• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Iranian Journal of Fuzzy Systems
Articles in Press
Current Issue
Journal Archive
Volume Volume 15 (2018)
Volume Volume 14 (2017)
Volume Volume 13 (2016)
Volume Volume 12 (2015)
Volume Volume 11 (2014)
Volume Volume 10 (2013)
Volume Volume 9 (2012)
Volume Volume 8 (2011)
Volume Volume 7 (2010)
Volume Volume 6 (2009)
Volume Volume 5 (2008)
Volume Volume 4 (2007)
Volume Volume 3 (2006)
Volume Volume 2 (2005)
Volume Volume 1 (2004)
Issue Issue 2
Issue Issue 1
Corsini, P., Cristea, I. (2004). FUZZY GRADE OF I.P.S. HYPERGROUPS OF ORDER 7. Iranian Journal of Fuzzy Systems, 1(2), 15-32. doi: 10.22111/ijfs.2004.499
Piergiulio Corsini; Irina Cristea. "FUZZY GRADE OF I.P.S. HYPERGROUPS OF ORDER 7". Iranian Journal of Fuzzy Systems, 1, 2, 2004, 15-32. doi: 10.22111/ijfs.2004.499
Corsini, P., Cristea, I. (2004). 'FUZZY GRADE OF I.P.S. HYPERGROUPS OF ORDER 7', Iranian Journal of Fuzzy Systems, 1(2), pp. 15-32. doi: 10.22111/ijfs.2004.499
Corsini, P., Cristea, I. FUZZY GRADE OF I.P.S. HYPERGROUPS OF ORDER 7. Iranian Journal of Fuzzy Systems, 2004; 1(2): 15-32. doi: 10.22111/ijfs.2004.499

FUZZY GRADE OF I.P.S. HYPERGROUPS OF ORDER 7

Article 3, Volume 1, Issue 2, September and October 2004, Page 15-32  XML PDF (225 K)
Document Type: Research Paper
DOI: 10.22111/ijfs.2004.499
Authors
Piergiulio Corsini1; Irina Cristea 2
1Dipartimento di Matematica e Informatica, Via delle Scienze 206, 33100 Udine, Italy, fax: 0039-0432-558499
2Faculty of Mathematics, Al.I. Cuza University, 6600 Ias¸i, Romania, fax: 0040-232-201160
Abstract
i.p.s. hypergroups are canonical hypergroups such that
$[\forall(a,x),a+x\ni x]\Longrightarrow[a+x=x].$
i.p.s. hypergroups were investigated in [1], [2], [3], [4] and it was proved that
if the order is less than 9, they are strongly canonical (see [13]). In this paper
we obtain the sequences of fuzzy sets and of join spaces determined (see [8])
by all i.p.s. hypergroups of order seven. For the meaning of the hypergroups
iH and the notations, see [7], [8].
Keywords
Fuzzy grade; Strong fuzzy grade; i.p.s. hypergroups; Join spaces; Whypergroups
References
[1] P. Corsini, Sugli ipergruppi canonici finiti con identit`a parziali scalari, Rend. Circolo Mat.
di Palermo, Serie II, Tomo XXXVI (1987).
[2] P. Corsini, (i.p.s.) Ipergruppi di ordine 6, Ann. Sc. de l’Univ. Blaise Pascal, Clermont–Ferrand
II (1987).
[3] P. Corsini, (i.p.s.) Ipergruppi di ordine 7, Atti Sem. Mat. Fis. Univ. Modena, XXXIV
(1985–1986).
[4] P. Corsini, (i.p.s.) Hypergroups of order 8, Aviani Editore (1989) 1–106.

[5] P. Corsini, Prolegomena of hypergroups, Aviani Editore (1993).
[6] P. Corsini, On W–hypergroups, Proceedings of I.R.B. InternationalWorkshops, New Frontiers
in Multivalued Hyperstructures, Monteroduni (1995).
[7] P. Corsini, Join spaces, power sets, fuzzy sets, Proceedings of the Fifth International Congress
on Algebraic Hyperstructures and Applications, 1993, Ia¸si, Hadronic Press (1994).
[8] P. Corsini, A new connection between hypergroups and fuzzy sets, Southeast Asian Bull. of
Math. SEAMS, 27 (2003).
[9] P. Corsini and I. Cristea, Fuzzy grade of i.p.s. hypergroups of order less or equal to 6, accepted
by PU.M.A., Budapest (2004).
[10] P. Corsini and V. Leoreanu, Join spaces associated with fuzzy sets, J. of Combinatorics,
Information and System Sciences, 20 (1) (1995).
[11] P. Corsini and V. Leoreanu, Applications of hyperstructure theory, Advances in Math.,
Kluwer Academic Publishers (2003).
[12] J. Mittas, Hypergroupes canoniques, Math. Balkanica, 2 (1972).
[13] J. Mittas, Hypergroupes canoniques, values et hypervalues. hypergroupes fortement et
sup´erieurement canoniques, Math. Balk., 8 (1978).
[14] W. Prenowitz and J. Jantosciak, Geometries and join spaces, J. reine und angewandte Math.,
257 (1972) 100–128.
[15] L. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

Statistics
Article View: 2,440
PDF Download: 1,360
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.