Migrativity equations and Mayor's aggregation operators

Document Type: Research Paper

Authors

School of Mathematics, Shandong University, 250100 Jinan, PR China

Abstract

There has been a growing interest in the study of the notion of $\alpha$-migrativity and generalizations in recent years, and it has been investigated for families of certain operators such as t-norms, t-conorms, uninorms, nullnorms.
This paper is mainly devoted to investigating the migrativity equations between semi-t-operators or semi-uninorms, and Mayor's aggregation operators. The results that we obtain are complete and different from the known ones concerning migrativity for t-norms, t-conorms, uninorms and nullnorms.

Keywords


[1] C. Alsina, M. J. Frank, B. Schweizer, Associative Functions: Triangular Norms and Copuias, World Scienti fic, New
Jersey, 2006.
[2] H. Bustince, B. De Baets, J. Fernandez, R. Mesiar, J. Montero, A generalization of the migrativity property of
aggregation functions, Information Sciences, 191 (2012), 76-85.
[3] H. Bustince, J. Montero, R. Mesiar, Migrativity of aggregation functions, Fuzzy Sets and Systems, 160 (2009),
766-777.
[4] T. Calvo, B. De Baets, J. C. Fodor, The functional equations of Frank and Alsina for uninorms and nullnorms,
Fuzzy Sets and Systems, 120 (2001), 385-394.
[5] T. Calvo, G. Mayor, R. Mesiar (Eds.), Aggregation Operators, New Trends and Applications, Physica-Verlag, Hei-
delberg, 2002.
[6] P. Drygas, Distributivity between semi-t-operators and semi-nullnorms, Fuzzy Sets and Systems, 264 (2015), 100-
109.
[7] F. Durante, P. Sarkoci, A note on the convex combinations of triangular norms, Fuzzy Sets and Systems, 159
(2008), 77-80.
[8] J. Fodor, I. J. Rudas, On continuous triangular norms that are migrative, Fuzzy Sets and Systems, 158 (2007),
1692-1697.
[9] J. Fodor, I. J. Rudas, Migrative t-norms with respect to continuous ordinal sums, Information Sciences, 181 (2011),
4860-4866.
[10] J. Fodor, I. J. Rudas, An extension of the migrative property for triangular norms, Fuzzy Sets and Systems, 168
(2011), 70-80.
[11] D. Jocic, I. Stajner-Papuga, Distributuvity equations and Mayor's aggregation operators, Knowledge Based Systems,
52 (2013), 194-200.
[12] E. P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Acad. Publ., Dordrecht, 2000.
[13] G. J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic, Theory and Application, Prentice Hall PTR, Upper Saddle River,
New Jersey, 1995.
[14] M. Mas, G. Mayor, J. Torrens, T-operators, Int. J. Uncertain. Fuzziness Knowl.-Based Systems, 7 (1999), 31-50.
[15] M. Mas, G. Mayor, J. Torrens, The modularity condition for uninorms and t-operators, Fuzzy Sets and Systems,
126 (2002), 207-218.
[16] M. Mas, G. Mayor, J. Torrens, The distributivity condition for uninorms and t-operators, Fuzzy Sets and Systems,
128 (2002), 209-225.
[17] M. Mas, M. Monserrat, D. Ruiz-Aguilera, J. Torrens, Migrativity of uninorms over t-norms and t-conorms, Ad-
vanced Intelligent Systems and Computing, 228 (2012), 155-166.
[18] M. Mas, M. Monserrat, D. Ruiz-Aguilera, J. Torrens, On migrative t-conorms and uninorms, Information Sciences,
299 (2012), 286-295.
[19] M. Mas, M. Monserrat, D. Ruiz-Aguilera, J. Torrens, An extension of the migrative property for uninorms, Infor-
mation Sciences, 246 (2013), 191-198.

[20] M. Mas, M. Monserrat, D. Ruiz-Aguilera, J. Torrens, Migrative uninorms and nullnorms over t-norms and t-
conorms, Fuzzy Sets and Systems, 261 (2015), 20-32.
[21] G. Mayor, Contribucio a l'estudi dels models matematics per a la logica de la vaguetat, Ph.D. Thesis, Universitat
de les Illes Balears, 1984.
[22] R. Mesiar, H. Bustince, J. Fernandez, On the -migrativity of semicopulas, quasi-copulas, and copulas, Information
Sciences, 180 (2010), 1967-1976.
[23] J. Montero, V. Lopez, D. Gomez, The role of fuzziness in decision making, Fuzzy Logic, 215 (2007), 337-349.
[24] F. Qin, D. Ruiz-Aguilera, On the -migrativity of idempotent uninorms, International Journal Uncertain Fuzziness
Knowlege-Based Systems, 23 (2015), 105-115.
[25] F. Qin, Y. M. Wang, Distributivity between semi-t-operators and Mayor's aggregation operators, Information Sci-
ences, 346-347 (2016), 6-16.
[26] B. Roy, Decision sciences or decision aid sciences, European Journal of Operational Research, 66 (1993), 184-203.
[27] Y. Su, W. Zong, H. W. Liu, A note on an extension of the migrative property for uninorms, Information Sciences,
281 (2014), 334-337.
[28] Y. Su, W. Zong, H. W. Liu, F. X. Zhang, On migrativity property for uninorms, Information Sciences, 300 (2015),
114-123.
[29] Y. Su, W. Zong, H. W. Liu, Migrativity property for uninorms, Fuzzy Sets and Systems, 287 (2016), 213-226.
[30] Y. Su, W. Zong, H. W. Liu, P. J. Xue, Migrativity property for uninorms and semi-t-operators, Information
Sciences, 325 (2015), 455-465.
[31] W. Zong, Y. Su, H. W. Liu, Migrativity property for nullnorms, International Journal Uncertain Fuzziness Knowl.-
Based Systems, 22 (2014), 749-759.