POINTWISE PSEUDO-METRIC ON THE \(L \)-REAL LINE

F. -G. SHI

ABSTRACT. In this paper, a pointwise pseudo-metric function on the \(L \)-real line is constructed. It is proved that the topology induced by this pointwise pseudo-metric is the usual topology.

1. Introduction

The \(L \)-fuzzy unit interval and the \(L \)-fuzzy real line are two important \(L \)-topological spaces. The \(L \)-fuzzy unit interval was defined by Hutton [2]. The \(L \)-fuzzy real line was respectively defined by Höhle [3] and Gantner et al. [4]. They are important not only in \(L \)-topology, but also in other fields.

To reflect the characteristics of pointwise \(L \)-topology, i.e., the relation between a fuzzy point and its Q-neighborhoods (or R-neighborhoods) [5], a theory of pointwise uniformities and a theory of pointwise metrics were introduced on completely distributive lattices and in \(L \)-fuzzy set theory (see [6, 7, 8, 9]). Many ideal results in general topology were generalized to \(L \)-topology. In [9], it was proved that the \(L \)-fuzzy real line is pointwise pseudo-metrizable, but no pointwise pseudo-metric function on the \(L \)-fuzzy real line was given. In this paper, our aim is to construct a pointwise pseudo-metric function in the \(L \)-real line and prove that the topology induced by this pointwise pseudo-metric function is the usual topology.

2. Preliminaries

Throughout this paper, \(L \) always denotes a completely distributive lattice with an order-reversing involution. \(M(\mathcal{L}^X) \) denotes the set of all non-zero \(\vee \)-irreducible elements in \(\mathcal{L}^X \). For \(A \in \mathcal{L}^X \), \(\beta(A) \) denotes the maximal minimal family of \(A \) (see [5]) and \(\beta^* (A) = \beta(A) \cap M(\mathcal{L}^X) \). It is easy to verify that for \(e \in M(\mathcal{L}) \), \(e \in \beta^* (A) \) if and only if \(a \ll A \), where \(\ll \) is the way below relation ([1]).

Definition 2.1 ([9]). A pointwise pseudo-quasi-metric on \(\mathcal{L}^X \) is a mapping \(d : M(\mathcal{L}^X) \times M(\mathcal{L}^X) \to [0, +\infty) \) satisfying the following (M1)–(M3):

\((M1) \forall a \in M(\mathcal{L}^X), \ d(a, a) = 0. \)
\((M2) \forall a, b, c \in M(\mathcal{L}^X), \ d(a, c) \leq d(a, b) + d(b, c). \)

Received: November 2004; Accepted: May 2005

Key words and phrases: \(L \)-topology, Pointwise pseudo-metric, The \(L \)-real line.

Mathematics Subject Classification (2000): 54A40

This work was supported by National Natural Science Foundation of China (10371079) and Basic Research Foundation of Beijing Institute of Technology.
A pointwise pseudo-quasi-metric \(d \) is called a pointwise pseudo-metric if it satisfies the following conditions.

\[
\begin{align*}
(M3) & \quad \forall a, b \in M(L^X), \quad d(a, b) = \bigwedge_{c \leq b} d(a, c). \\
(M4) & \quad \forall a, b, c \in M(L^X), \quad a \leq b \text{ implies } d(a, c) \leq d(b, c). \\
(M5) & \quad \forall \lambda, \mu \in M(L^X), \quad \bigwedge_{a \leq \lambda} d(a, \mu) < r \text{ if and only if } \bigwedge_{b \geq \mu} d(b, \lambda) < r.
\end{align*}
\]

Theorem 2.2 ([9]). Let \(d \) be a pointwise pseudo-metric on \(L^X \). \(\forall r \in (0, +\infty) \), define a mapping \(P_r : M(L^X) \to L^X \) by

\[
P_r(a) = \bigvee \{ b \in M(L^X) | d(a, b) \geq r \}.
\]

Then the family \(\{ P_r | r \in (0, +\infty) \} \) of R-nbd mappings of \(d \) satisfies the following conditions.

\[
\begin{align*}
(R1) & \quad \forall a \in M(L^X), \quad \bigwedge_{r > 0} P_r(a) = 0; \\
(R2) & \quad \forall a \in M(L^X), \forall r \in (0, +\infty), a \neq P_r(a); \\
(R3) & \quad \forall r, s \in (0, +\infty), P_r \circ P_r \geq P_{r+s}; \\
(R4) & \quad \forall a \in M, P_r(a) = \bigwedge_{s < r} P_s(a); \\
(R5) & \quad \forall r \in (0, +\infty), P_r \text{ is symmetric.}
\end{align*}
\]

Theorem 2.3 ([9]). If \(\{ P_r | P_r : M(L^X) \to L^X, r \in (0, +\infty) \} \) is a family of mappings satisfying (R1)–(R5), and we define \(d : M(L^X) \times M(L^X) \to [0, +\infty) \) by

\[
d(a, b) = \bigwedge \{ r | b \leq P_r(a) \},
\]

then \(d \) is a pointwise pseudo-metric on \(L^X \) and the family of R-nbd mappings of \(d \) is exactly \(\{ P_r | r \in (0, +\infty) \} \).

Theorem 2.4 ([9]). If \(d \) is a pointwise pseudo-quasi-metric on \(L^X \), then

1. \(\{ P_r(a) | a \in M(L^X), r \in (0, +\infty) \} \) is a base for a co-topology on \(L^X \). This co-topology is denoted by \(\eta_d \); \n
2. \(\{ P_r(a) | r > 0 \} \) is a locally R-neighborhood base at \(a \) in the co-topology \(\eta_d \).

Definition 2.5 ([3, 4]). The \(L \)-fuzzy real line \(\mathbb{R}_L \) is defined as the set of all equivalence classes of antitone maps \(\lambda : \mathbb{R} \to L \) satisfying

\[
\bigvee_{t \in \mathbb{R}} \lambda(t) = 1 \text{ and } \bigwedge_{t \in \mathbb{R}} \lambda(t) = 0,
\]

where the equivalence identifies two maps \(\lambda \) and \(\mu \) if and only if \(\forall t \in I, \lambda(t+) = \mu(t+) \). The canonical \(L \)-topology on \(\mathbb{R}_L \) is generated from the subbase \(\{ \mathcal{L}_t, \mathcal{R}_t | t \in \mathbb{R} \} \), where

\[
\mathcal{L}_t : I(L) \to L \text{ by } \mathcal{L}_t(\lambda) = \lambda(t-); \\
\mathcal{R}_t : I(L) \to L \text{ by } \mathcal{R}_t(\lambda) = \lambda(t+).
\]
3. Pointwise Pseudo-metric on the L-real Line

Lemma 3.1. Let $\mathbb{R}(L)$ be the L-real line. Define a mapping $\varepsilon : M(L^{R(L)}) \to \mathbb{R}$ and a mapping $\sigma : M(L^{R(L)}) \to \mathbb{R}$ such that for all $e \in M(L^{R(L)})$,

$$
\varepsilon(e) = \sup \{ t \mid e \leq \mathcal{L}_t \}, \quad \sigma(e) = \inf \{ t \mid e \leq \mathcal{R}_t \}.
$$

Then we have the following results:

1. $\varepsilon(e) = \max \{ t \mid e \leq \mathcal{L}'_t \}$, \quad $\sigma(e) = \min \{ t \mid e \leq \mathcal{R}'_t \}$.
2. If $a, b \in M(L^{R(L)})$ and $a \leq b$, then $\varepsilon(a) \geq \varepsilon(b)$ and $\sigma(a) \leq \sigma(b)$.
3. If $b \in M(L^{R(L)})$, then $\varepsilon(b) = \bigwedge_{c \leq b} \varepsilon(c)$ and $\sigma(b) = \bigvee_{c \leq b} \sigma(c)$.
4. $\forall \lambda, \mu \in M(L^{R(L)})$, there exists $a \not\leq \lambda'$ such that $\varepsilon(\mu) < \varepsilon(a) + r$ if and only if there exists $b \not\leq \mu'$ such that $\sigma(\lambda) > \sigma(b) - r$.

Proof. (1) and (2) are obvious. By (2) we can obtain that $\varepsilon(b) \leq \bigwedge_{c \leq b} \varepsilon(c)$ and $\sigma(b) \geq \bigvee_{c \leq b} \sigma(c)$. Thus in order to prove (3) we need only to prove that

$$
\varepsilon(b) \geq \bigwedge_{c \leq b} \varepsilon(c) \quad \text{and} \quad \sigma(b) \leq \bigvee_{c \leq b} \sigma(c).
$$

Suppose that $\varepsilon(b) < \bigwedge_{c \leq b} \varepsilon(c)$. Then there exists $s \in \mathbb{R}$ such that

$$
\varepsilon(b) = \max \{ t \mid b \leq \mathcal{L}'_t \} < s < \bigwedge_{c \leq b} \varepsilon(c).
$$

This implies that $b \not\leq \mathcal{L}'_s$. Further there exists $c \ll b$ such that $c \not\leq \mathcal{L}'_s$. Thus we have that $\varepsilon(c) < s$. By $s < \bigwedge_{c \leq b} \varepsilon(c)$ we obtain a contradiction. Therefore $\varepsilon(b) \geq \bigwedge_{c \leq b} \varepsilon(c)$. Similarly we can prove that $\sigma(b) \leq \bigvee_{c \leq b} \sigma(c)$. Hence (3) follows.

To prove (4) suppose that $\varepsilon(\mu) < \varepsilon(a) + r$. Then there is $t > 0$ such that $\varepsilon(\mu) < \varepsilon(a) + r - t$. This implies that

$$
\mu \not\leq \mathcal{L}_{\varepsilon(a)+r-t} \quad \text{or} \quad \mathcal{L}_{\varepsilon(a)+r-t} \not\leq \mu'.
$$

So there exists a point $b \leq \mathcal{L}_{\varepsilon(a)+r-t}$ such that $b \not\leq \mu'$. We obtain

$$
\sigma(b) \leq \varepsilon(a) + r - t \quad \text{or} \quad \sigma(b) - r < \varepsilon(a)
$$

since $\mathcal{L}_{\varepsilon(a)+r-t} \leq \mathcal{R}'_{\varepsilon(a)+r-t}$. By $a \leq \mathcal{L}_{\varepsilon(a)}$ we have that

$$
\lambda \not\leq a' \geq \mathcal{L}_{\varepsilon(a)} \geq \mathcal{R}'_{\varepsilon(a)+r-t}.
$$

Therefore $\sigma(\lambda) > \sigma(b) - r$.

\[\square\]

Theorem 3.2. Let $\mathbb{R}(L)$ be the L-real line. For all $a, b \in M(L^{R(L)})$, define

$$
d_1(a, b) = \max \{ \varepsilon(b) - \varepsilon(a), 0 \}, \quad d_2(a, b) = \max \{ \sigma(a) - \sigma(b), 0 \},
$$

Then d_1, d_2 are pointwise pseudo-quasi-metrics, $\{ \mathcal{L}_t \mid t \in \mathbb{R} \}$ is the topology induced by d_1 and $\{ \mathcal{R}_t \mid t \in \mathbb{R} \}$ is the topology induced by d_2.

\[\square\]
Proof. We only prove that d_1 is a pointwise pseudo-quasi-metric. The proof for d_2 is similar. Obviously, by (2) in Lemma 3.1 we know that $a \leq b \Rightarrow d_1(a, b) = 0$. Thus (M1) is true. (M2) can be obtained as follows.

\[
d_1(a, c) = \max \{ \varepsilon(c) - \varepsilon(a), 0 \}
\]

\[
= \max \{ \varepsilon(c) - \varepsilon(b) + \varepsilon(b) - \varepsilon(a), 0 \}
\]

\[
\leq \max \{ \varepsilon(b) - \varepsilon(a), 0 \} + \max \{ \varepsilon(c) - \varepsilon(b), 0 \}
\]

\[
= d_1(a, b) + d_1(b, c)
\]

(M3) can be obtained as follows:

\[
d_1(a, b) = \max \{ \varepsilon(b) - \varepsilon(a), 0 \}
\]

\[
= \max \{ \bigwedge_{c \leq b} (\varepsilon(c) - \varepsilon(a)), 0 \}
\]

\[
= \bigwedge_{c \leq b} \max \{ \varepsilon(c) - \varepsilon(a), 0 \} = \bigwedge_{c \leq b} d_1(a, c).
\]

In order to prove that \{ L_{t} \mid $t \in \mathbb{R}$ \} is the topology induced by d_1 and \{ R_{t} \mid $t \in \mathbb{R}$ \} is the topology induced by d_2, we only need to prove that the family \{ $P_{d_1}^{r}$ \mid $r > 0$ \} of R-nbd mappings of d_1 and the family \{ $P_{d_2}^{r}$ \mid $r > 0$ \} of R-nbd mappings of d_2 satisfy the following condition:

\[
P_{d_1}^{r}(a) = L'_{\varepsilon(a)+r} \quad \text{and} \quad P_{d_2}^{r}(a) = R'_{\sigma(a)-r}.
\]

In fact, $\forall a, b \in M(L^{R}(L))$, we have:

\[
b \leq P_{d_1}^{r}(a) \quad \Leftrightarrow \quad d_1(a, b) \geq r
\]

\[
\Leftrightarrow \quad \varepsilon(b) - \varepsilon(a) \geq r
\]

\[
\Leftrightarrow \quad \varepsilon(b) \geq \varepsilon(a) + r
\]

\[
\Leftrightarrow \quad b \leq L'_{\varepsilon(a)+r}
\]

and

\[
b \leq P_{d_2}^{r}(a) \quad \Leftrightarrow \quad d_2(a, b) \geq r
\]

\[
\Leftrightarrow \quad \sigma(a) - \sigma(b) \geq r
\]

\[
\Leftrightarrow \quad \sigma(b) \leq \sigma(a) - r
\]

\[
\Leftrightarrow \quad b \leq R'_{\sigma(a)-r}
\]

The result follows.

Remark 3.3. When $L = 2$, d_1 and d_2 are conjugate pseudo-quasi-metrics in the usual sense.

Theorem 3.4. Let $\mathbb{R}(L)$ be the L-real line. For all $a, b \in M(L^{R}(L))$, define

\[
d(a, b) = \max \{ \varepsilon(b) - \varepsilon(a), \sigma(a) - \sigma(b), 0 \} = \max \{ d_1(a, b), d_2(a, b) \}.
\]

Then d is a pointwise pseudo-metric and d exactly induces the topology on $\mathbb{R}(L)$.

□
Thus (M1) is true. (M2) can be obtained as follows:

\[d(a, c) = \max\{\varepsilon(c) - \varepsilon(a), \sigma(a) - \sigma(c), 0\} \]

\[= \max\{\varepsilon(c) - \varepsilon(b) + \varepsilon(b) - \varepsilon(a), \sigma(a) - \sigma(b) + \sigma(b) - \sigma(c), 0\} \]

\[\leq \max\{\varepsilon(b) - \varepsilon(a), \sigma(a) - \sigma(b), 0\} + \max\{\varepsilon(c) - \varepsilon(b), \sigma(b) - \sigma(c), 0\} \]

\[= d(a, b) + d(b, c) \]

(M3) can be obtained as follows:

\[d(a, b) = \max\{\varepsilon(b) - \varepsilon(a), \sigma(a) - \sigma(b), 0\} \]

\[= \max\{\bigwedge_{c \in b} (\varepsilon(c) - \varepsilon(a), \sigma(a) - \varepsilon(c), 0)\} \quad \text{by Lemma 3.1} \]

\[= \bigwedge_{c \in b} \max\{\varepsilon(c) - \varepsilon(a), \sigma(a) - \sigma(c), 0\} = \bigwedge_{c \in b} d(a, c) \]

(M4) can be obtained from (2) in Lemma 3.1.

To prove (M5), we note that \(\forall \lambda, \mu \in M(L^R(L)) \), if

\[\bigwedge_{a \in \lambda'} d(a, \mu) = \bigwedge_{a \in \lambda'} \max\{\varepsilon(\mu) - \varepsilon(a), \sigma(\mu) - \sigma(a), 0\} < r, \]

then there exists \(a \not\in \lambda' \) such that

\[\max\{\varepsilon(\mu) - \varepsilon(a), \sigma(\mu) - \sigma(a), 0\} < r, \]

i.e.,

\[\varepsilon(\mu) - \varepsilon(a) < r, \ \sigma(\mu) - \sigma(a) < r. \]

Hence we have that

\[\varepsilon(\mu) < \varepsilon(a) + r, \ \sigma(\mu) > \sigma(a) - r. \]

By (4) in Lemma 3.1 we know that there exist \(b \not\in \mu' \) and \(c \not\in \mu' \) such that

\[\sigma(\lambda) > \sigma(b) - r, \ \varepsilon(\lambda) < \varepsilon(c) + r. \]

Thus, since \(\mu' \) is a prime element, \(b \land c \not\in \mu' \). Take a point \(d \leq b \land c \) such that \(d \not\in \mu' \). Then

\[\sigma(\lambda) > \sigma(b) - r \geq \sigma(d) - r, \ \varepsilon(\lambda) < \varepsilon(c) + r \leq \varepsilon(d) + r. \]

This implies that

\[\bigwedge_{d \in \mu'} d(d, \lambda) = \bigwedge_{d \in \mu'} \max\{\varepsilon(\lambda) - \varepsilon(d), \sigma(\lambda) - \sigma(d), 0\} < r. \]

In order to prove that \(\{L_t, R_t \mid t \in R\} \) is a subbase of the topology induced by \(d \), we only need to prove that the family \(\{P_r^d \mid r > 0\} \) of R-nbd mappings of \(d \) satisfies the following condition:

\[P_r^d(a) = L_{\varepsilon(a) + r} \lor R_{\sigma(a) - r}. \]
In fact, \(\forall a, b \in M(L^{R(L)}) \) we have:

\[
\begin{align*}
 b \leq P_{\epsilon}(a) & \iff d(a, b) \geq r \\
 & \iff \varepsilon(b) - \varepsilon(a) \geq r \quad \text{or} \quad \sigma(a) - \sigma(b) \geq r \\
 & \iff \varepsilon(b) \geq \varepsilon(a) + r \quad \text{or} \quad \sigma(b) \leq \sigma(a) - r \\
 & \iff b \leq L_{\varepsilon(a) + r} \lor R_{\sigma(a) - r}
\end{align*}
\]

The result follows. \(\square \)

Remark 3.5. When \(L = 2 \), the pointwise pseudo-metric \(d \) in Theorem 3.4 can be regarded as the usual pseudo-metric defined by \(d(a, b) = |a - b| \).

References

Fu-Gui Shi, Department of Mathematics, Beijing Institute of Technology, Beijing, 100081, P.R. China

E-mail address: fuguishi@bit.edu.cn or f.g.shi@263.net