# FUZZY GRADE OF I.P.S. HYPERGROUPS OF ORDER 7

Document Type: Research Paper

Authors

1 Dipartimento di Matematica e Informatica, Via delle Scienze 206, 33100 Udine, Italy, fax: 0039-0432-558499

2 Faculty of Mathematics, Al.I. Cuza University, 6600 Ias¸i, Romania, fax: 0040-232-201160

Abstract

i.p.s. hypergroups are canonical hypergroups such that
\$[\forall(a,x),a+x\ni x]\Longrightarrow[a+x=x].\$
i.p.s. hypergroups were investigated in [1], [2], [3], [4] and it was proved that
if the order is less than 9, they are strongly canonical (see [13]). In this paper
we obtain the sequences of fuzzy sets and of join spaces determined (see [8])
by all i.p.s. hypergroups of order seven. For the meaning of the hypergroups
iH and the notations, see [7], [8].

Keywords

### References

[1] P. Corsini, Sugli ipergruppi canonici finiti con identit`a parziali scalari, Rend. Circolo Mat.
di Palermo, Serie II, Tomo XXXVI (1987).
[2] P. Corsini, (i.p.s.) Ipergruppi di ordine 6, Ann. Sc. de l’Univ. Blaise Pascal, Clermont–Ferrand
II (1987).
[3] P. Corsini, (i.p.s.) Ipergruppi di ordine 7, Atti Sem. Mat. Fis. Univ. Modena, XXXIV
(1985–1986).
[4] P. Corsini, (i.p.s.) Hypergroups of order 8, Aviani Editore (1989) 1–106.

[5] P. Corsini, Prolegomena of hypergroups, Aviani Editore (1993).
[6] P. Corsini, On W–hypergroups, Proceedings of I.R.B. InternationalWorkshops, New Frontiers
in Multivalued Hyperstructures, Monteroduni (1995).
[7] P. Corsini, Join spaces, power sets, fuzzy sets, Proceedings of the Fifth International Congress
on Algebraic Hyperstructures and Applications, 1993, Ia¸si, Hadronic Press (1994).
[8] P. Corsini, A new connection between hypergroups and fuzzy sets, Southeast Asian Bull. of
Math. SEAMS, 27 (2003).
[9] P. Corsini and I. Cristea, Fuzzy grade of i.p.s. hypergroups of order less or equal to 6, accepted
by PU.M.A., Budapest (2004).
[10] P. Corsini and V. Leoreanu, Join spaces associated with fuzzy sets, J. of Combinatorics,
Information and System Sciences, 20 (1) (1995).
[11] P. Corsini and V. Leoreanu, Applications of hyperstructure theory, Advances in Math.,
[12] J. Mittas, Hypergroupes canoniques, Math. Balkanica, 2 (1972).
[13] J. Mittas, Hypergroupes canoniques, values et hypervalues. hypergroupes fortement et
sup´erieurement canoniques, Math. Balk., 8 (1978).
[14] W. Prenowitz and J. Jantosciak, Geometries and join spaces, J. reine und angewandte Math.,
257 (1972) 100–128.
[15] L. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.