unrelated parallel machines scheduling, fuzzy parameters, fuzzy multi-objective meta-
heuristics.

1 Introduction

In the recent decades, a scheduling problem of the batch processing machines (BPMs) in many modern manufacturing
industries (e.g., chemical, metalworking, printing industry, food and mineral processing, wafer fabrication process and
ship scheduling at navigation) has received a considerable attention. These are applied in a burn-in operation for final
testing in a semiconductor manufacturing system [33, 39]. Because of the great application potential of the BPMs, this
research is motivated by a parallel batch processing machines (PBPMs), in which different machines perform the same
function while considering different processing velocity and capacity (i.e., unrelated PBPMs (UPBPMs)). In BPM,
each machine can process a number of jobs as a batch without any exceeding machine capacity. In this study, each job
has a different size, machine-dependent processing time, ready time and due date. The batch processing time (BPT),
the batch ready time (BRT) and the batch due date (BDD) are given by the longest processing time, longest ready
time and shortest due date of jobs that belong to the batch, respectively.
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In order to improve the performance of production systems, we consider both manufacturer concerns (e.g., waiting
time and work-in-process inventory) and customer concerns (e.g., assuring on-time receipt). For this purposes, a bi-
objective model is considered to be able to minimize the makespan (i.e., maximum complete time, known as Cmax)
and maximum tardiness (i.e., Tmax) simultaneously. To make our study more realistic, the fuzzy processing times,
fuzzy ready times and fuzzy due dates are also considered. The main motivations that these times are considered as a
fuzzy number are as follows [27]:

• The information required for these times may be vague or not precisely measurement.

• The uncertainty inherent in real scheduling environments can be modeled by the fuzzy scheduling algorithms.
By modeling these times with a fuzzy number, the system designer can build the exibility into the scheduling
algorithm and reach a better solution.

• The quality and quantity of available information may be dampened because imprecision and vagueness as a result
of personal bias and subjective opinion.

In this paper, a trapezoid membership function is employed. This choice has been made because this function is
easily implemented and felexible in applying to various real-world problems.

According to the above issues, a fuzzy bi-objective UPBPMs model is considered in such a way that the makespan
and maximum tardiness are to be minimized.

Wang and Chou [37] addressed a PBPMs scheduling problem to minimize the makespan and formulated the problem
in the form of a MIP model. Then, proposed simulated annealing (SA) and genetic algorithm (GA). In order to assign
jobs to batches, a multi-stage dynamic programming algorithm is applied. Mehdizadeh et al. [26] proposed a vibration
damping optimization (VDO) algorithm to minimize the total weighted completion for a parallel machines (PMs)
scheduling problem.

Damodaran et al. [10] considered an identical PBPMs (IPBPMs) scheduling problem with preemption in order to
minimize the makespan. They used a greedy randomized and adaptive search procedure (GRASP) method to solve the
problem. Damodaran and Velez-Gallego [9] showed the IPBPMs scheduling problem to minimize the makespan and
calculated a lower bound for the problem. They proposed SA and two other heuristics for the comparison of a numerical
instance and also used a constructive heuristic method [8] for their problem. Cheng et al. [7] considered the IPBPMs
scheduling problem to minimize the makespan and suggested an improved ant colony optimization (ACO) method.
Ma et al. [25] considered an online IPBPMs scheduling problem to minimize the total weighted completion time by
using a 4(1 + ϵ)-competitive online algorithm. Attar et al. [3] addressed a biogeography-based optimization (BBO)
algorithm to solve a UPMs problem in a flexible flow shop environment. Dousthaghi et al. [12] presented a mixed-integer
nonlinear programming (MINLP) model and proposed a hybrid PSO for a UPMs scheduling problem in a flexible job
shop environment with shelf life. Zhou et al. [39] considered a uniform PBPMs scheduling problem to minimize the
makespan and proposed a discrete differential evolution (DDE) algorithm. Li et al. [21] studied a UPBPMs scheduling
problem to minimize the makespan and proposed two groups of heuristics based on best fit LPT. Joo and Kim [19]
studied a UPBPMs problem with heterogeneous delivery trucks (i.e., heterogeneous trucks with different capacities and
travel time) to minimize the makespan. They proposed rule-based meta-heuristics using a single-stage GA framework.

Hulett et al. [15] considered a non-identical PBPMs scheduling to minimize the total weighted tardiness and proposed
a particle swarm optimization (PSO) algorithm. Arroyo and Leung [1] studied a UPBPMs scheduling problem with
arbitrary jobs size and unequal ready time to minimize the makespan. They proposed several heuristics based on
first-fit and best-fit and then presented an MIP and a lower bound to study the quality of their heuristics, and also
proposed a meta-heuristic algorithm based on iterated greedy [2] for their problem. Jiang et al. [17] considered a
uniform PBPMs problem scheduling with batch transportation and proposed a hybrid discrete PSO-GA algorithm.
Tavakkoli-Moghaddam et al. [36] showed a UPMs scheduling problem with precedence relations between jobs and used
a GA to minimize the number of tardy jobs and the total completion time. Kashan et al. [20] considered a single
BPM scheduling problem to minimize the makespan and maximum tardiness. They represented two different designs of
chromosomes in the proposed two GAs. Cheng et al. [6] presented an MIP model for a PBPMs scheduling problem to
minimize the makespan and total completion time, in which jobs do not have identical sizes. Xu et al. [38] considered
an identical PBPMs scheduling problem to minimize the makespan and maximum tardiness and proposed a multi-
objective ACO (MOACO) algorithm to solve their problem. Shahidi-Zadeh et al. [33] studied a UPBPMs scheduling
with considering release time and ready time for jobs to minimize the makespan and tardiness/earliness penalties as well
as the purchasing cost of machines as a novel objective, simultaneously. They proposed a multi-objective harmony search
(MOHS). Shahvari and Logendran [34] addressed a UPBPMs with sequence and machine-dependent batch scheduling
to minimize the total weighted completion time and tardiness. They proposed a multi-level tabu search, also they
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considered a UPBPMs problem with dual-resources (i.e., machines and operations) to minimize the cost of tardy and
early jobs and makespan, simultaneously. Four bi-objective PSO-based search algorithms are proposed [35]. Jia et al.
[16] considered IPBPMs with jobs arriving dynamically to minimize makespan and the total electric cost and proposed
a Pareto-based ACO algorithm.

Cheng et al. [5] introduced a fuzzy model on a single BPM. Processing time of the batches and adjust the time of
the machines between the batches are considered triangular fuzzy numbers. An improved ACO algorithm is proposed
to minimize the makespan. Gharehgozli et al. [13] considered a PMs scheduling problem as a mixed-integer goal
programming model with fuzzy processing times to minimize two fuzzy objectives. Li et al. [22] studied a single
BPM scheduling problem, in which due date and precedence relations are fuzzy based on the satisfaction level about
completion times of jobs and precedence between two jobs, respectively. Furthermore, Molla-Alizadeh-Zavardehi et al.
[28] considered a fuzzy single BPM scheduling with the fuzzy due date to maximize the total degree of satisfaction
and proposed the imperialist competitive algorithm (ICA). Given the above background, the main contributions of this
paper are as follows:

• Developing a bi-objective mixed-integer linear programming model with fuzzy parameters.

• Considering the tardiness of the batches.

• Considering the machines with different processing velocity (i.e., different processing time) and capacity, simul-
taneously.

• Applying two exact methods, namely two-phase fuzzy and ϵ-constraint method, to solve small-sized problems.

• Applying two meta-heuristic algorithms, namely fuzzy non-dominated sorting genetic algorithm (FNSGA-II) and
fuzzy multi-objective discrete teaching-learning-based optimization (FMODTLBO) with the capability of solving
fuzzy multi-objective problems without requiring them to be defuzzied.

The rest of this paper is organized as follows. The model is formulated with a fuzzy mixed-integer linear programming
model in Section 2. Exact methods are described for small-sized problems in Section 3. Section 4 presents details of
the solution methodology (i.e., defining the proposed meta-heuristics in details). The numerical and evaluating results
are provided in Section 5. The conclusion and future research are drawn in Section 6.

2 Mathematical Model

Our problem is formulated as a bi-objective FMILP model. This model is modified from the models presented by Wang
and Chou [37], Arroyo and Leung [1] and Shahidi-Zadeh et al. [33]. It is assumed that N compatible jobs are grouped

in several batches on M UPBPMs. The number of batches on the machine k, Bk (
∑M

k=1 Bk ≤ N), is not determined
until all jobs have been assigned to batches and machines. Each job is defined by its ready time rj , size sj , due date dj
and processing time-dependent machine pjk. The data corresponding to ready times, due dates, and processing times
are uncertain and determined by trapezoidal fuzzy numbers. Machine k has a capacity Lk and the number of jobs
assigned to each batch on machine k should not exceed Lk. Preemption is not allowed (i.e., once processing of a batch
on a machine starts, cessation cannot occur and no job is neither added nor removed from the batch until processing
of the batch is completed). The processing time of batch l on machine k (i.e., Pkl), the ready time of batch l on the
machine k (i.e., rkl) and the due date of batch l on the machine k (i.e., dkl) are presented by the longest processing time
(Pkl = maxj∈lpjk) longest ready time (rkl = maxj∈lrj) and shortest due date (dkl = minj∈ldj) of the jobs that belong
to the batch l, respectively. To determine the longest and shortest times, we use the method suggested by Jimnez et al.
[18] for ranking fuzzy numbers. Completion time ckl = Pkl + rkl and tardiness tkl = max(0, ckl −min{dj | j ∈ l}) [38].
Objective functions are the makespan (i.e., last batch that completed, Cmax = max∀k,lckl ) and maximum tardiness
(i.e., the longest tardiness of all the batches, Tmax = max∀k,ltkl). The model notations are as follows:

Indices:

k : Machines indices (k = 1, . . . ,M)

j : Jobs indices (j = 1, . . . , N)

l : Batch indices (l = 1, . . . , N)

Parameters:
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N : Number of jobs

M : Number of machines

Lk : Capacity of machine k

r̃j : Fuzzy ready time of job j

d̃j : Fuzzy due date of job j

sj : Size of job j

˜pjk : Fuzzy processing time of job j on machine k

U : A very large positive number

DecisionVariables:

xkjl : Equals 1, if batch l being processed on machine k includes job j; and 0, otherwise

ckl : Completion time of batch l on machine k

Pkl : Processing time of batch l on machine k

rkl : Ready time of batch l on machine k

tkl : Tardiness batch l on machine k

Tmax : Maximum tardiness

Cmax : Makespan

According to the above-mentioned notations, the proposed problem, which can be denoted Rm | ˜pjk, d̃j , r̃j , sj , p −
batch|Cmax, Tmax , is formulated as follows:

Minf1(x) = Cmax
(1)

Minf2(x) = Tmax
(2)

s.t.
M∑
k=1

N∑
l=1

xkjl = 1; ∀j
(3)

N∑
j=1

sj .xkjl ≤ Lk; ∀k, l
(4)

N∑
j=1

xkjl −
N∑
j=1

xkjl−1 ≤ 0; ∀l ≥ 2, k
(5)

rkl ≥ r̃j .xkjl; ∀j, k, l
(6)

Pkl ≥ p̃jk.xkjl; ∀j, k, l
(7)

rkl ≥ ckl−1; ∀k, l ≥ 2
(8)

ckl ≥ Pkl + rkl; ∀k, l
(9)

tkl ≥ ckl − d̃j − U(1− xkjl); ∀j, k, l
(10)

Cmax ≥ ckl; ∀k, l
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(11)

Tmax ≥ tkl; ∀k, l
(12)

xkjl = 0or1; ∀j, k, l
(13)

rkl ≥ 0, Pkl ≥ 0, ckl ≥ 0, tkl ≥ 0, Tmax ≥ 0, Cmax ≥ 0; ∀k, l
(14)

Objective functions (1) and (2) minimize the makespan and maximum tardiness, respectively. Constraint (3) ensures
that each job belongs to only one batch and is processed only on one machine. Constraint (4) guarantees that the total
jobs assigned to each batch do not violate the machine capacity. Constraint (5) ensures that until one batch on a
machine is empty, jobs are not assigned to subsequent batches. Constraints (6) and (7) define the ready time and the
processing time of a batch. Constraints (8) and (9) state that the ready time of a batch on each machine must be
greater than or equal to the completion time of the preceding batch and completion time of a batch is equal to the sum
of the ready time of the batch and its processing time. Constraint (10) determines tardiness of a batch. Constraints (11)
and (12) are the definition of the makespan and maximum tardiness, respectively. Constraints (13) and (14) specify a
domain of variables.

3 Exact methods

In this paper, we employ two exact methods (namely, a two-phase fuzzy method and a ϵ-constraint method) for solving
small-sized problems. Before explaining the methods, the fuzzy mathematical model provided in Section 2 must be
converted to its crisp equivalent mathematical model according to the Jimenezs method [18]. Some definitions are
presented. A fuzzy linear programming (FLP) is as follows:

Min c̃tx

s.t. x ∈ {x ∈ Rn | Ã ≥ B̃, x ≥ 0}
(15)

Definition 3.1. The expected interval (EI) and expected value (EV ) of a trapezoidal fuzzy number (e.g., Ã =
(a1, a2, a3, a4) ) are definded by [18]:

EI(Ã) = [EA
1 , E

A
2 ] = [

1

2
(a1 + a2),

1

2
(a3 + a4)]

(16)

EV (Ã) =
EA

1 + EA
2

2
=

a1 + a2 + a3 + a4
4 (17)

Definition 3.2. Suppose Ã and B̃ be two fuzzy numbers, Ã is bigger than or equal to B̃ at least at the degree of
satisfaction α, it is presented by Ã ≥α B̃, when [18]:

(1− α)EA
2 + αEA

1 ≥ αEB
2 + (1− α)EB

1 or
EA

2 − EB
1

EA
2 − EA

1 + EB
2 − EB

1

≥ α
(18)

Definition 3.3. Any obtained optimal solution by the model (19) is an α-satisfied optimal solution (the satisfaction
degree α is the degree that the decision-maker (DM) is willing to accept a solution) of the model (15)[18].

Min EV (c̃)x s.t. x ∈ {x ∈ Rn | Ãx ≥α B̃, x ≥ 0}
(19)
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Parameters Generation way

pjk Discrete Uniform [1, 100]

rj Discrete Uniform [0, 100]

dj Uniform [P ∗ (1 − t − r
2 ), (1 − t + r

2 ) , t = 0.8, r = 0.2, P =

∑N
j=1

∑M
k=1 pjk

2⋆M

x1, x2, x3, x4 2* Uniform [0, 1]

˜pjk [pjkx1, pjkx2, pjkx3, pjkx4]

d̃j [djx1, djx2, djx3, djx4]

r̃j [rjx1, rjx2, rjx3, rjx4]

Lk Discrete Uniform [10, 20]

sj Discrete Uniform [1, 5]

α 0.3,0.5,0.9

Table 1: Parameters of the Numerical Example

According to the above definitions, the fuzzy mathematical model is converted to its crisp equivalent mathematical
as follows:

Objective functions (1) and (2)

s.t. rkl ≥ [αE
rj
2 + (1− α)E

rj
1 ].xkjl; ∀j, k, l

(20)

Pkl ≥ [αE
pjk

2 + (1− α)E
pjk

1 ].xkjl; ∀j, k, l
(21)

tkl ≥ ckl − [αE
dj

2 + (1− α)E
dj

1 ]− U(1− xkjl); ∀j, k, l
(22)

The rest of constraints remains unchanged.

We assume the processing times, ready times and due dates are trapezoidal fuzzy numbers as follows:
r̃j = (r1j , r

2
j , r

3
j , r

4
j ) d̃j = (d1j , d

2
j , d

3
j , d

4
j ) ˜pjk = (p1jk, p

2
jk, p

3
jk, p

4
jk)

Thereby the final crisp equivalent mathematical is as follows:

Objective functions (1) and (2)

s.t. rkl ≥ [α
r3j + r4j

2
+ (1− α)

r1j + r2j
2

].xkjl; j, k, l

(23)

Pkl ≥ [α
p3jk + p4jk

2
+ (1− α)

p1jk + p2jk
2

].xkjl; ∀j, k, l
(24)

tkl ≥ ckl − [α
d3j + d4j

2
+ (1− α)

d1j + d2j
2

]− U(1− xkjl); ∀j, k, l
(25)

The rest of constraints remains unchanged.

The final crisp mathematical model is solved by ε-constraint and two-phase fuzzy method using Lingo 8.0 software.
Fuzzy processing times, fuzzy ready times, fuzzy due dates, machine capacities, job sizes and other parameters are
generated according to Table 1.

3.1 ε-constraint method

In the form of this method, one of the objective functions is placed as an objective function to be optimized and other
objective functions are transferred into constraints as follows:

Min fj(x) s.t. fh(x) ≤ εh; h = 1, . . . ,m, h ̸= j, fmin
h ≤ εh ≤ fmax

h x ∈ S
(26)
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Wherej ∈ {1, . . . ,m} and εh is upper bound for the objective h(h ̸= j). Various Pareto solutions can be found by
changing the value of εh. We can let fmin

h = f∗
h (where f∗

h is ideal value of fh that can be computed by minimizing
fh individually) and fmax

h = fnadir
h (fnadir

h is constructed from the worst value of fh that can be estimated by using a
payoff table [4]). In this study, the makespan is placed as an objective function that should be minimized, the maximum
tardiness is transferred into constraints as follows:

Min Cmax s.t. Tmax ≤ εT ; T ∗
min ≤ εT ≤ Tnadir

max Constraints 3− 5, 8, 9, 11, 12, 13, 14, 23− 25 (27)

The model (27) is solved by Lingo 8.0 software. The computational results, for a sample problem with nine jobs
and three machines, are shown in Table 2.

3.2 Two-phase fuzzy method

The two-phase fuzzy method is used for solving multiple objective linear programming (MOLP) with a fuzzy compromise
approach [24]. In this paper, we use a two-phase fuzzy method for solving the following model:

Min f1(x) = Cmax Min f2(x) = Tmax s.t. Constraints 3− 5, 8, 9, 11, 12, 13, 14, 23− 25 (28)

Definition 3.4. Membership function of each objective function fk(k = 1, . . . ,m) can be defined as the following [24]:

µk(x) =


1 if fk(x) ≤ fmin

k
fmax
k −fk(x)

fmax
k −fmin

k

if fmin
k ≤ fk(x) ≤ fmax

k

0 if fk(x) > fmax
k

(29)

Where fmin
k is the ideal solution and fmax

k is the negative ideal solution. fmin
k and fmax

k are considered similar to
as mentioned in ε− constraint method i.e. fmin

k = f∗
k and fmax

k = fnadir
k .

In the first step, Zimmermann [40] suggested max-min operator approach for solving the model (28) as follows:

Max λ s.t. λ ≤ µk(x); k = 1, . . . ,m λ ∈ [0, 1]; x ∈ S; (30)

We have:

Max λ s.t. λ ≤ Cnadir
max − Cmax

Cnadir
max − C∗

max

; λ ≤ Tnadir
max − Tmax

Tnadir
max − T ∗

max

; λ ∈ [0, 1]; Constraints 3− 5, 8, 9, 11, 12, 13, 14, 23− 25

(31)

Where λ is the overall satisfaction degree of the objective functions. For the mentioned sample problem in Sub-
section 3.1, the model (31) solved by Lingo 8.0 software and the optimal values of the variables λ, Cmax and Tmax are
shown in Table 3 as λ∗, C1

max and T 1
max .

In the second step, Li et al [24] proposed the following linear programming model:

Max ω =
m∑

k=1

vkλk s.t. λl
k ≤ λk ≤ µk(x); k = 1, . . . ,m λk ∈ [0, 1]; k = 1, . . . ,m

m∑
k=1

vk = 1; x ∈ S;
(32)

Where λl
k is the minimum satisfaction degree of the kth objective function and is equal to membership functions of

C1
max and T 1

max [24]. We have:

Max ω = 0.5λ1 + 0.5λ2 s.t. λ1 ≤ Cnadir
max − Cmax

Cnadir
max − C∗

max

; λ1 ≥ Cnadir
max − C1

max

Cnadir
max − C∗

max

; λ2 ≤ Tnadir
max − Tmax

Tnadir
max − T ∗

max

;

λ2 ≥ Tnadir
max − T 1

max

Tnadir
max − T ∗

max

; λ1, λ2 ∈ [0, 1]; Constraints 3− 5, 8, 9, 11, 12, 13, 14, 23− 25 (33)

The model (33) solved by Lingo 8.0 software and the optimal values of the variables ω, Cmax and Tmax are shown
in Table 3 as ω∗, Cfinal

max and T final
max .

The Pareto solutions obtained from the exact methods are shown in Tables 2 and 3.
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Pareto Solutions

α T∗
max Tnadir

max Tmax Cmax

0.3 103.4145 105.1837 103.4145 124.3091

105.0543 117.0035

0.5 124.2714 128.8552 124.2714 146.7826

127.5069 143.9846

0.9 171.7004 177.5852 171.7004 197.6462

Table 2: Results of the ε-constraint Method

α C∗
max Cnadir

max T∗
max Tnadir

max

0.3 117.0035 124.3091 103.4145 105.1837

0.5 143.9846 155.5164 124.2714 128.8552

0.9 197.6462 197.6462 171.7004 177.5852

Results of the first step Results of the second step Pareto Solutions

α λ∗ C1
max T 1

max ω∗ Cfinal
max T final

max Tmax Cmax

0.3 0.73 119.4062 105.0543 0.87 117.003 105.0543 105.0543 117.0035

0.5 0.76 146.7826 125.3836 0.88 146.782 124.2714 124.2714 146.7826

0.9 0.76 197.6462 171.7004 - - - 171.7004 197.6462

Table 3: Results of the Two-phase Fuzzy Approach

4 Solution methodology

Arroyo and Leung [1] showed that the Rm | sj , rj , p−batch | Cmax problem is NP-hard, so Rm | ˜pjk, d̃j , r̃j , sj , p−batch |
Cmax, Tmax problem that is more complicated because it is both multi-objective and uncertain is NP-hard as well.
However, exact methods can not solve the large-sized problems in a polynomial time. Therefore, we proposed two meta-
heuristics algorithms, namely fuzzy non-dominated sorting genetic algorithm (FNSGA-II) and fuzzy multi-objective
discrete teaching-learning-based optimization (FMODTLBO) in order to solve the medium and large-sized problems.

In this section, two meta-heuristic algorithms (i.e. FMODTLBO and FNSGA-II) with the capability of solving the
problems without requiring them to be defuzzied are explained. Thereby, the objective functions are fuzzy numbers.

Definition 4.1. A multi-objective problem is handled as follows [4]:

Minimize(f1(x), f2(x), . . . , fm(x)) s.t. x ∈ S;
(34)

xi ∈ S dominates xj ∈ S if

fk(xi) ≤ fk(xj) for all k ∈ {1, 2, . . . ,m} fk(xi) < fk(xj) for at least one k ∈ {1, 2, . . . ,m} (35)

Since the objective functions are fuzzy numbers, we cannot compare them with Expression (35). Therefore, it is
done using the fuzzy ranking method proposed by Jimenez et al [18] (Eq. 18).

Considering the above-mentioned description in this section, two fuzzy meta-heuristic algorithms are expressed in
this paper.

4.1 FMODTLBO algorithm

Teachinglearning-based optimization (TLBO) proposed by Roa et al. [32] is based on learning a group of learners of a
teacher in a class and is considered as a population-based meta-heuristic algorithm. The best learner in each population
is considered as the teacher. The learning process includes a teacher stage, in which the learners learn through the
teacher, and a learner stage, where the learners increase their knowledge through interaction with each other. The
original TLBO was considered for continuous problems; however, we use a discrete representation for our solutions.
Therefore, we use a discrete version of TLBO [23]. Let Npop be the population size and Max − It be the maximum
number of times to repeat the algorithm until the termination condition is met.

This section includes solution representation, initial population, Feasible solutions and proposed FMODTLBO
algorithm.



A bi-objective model for a scheduling problem of unrelated parallel batch ... 29

4.1.1 Solution representation

We use a new representation of the solutions in the proposed algorithms. Our representation is a matrix 2×N that its
first and second rows show the batches and the machines numbers, respectively. For example, a representation for the
mentioned sample problem in Sub-section 3.1 is shown in Figure 1.

4.1.2 Initial population

The main steps to create an initial population are as follows:
Step 1) Generate M + N − 1 random numbers between 0 and 1, then according to Figure 1, find the jobs that

assigned to each machine (M = 3, N = 9). Numbers that are smaller than and equal to N represent the jobs, and
numbers that are larger than N represent the machines. For example, number N +1 is Machine1, N +2 is Machine2,
and similarity N +M − 1 is MachineM−1.

Step 2) assign the jobs on each machine to the batches and create a solution according to proposed representation
in Sub-section 4.1.1. This work is done by using the batch first-fit (BFF) heuristic method. On each machine, consider
the first job that is not assigned to the certain batch and find the first batch with enough space to insert it. If no batch
is found with this condition, create a new batch. Repeat Step 2 until no job remains unassigned to the batches. It
is shown that if the jobs on each machine are sorted based on their processing times in a descending order and then
are assigned to the batch based on the BFF algorithm (called the batch first-fit longest processing times (BFFLPT)
method), it is considered a better comparison to the BFF for minimizing the makespan. If the jobs on each machine
are sorted based on their due dates in an ascending order and then are assigned to batch based on the BFF (called the
batch fist-fit earliest due date (BFFEDD) method), it is considered a better comparison to the BFF for minimizing the
maximum tardiness.

Step 3) Repeat Steps 1 and 2 until an initial population is created. Since we consider two objectives (i.e., minimizing
the makespan and minimizing the maximum tardiness), one half of the initial population is created by BFFLPT
procedure and another half of the initial population is created by BFFEDD procedure.

4.1.3 Feasible solutions

The solutions obtained from the proposed algorithms may be not feasible because for the following reasons:

1. Lack of some batch numbers in the first row of the solution representation for one or more machine. To solve this
problem, we change the batch numbers so that the batch numbers are sequential.

2. Total job sizes assigned to a batch on a machine exceed the machine capacity. In this case, we use two heuristics,
HF1 and HF2 [20] considering the makespan and the maximum tardiness, respectively. We consider these two
objectives simultaneously, and then we choose HF1 or HF2 randomly with an equal chance. In following, the
details of the heuristics HF1 and HF2 are provided.

HF1: On each machine
Step 1) Consider the batches that exceed the machine capacity and select the batch with the longest BPT. Then,

choose the job with the largest processing time in the selected batch.
Step 2) Insert the selected job in Step 1 in the BFF (with the minimum residual capacity) having the BPT longer

than the processing time of the selected job. If there is no batch with this condition, insert the job in BFF with the
longest BPT. If the batch with the residual capacity greater than or equal to the size of the selected job does not exist,
insert the selected job in a new batch.

Step 3) Repeat Steps 1 and 2 until there is no batch that exceeds the machine capacity.
HF2: On each machine
Step 1) Consider the batches that exceed the machine capacity and select the batch with the shortest BDD. Then,

choose the job with the shortest due date in the selected batch.
Step 2) Insert the selected job in Step 1 in the BFF (with the minimum residual capacity) having the shortest BDD.

If the batch with the residual capacity greater than or equal to the size of the selected job does not exist, insert the
selected job in a new batch.

Step 3) Repeat Steps 1 and 2 until there is no batch that exceeds the machine capacity.

4.1.4 Proposed FMODTLBO algorithm

The proposed FMODTLBO algorithm proposed in this research is described as follows:
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Figure 1: Solution Representation and Initial Population

Step 1) Create an initial population with Npop learners or solutions by using Sub-section 4.1.2. Then, calculate the
value of the objective functions Cmax and Tmax (Eqs. 11 and 12).

Step 2) Use a fast non-dominated sorting approach proposed by Deb et al. [11] to compute the ranks and the
crowding distances of the learners. Since the objective functions are fuzzy numbers, a fuzzy ranking method [18] (Eq.
18) is used to compare objective functions to compute the ranks and the excepted values of objective functions (Eq.
17) are used in order to compute the crowding distances.

Step 3) Teacher stage: In this stage, the learner’s level of knowledge in iteration t (xi,t) is transferred by using DMt

(i.e., a difference between the teacher (xT,t) and mean result of learners (Mt)). Updated learner (x́i,t) is considered by:

x́i,t = xi,t +DMt
(36)

DMt = rt(xT,t − TFMt)
(37)
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Where TF is the teaching factor and its value can be either 1 or 2 and rt is a random number in the range [0, 1].
The detailed implementation of our discrete problem is given below:

Step 3.1) Select teacher: In iteration t, the teacher (xT,t) is considered as the best learner, who is a learner (i.e.,
solution) with the lowest rank. if the ranks are equal, we select the solution with the greatest crowding distance.

Step 3.2) Mean results of learners: For obtaining the mean result of learners at iteration t (Mt), a heuristic is
proposed as follows:

Step 3.2.1) Compute round(
maxi=1,...,Npoprankxi,t

+mini=1,...,Npoprankxi,t

2 ).
Step 3.2.2) Consider the learner (i.e., one of the learners), whose rank is equal to the computed value in Step 3.2.1

as the mean results of the learners, Mt.

Example 4.2. Consider the example mentioned in Sub-section 4.1.1 and create a population with three learners as
follows:

x1,t =

{
1 1 1 1 1 2 1 1 1
3 2 3 1 2 1 2 2 1

}
,x2,t =

{
1 1 1 2 3 2 1 1 1
1 3 3 1 1 1 2 2 1

}
and

x3,t =

{
1 1 1 2 1 2 1 1 1
3 1 2 2 2 1 1 2 1

}
. The computed ranks of the learners are 2, 1 and 1, respectively. Therefore,

we have:

xT,t =

{
1 1 1 2 3 2 1 1 1
1 3 3 1 1 1 2 2 1

}
and Mt =

{
1 1 1 1 1 2 1 1 1
3 2 3 1 2 1 2 2 1

}
.

Step 3.3) DMt: The difference between the teacher (xT,t) and the mean result of the learners (Mt) at iteration t is
computed by using Eq. 37. In Example 4.2, suppose that TF = 1 and rt = 0.8 :

DMt =

{
0 0 0 0.8 1.6 0 0 0 0
1.6 0.8 0 0 −0.8 0 0 0 0

}
Step 3.4) Update the learners: Each learner in the population is updated by using Eq. 36. In the first row, consider

the integer part of each number. In the second row, if the updated number is negatively converted to a positive number,
then consider the integer part of each number. if the integer part is equal to zero or is greater than M , put a random
integer number in the interval [1,M ] instead of it. It should be noted that an updated learner may be an unfeasible
solution for the reasons mentioned in Sub-section 4.1.3. Therefore, we should use methods described in this section to

make it feasible. In Example 4.2, the updated form of x1,t is ´x1,t =

{
1 1 1 1.8 2.6 2 1 1 1
1.4 2.8 3 1 1.2 1 2 2 1

}
. With

considering the integer part of obtained numbers as

{
1 1 1 1 2 2 1 1 1
1 2 3 1 1 1 2 2 1

}
and using HF1, feasible ´x1,t is{

3 1 1 1 2 2 1 1 1
1 2 3 1 1 1 2 2 1

}
.

Step 3.5) Acceptance updated learner: If feasible x́i,t dominates xi,t, then replace xi,t by x́i,t. This work is done by
the fuzzy ranking method (Eq. 18) and Expression (35).

Step 4) Learner stage: In this stage, we first compute the ranks and the crowding distances of the learners obtained
from teacher stage (similar to what was mentioned in Step 2). Then, we do the following steps in iteration t:

Step 4.1) For learner xi,t, randomly select another learner xj,t(i ̸= j).
Step 4.2) Update learner xi,t by using Eq. 38 or 39.

� If rankxi,t
< rankxj,t

( if rankxi,t
= rankxj,t

then if crowding distancexi,t
> crowding distancexj,t

)

x́i,t = xi,t + rt(xi,t − xj,t) rt ∈ (0, 1)
(38)

� If rankxj,t < rankxi,t( if rankxj,t = rankxi,t then if crowding distancexj,t > crowding distancexi,t)

x́i,t = xi,t + rt(xj,t − xi,t) rt ∈ (0, 1)
(39)

Step 4.3) Make x́i,t feasible as mentioned in Sub-section 4.1.3.
Step 4.5) If feasible x́i,t dominates xi,t, then replace xi,t by x́i,t similar to what was mentioned in Step 3.5.
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Example 4.3. Consider the example mentioned in Step 3.1 and suppose that x1,t and x3,t are the two learners, which
are selected. rankx3,t is less than rankx1,t . Therefore, by using Eq. 38 and rt = 0.4 , we have

´x3,t =

{
1 1 1 2.4 1 2 1 1 1
3 0.6 1, 6 2.4 2 1 0.6 2 1

}
. According the expressed comments in Steps 3 and 4, the final

solution is ´x3,t =

{
1 1 1 2 1 2 1 1 1
3 3 1 2 2 1 2 2 1

}
.

Step 5) Repeat Steps 2 to 4 until Max− It occurs.

4.2 Fuzzy non-dominated sorting genetic algorithm (FNSGA-II)

The proposed FNSGA-II algorithm proposed in this research is described as follows [27]:

4.2.1 Parameters

Pop : Population

Npop : Size of the population

Pc : Percentage of the offspring population that is completed by the crossover operation

Pm : Percentage of the offspring population that is completed by the mutation operation

NPc : Numbers of offspring that is created by the crossover operation

NPm : Numbers of offspring that is created by the mutation operation

Tournament-size: Number of individuals that are selected for the tournament

Max-It : Maximum number of times to repeat the algorithm (i.e., termination condition)

4.2.2 Steps

Step 1) Create an initial population with Npop chromosomes or individuals by using Sub-section 4.1.2. Then, calculate
the value of the objective functions Cmax and Tmax (Eqs. 11 and 12).

Step 2) Compute the ranks and the crowding distances of the individuals( similar to what was mentioned in Step 2
of Sub-section 4.1.4).

Step 3) Create the offspring population with Npop numbers that includes NPc (round(Npop×Pc)) offspring obtained
from the crossover operation (Figure 2), NPm (round(Npop × Pm)) offspring obtained from the mutation operation
(Figure 2) and the residue of the offspring population selected from the parent population (all of the selections for the
crossover operation, mutation operation and the residue of offspring population doing in Tournament size, using the
computed ranks and crowding distances in Step 2).

Step 4) Combine the parent population and the offspring population and create a population with 2×Npop individuals
then use the fast non-dominated sorting approach proposed by Deb et al. [11] to compute the ranks and the crowding
distances (similar to what was mentioned in Step 2 of Sub-section 4.1.4) of the individuals of the current population
and create a new population with Npop individuals, using the method offered by Deb et al. [11].

Step 5) Repeat Steps 2 to 4 until Max− It occurs.

4.2.3 Crossover

We use the parameterized uniform crossover operator, which is a general form of a uniform crossover, in which the
swapping probability of each gene locus is controllable [31]. In this paper, the probability of a gene to be selected by
parents will be determined by the result of a biased coin (Figure 2).
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4.2.4 Mutation

We use a swapping mutation operator. For each selected parent, two genes are selected randomly and their locations
are interchanged (Figure 2).

Figure 2: Crossover and Mutation Operators in FNSGA-II Algorithm

5 Computational experiments

In order to test the effectiveness of the FNSGA-II and FMODTLBO, several test problems are solved and then their
performances are compared with a number of evolution metrics. The proposed meta-heuristics are coded in MATLAB
R2016a software.

5.1 Test problem instance

Computational experiments are conducted in medium and large-sized problems according to Table 4.

5.2 Evolution metric

Quality of non-dominated solutions obtained from proposed meta-heuristic algorithms is used to compare these algo-
rithms. In this paper, three metrics [14] are employed as follows:

5.2.1 Number of non-dominated solutions (N −metric)

The number of the total Pareto solutions obtained from each algorithm, T , is not considered as N −metric because a
Pareto solution of an algorithm may dominate one or more Pareto solutions of another algorithm or vice versa, therefore,
this metric considers the number of final the non-dominated solutions obtained by algorithms. The larger N −metric,
the better the algorithm is.
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Medium- sized problems Large- sized problems

Problem M N Problem M N Problem M N Problem M N

1 3 10 9 5 20 1 7 30 9 9 40

2 3 20 10 5 40 2 7 60 10 9 80

3 3 30 11 5 60 3 7 90 11 9 120

4 3 40 12 5 80 4 7 120 12 9 160

5 4 15 13 6 25 5 8 35 13 10 45

6 4 30 14 6 50 6 8 70 14 10 90

7 4 45 15 6 75 7 8 105 15 10 135

8 4 60 16 6 90 8 8 140 16 10 180

Table 4: Test Problem Instances

5.2.2 Ratio of non-dominated solutions (R−metric)

The value of the R −metric is equal to the ratio of the N −metric to T . The obtained R −metric belongs to [0, 1]
interval. R −metric of a proposed algorithm refers to the ratio of a number of the total Pareto solutions that are not
dominated by another proposed algorithm. The larger R−metric, the better the algorithm is.

5.2.3 Spread of Pareto solutions (S −metric)

S −metric used for estimating the spread of the total Pareto solutions is calculated by Eq. (40).

S −metric =

√√√√ 1

T − 1

T∑
t=1

(d̄− dt)2

(40)

d̄ =

∑T
t=1 dt
T (41)

Where dt is the Euclidean distance between each of Pareto solutions and their closest neighbor. The lower S−metric,
the better the algorithm is. For computing this metric, we consider the excepted value of the objective functions (Eq.
17).

In this paper, we also consider the central processing unit time (CPUT) metric as the running time of algorithms.

5.3 Parameter setting

The quality of the solutions obtained from the proposed FNSGA-II and FMODTLBO algorithms is affected by the
values of their parameters. To set the parameters of these algorithms in this papers, the response surface methodology
(RSM) [29] using Design Expert 10.0.3.0 software is applied. The RSM explores the relation between several explanatory
(i.e., input) variables and one or more response (i.e., output) variable. The main idea of the RMS is to use a sequence
of designed experiments to obtain an optimal response variable by analyzing a regression equation. Since the proposed
algorithms in this paper generate fuzzy Pareto solutions, the number of Pareto solutions created is used as responses
[30]. First, the parameters (input variables) of each algorithm are discovered. Then, for each of them two levels, low and
high, are considered (Table 5 ). By analyzing the results of Design Expert software, the best combination of parameters
for medium and large-sized problems are created (Table 6).

5.4 Numerical examples and computational results

The details about the parameters of the numerical examples explained in Table 1. Each proposed algorithm runs 30
times on each test problem (test problems are shown in Tables 4) and the average results are recorded in Tables 7 and
8. The statistical results in order to compare the performance of the proposed algorithms are recorded in Tables 9 - 12.

Table 9 shows that the ρ-values in the results of the CPUT using the t-test method is less than 0.05 for medium-
sized problems and is greater than 0.05 for large-sized problems. Therefore, there is a significant difference between the
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Proposed algorithm Parameters Low High

FMODTLBO Max − It 5 15

Npop 25 35

TF 1 2

FNSGA-II Max − It 10 90

Npop 10 50

Pc 0.1 0.9

Pm 0.02 0.1

Table 5: Parameters of the Proposed Algorithms and Their Levels

Proposed algorithm Parameters Medium-sized problems Large-sized problems

FMODTLBO Max − It 5 10

Npop 35 30

TF 1 1

FNSGA-II Max − It 40 50

Npop 35 50

Pc 0.6 0.5

Pm 0.07 0.06

Table 6: Best Combination of the Parameter Values for Proposed Algorithms (α = 0.3)

CPUT S − metric N − metric R − metric

M/N FMOD FNSGA- FMOD FNSGA- FMOD FNSGA- FMOD FNSGA-

TLBO II TLBO II TLBO II TLBO II

3/10 10.36 29.06 0 9.55 2.67 4.67 1 0.93

3/20 16.84 33.72 23.97 22.82 3.33 7 1 1

3/30 27.13 40.51 20.31 56.34 3 5.67 1 1

3/40 36.86 47.95 0 28.69 3.67 6.67 1 1

4/15 11.69 31.42 4.89 12.55 2 3.67 0.89 1

4/30 22.26 44.62 35.09 11.84 2.67 5.67 0.98 1

4/45 37.89 46.45 21.76 20.25 4 3.67 1 1

4/60 55.54 61.53 23.32 21.32 4 5 1 1

5/20 13.86 32.37 15.36 8.49 2.67 5.33 0.88 1

5/40 29.71 43.31 3.17 40.78 2.33 5.33 0.89 0.93

5/60 46.89 59.93 7.56 18.59 2.67 7 0.83 0.95

5/80 66.79 73.96 30.24 43.44 3.33 6 0.83 1

6/25 16.58 35.05 16.46 14.95 2.33 4.33 0.82 1

6/50 32.86 46.81 14.91 14.63 4.33 6.33 1 1

6/75 52.37 66.09 24.67 20.86 5.67 8 0.81 1

6/90 70.24 80.91 30.42 50.54 4 6.67 1 0.95

Average 34.24 48.36 17.00 24.46 3.29 5.68 0.93 0.98

Table 7: Outputs of the FNSGA-II and FMODTLBO Algorithms for the Medium-sized Problems (α = 0.3)
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CPUT S − metric N − metric R − metric

M/N FMOD FNSGA- FMOD FNSGA- FMOD FNSGA- FMOD FNSGA-

TLBO II TLBO II TLBO II TLBO II

7/30 42.62 95.21 13.1 7.37 3 6.67 0.88 0.95

7/60 86.07 108.45 0 23.34 0.67 0.67 0.5 0.67

7/90 150.09 155.81 34.96 34.65 3.67 6 1 1

7/120 236.41 202.91 45.02 64.22 3 5.33 0.92 1

8/35 49.86 92.21 6.86 12.08 5 6.33 1 0.89

8/70 107.53 128.05 13.25 15.69 5.33 7.33 0.88 1

8/105 178.85 184.09 32.39 70.01 2.67 7.67 1 1

8/140 275.59 229.01 232.85 94.35 0.67 1 0.5 0.6

9/40 50.64 98.53 12.34 57.08 4.33 5 0.98 1

9/80 133.36 130.38 5.66 20.41 5.67 9 1 1

9/120 186.36 184.32 38.11 25.59 3.33 4.67 0.98 1

9/160 305.98 284.25 9.58 48.58 5.33 9 1 1

10/45 56.4 98.7 5.68 13.72 4 8 1 1

10/90 134.57 139.18 13.76 20.55 5.33 8.33 1 1

10/135 208.01 178.71 57.88 32.67 3.33 5 1 1

10/180 364.66 302.2 27.83 49.11 4.67 5.33 1 1

Average 160.44 161.00 34.33 35.01 3.75 5.95 0.92 0.94

Table 8: Outputs of the FNSGA-II and FMODTLBO Algorithms for the Large-sized Problems (α = 0.3)

Confidence interval of the difference 95 percentage

Problem DF t ρ−value Lower Upper

Meduim 30 -2.256 0.032 -26.89075 -1.33675

Large 30 -0.019 0.985 -59.73570 58.60945

Table 9: t -test for the CPUT

two meta-heuristic algorithms in terms of the CPUT for medium-sized problems. The confidence interval shows that
FMODTLBO is better than FNSGA-II and there is no significant difference between the two meta-heuristic algorithms
in terms of the CPUT for large-sized problems. Table 10 shows that the ρ-values in the results of the S −metric using
the t-test method are greater than 0.05 for both medium and large-sized problems. Therefore, there is no significant
difference between the two meta-heuristic algorithms in terms of the S − metric for both medium and large-sized
problems. Table 11 shows that the ρ-values in the results of the N −metric using the t-test method are less than 0.05
for both medium and large-sized problems. Therefore, there is a significant difference between the two meta-heuristic
algorithms in terms of the N −metric for both medium and large-sized problems. The confidence intervals show that
FNSGA-II is better than FMODTLBO for both medium and large-sized problems. Table 12 shows that the ρ-values
in the results of the R−metric using the t-test method are less than 0.05 for medium-sized problems and greater than
0.05 for large-sized problems. Therefore, there is a significant difference between the two meta-heuristic algorithms in
terms of the R −metric for medium-sized problems. The confidence interval shows that FNSGA-II is better than the
FMODTLBO and there is no significant difference between the two meta-heuristic algorithms in terms of the R−metric
for large-sized problems.

Table 13 show trapezoidal Pareto solutions obtained by FMODTLBO and FNSGA-II in the problem with nine jobs
and three machines. The results show that the proposed algorithms produce similar Pareto solutions. Table 14 show
trapezoidal Pareto solutions obtained by FMODTLBO and FNSGA-II in the problem with 180 jobs and 10 machines.
This problem has the largest size in our research.

Confidence interval of the difference 95 percentage

Problem DF t ρ−value Lower Upper

Meduim 30 -1.649 0.11 -17.27945 1.84070

Large 30 -0.165 0.87 -33.51424 28.49549

Table 10: t -test for the S −metric
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Confidence interval of the difference 95 percentage

Problem DF t ρ−value Lower Upper

Meduim 30 -6.143 0.000 -3.19287 -1.59963

Large 30 -3.045 0.005 -3.68906 -0.72719

Table 11: t -test for the N −metric

Confidence interval of the difference 95 percentage

Problem DF t ρ−value Lower Upper

Meduim 30 -2.481 0.019 -0.09458 -0.00917

Large 30 -0.563 0.578 -0.13602 0.07727

Table 12: t -test for the R−metric

6 Conclusions

This paper studied a bi-objective model for a scheduling problem of unrelated parallel batch processing machines
(UPBPMs) that minimizes the makespan and maximum tardiness considering a real-world application through fuzzy
machine-dependent processing times, fuzzy ready times and fuzzy due dates. A bi-objective fuzzy mixed-integer linear
programming (FMILP) model was proposed. A batch with these parameters (i.e., BPT, BRT and BDD) was presented
by the longest processing time, longest ready time and shortest due date of the jobs belonging to the batch, respectively.
The presented model was solved for small-sized problems by two methods (i.e., two-phase fuzzy and ϵ-constraint meth-
ods) in order to obtain a set of Pareto solutions. Additionally, two meta-heuristics (i.e., FNSGA-II and FMODTLBO)
were proposed. In these algorithms, a matrix with two rows and N columns was used to show the jobs that were as-
signed to the batches that were processed on the machines. The results showed that the FNSGA-II was relatively better
than FMODTLBO. In this study, we attempted to consider real conditions in an industrial environment. Of course,
there are other conditions that help researchers to improve our research, such as pre-emption, precedence constraints,
machine failures, machine-dependent/independent setup time and describing uncertainty in the scheduling problem
using stochastic methods. Additionally, one can use other meta-heuristic algorithms and compare the related results
with our FNSGA-II and FMODTLBO results.
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Trapezoidal objective function values Excepted value

Algorithm α Cmax Tmax Cmax Tmax

FMODTLBO 0.3 [22.63 61.87 122.87 228.33] [-6.84 42.74 105.93 218.34] 108.92 90.04

0.5 [16.34 144.29 233.91 336.4] [-8.58 123.87 222.59 335.36] 182.74 168.31

[30.37 123.85 214.86 378.10] [0.903 104.73 197.93 368.11] 186.79 167.92

[25.28 133.76 216.44 375.65] [-20.07 88.72 195.03 362.47] 187.78 156.54

0.9 [7.75 61.98 91.99 149.76] [-22.03 40.86 80.38 138.62] 77.87 59.46

[19.86 51.22 73.07 190.53] [-25.49 6.17 51.66 177.35] 83.67 52.42

FNSGA-II 0.3 [22.63 61.87 122.87 228.33] [-6.84 42.74 105.93 218.34] 108.92 90.04

0.5 [16.34 144.29 233.91 336.4] [-5.76 123.75 219.58 334.95] 182.74 168.13

[30.37 123.85 214.86 378.10] [0.903 104.73 197.93 368.11] 186.79 167.92

[25.28 133.76 216.44 375.65] [-20.07 88.72 195.03 362.47] 187.78 156.54

0.9 [7.75 61.98 91.99 149.76] [-22.03 40.86 80.38 138.62] 77.87 59.46

[19.86 51.22 73.07 190.53] [-25.49 6.17 51.66 177.35] 83.67 52.42

Table 13: Trapezoidal Pareto Solutions for the Problem with 3 Machines and 9 Jobs Solved by Proposed Algorithms

Trapezoidal objective function values (α = 0.3) Excepted value

Algorithm Cmax Tmax Cmax Tmax

FMODTLBO [311.9 873 1356 1782] [-210.54 78.62 228.87 341.56] 1080.7 109.6

[263.5 712.6 1265.1 1598.5] [-860.7 -296 1091.1 1674.5] 959.9 402.2

[338 733.6 1192.3 1645.9] [-680.65 48.41 619.75 982.14] 977.5 242.4

[367.5 807 1256.9 1760.2] [-514 25.2 275.4 1164.6] 1047.9 237.8

FNSGA-II [486 797 1267.9 1543.9] [-787 304.85 545.94 695.79] 1023.7 189.9
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